
Computer Vision Winter Workshop 2008, Janez Perš (ed.)
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Abstract
This paper presents a new trajectory-based approach for

probabilistic temporal segmentation of team sports. The
probabilistic game model is applied to the player-trajectory
data in order to segment individual game instants into one
of the three game phases (offensive game, defensive game
and time-outs) and a nonlinear or Gaussian smoothing ker-
nel is used to enforce the temporal continuity of the game.
The presented approach is compared to the Support Vec-
tor Machine (SVM) classifier on three basketball and three
handball matches. The obtained results suggest that our ap-
proach is general and robust and as such could be applied to
various team sports. It can handle unusual game situations
such as player exclusions, substitution or injuries which may
happen during the game.

1 Introduction

Development of video technologies in last decade has en-
abled the sport experts to obtain large quantities of video
material. At the same time the increase in computational
power and the advancement of video technology have made
possible for the experts to obtain large quantities of data
about human behavior and have shifted the research focus
from human recognition and tracking [1, 2] towards video-
basedbehavior analysis and behavior understanding [3, 4].
Most popularresearch domains in the field of sport include
video summarization [5], segmentation [6,7], indexing [8],
highlight extraction [9, 10], as well as complex recognition
of behavior patterns [11], and skill evaluation of individual
players andwhole teams [12, 13]. The main goal of these
research activities is to assist sport experts in their work by
reducing the amount of data that has to be analyzed. For
example in production logging [6] it is crucial that user ob-
tains onlythe relevant video clips which are then included
in the program. Similarly, in the field of player behavior and
game tactics analysis [13] the experts would usually want
to obtainthe specific contextual parts of the game (e.g. of-
fense and defense or active and passive game) and are less
interested in specific video clips.

The aim of this paper is to show the efficiency of Gaus-
sian mixture model (GMM) for temporal segmentation of

group motion. We demonstrate the superiority of this
approach in comparison to the Support Vector Machine
(SVM) [14] classifier even in the cases when relatively
small amountof training data is available. The idea of the
proposed approach is to develop a universal segmentation
method which can be trained to adapt to particular type of
motion. We will show that by using a pre-computed game
model and a two step segmentation procedure it is possible
to segment the game into individual game phases. Two ex-
amples from the sport domain will be used to demonstrate
that fairly simple features that are based solely on the play-
ers’ positions can be used for segmentation.

The rest of this paper is organized as follows. Section2
presents some problems of the multi-player game segmenta-
tion andprovides details about our segmentation procedure.
We report on experimental results in section3. Finally, in
Section4 the conclusionsand the future work are discussed.

2 Temporal segmentation of team sports

Team sports are determined both by the game rules and by
the collective aims, which the teams must pursue to defeat
their opponents. In many popular team sports the teams’ ac-
tivities alternate between offense and defense, with minor
interruptions, such as time outs, free throws or free kicks.
Therefore, the game can be regarded as a process consisting
of a certain number of discrete phases. These phases corre-
spond to offensive play, defensive play, time outs, inactive
play, free throws, free kicks, and other miscellaneous activ-
ities.

In most team sports (e.g. basketball, handball, hockey,
etc.) the state of the team can be defined by the possession
of the ball or, in the case of hockey, possession of the puck.
However, due to the size, speed and occlusions of these ob-
jects in video, it is nontrivial to obtain accurate trajectories
even when the most advanced video processing technology
is used. Moreover, even if the ball position would be known
it would still be very difficult to disambiguate the ball pos-
session and therefore the state of the teams. For these rea-
sons, we decided not to use the information about the ball
for game segmentation.

Our segmentation procedure is divided into two steps:
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• In the first step each individual time segment is labelled
into oneof the game phases using a probabilistic model
of the game. We use two different classification ap-
proaches. In the first approach the game model is built
using a Gaussian Mixture Model (GMM). In the second
approach, the Support Vector Machine (SVM) is used for
classification.

• In the second step the label of each time segment is re-
computed by considering the neighboring samples. This
way we enforce the temporal continuity of the game
and significantly reduce the effect of undesirable phase
switching. By doing so, we are able to additionally im-
prove the segmentation results.

To obtain a general game model, we first have to design a
trajectory-based state vector which would differentiate well
among the individual game phases and would not depend on
the number of players on the court or specific sport-related
rules.

2.1 The state vector

In the case of basketball and handball, our model assumes
that the play consists the following three phases: offensive
play (m1), defensive play (m2) and time outs (m3):

M = {m1,m2,m3} . (1)

Our basic assumption is that there exists an intrinsic relation
between the parameters of player motion (position, veloc-
ity and direction) and the phases of the game. Therefore,
our model is based solely on the observation of the players’
motion.

Our initial idea was to build the separate game models
for each team [11]. Similarly to the work of Erdmann [15],
wecalculatedthecollectiveposition of the active players by
calculating the team centroid (xt, yt) (i.e. the mean position
of the players belonging to the same team)

xt =
1

n

n∑
i=1

xi , yt =
1

n

n∑
i=1

·yi. (2)

Additionally, we also encoded the two-dimensional mo-
tion of this centroid across the court (∆xt,∆yt) as a posi-
tion difference of two consecutive centroid positions that are
calculated from previously smoothed player trajectories (see
Section3.1). We defined theteam statevectorx(t) as

x(t) = [xt, yt,∆xt,∆yt]
T . (3)

Although the described approach yielded reasonably
good results [11], we have observed that a slightly better
results wereobtained when the trajectories of the same team
were used for training and testing and they dropped when
the teams were different. Additionally, we have observed
that this model failed in the cases of tracking errors or
unusual game situations such as player injuries, exclusions
or substitutions. In such situations the excluded or injured
player is regarded as an outlier since he/she is not actually
involved in the game1.

1Someexamples of such situations can be found at
http://vision.fe.uni-lj.si/research/SportA/segmentation.html

For these reason we have decided to improve the state
vector as follows:

• Since the two teams have the opposite states but they
move in a very similar manner regardless of the game
state, we compute theoverall game modelby consider-
ing all (n) active players from both teams. Using the ob-
tainedgame modelone can calculate the state of the first
team and simply invert the offensive and defensive states
for the other team.

• We introduce weightwi which indicates how well an in-
dividual player fits into the flow of the game. For this pur-
pose we fit a Gaussian distributionN (·;µ, σ) with mean
µ(t) = [µx(t), µy(t)]T and covarianceΣ(t) on the posi-
tions of the active players. The weight of each individual
player position is defined as a likelihood of that position
under the fitted Gaussian distribution.

wi(t) =
N (xi(t);µ(t),Σ(t))∑n
1 N (xi(t);µ(t),Σ(t))

, (4)

wherexi(t) = [xi, yi]
T is the position of thei−th player.

The centroid position is then computed as

xt =

n∑
i=1

wi(t) · xi(t) , yt =

n∑
i=1

wi(t) · yi(t). (5)

As an illustration, Figure1 shows the trajectories of the
centroid forthe basketball and handball games.

(a) (b)

Figure1: Trajectory of the centroid: (a) Basketball. (b) Handball.

2.2 Building the game model

We use two different approaches for building the game
model. The first one is Gaussian Mixture Model (GMM)
[11] and the second is Support Vector Machine (SVM) clas-
sifier.

In both cases the model is built in advance and is meant
to be as general as possible so that it is capable to handle
different game irregularities as well as different strategies of
different teams (e.g. defensive or offensive play).

2.2.1 The Gaussian mixture model We define a proba-
bilistic model of the game phases using a mixture of Gaus-
sians [16]
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p(x|mi) =

n∑
k=1

α
(i)
k · N (x;µ

(i)
k ,Σ

(i)
k ), (i = 1, 2, 3),

(6)
wheremi represents the game phase,αk represent the mix-

ing coefficients, such that
n∑

k=1

α
(i)
k = 1, N (x|µ(i)

k ,Σ
(i)
k )

is the k-th Gaussian density function with meanµ(i)
k and

the covariance matrixΣ(i)
k , andn represents the number of

Gaussian density functions used to model each phase of the
game. To determine the parameters of the Gaussian density
functions we use the Expectation Maximization (EM) algo-
rithm [17] on manually labeled training sequences.

Using the above model, we can calculate the probabil-
ity of the modelmi given the currentflow vectorx(t) using
Bayes formula

p(mi|x(t)) =
p(x(t)|mi)p(mi)

p(x(t))
, (i = 1, 2, 3). (7)

Provided that the probabilityp(x(t)) remains constant for all
modelsmi, the classification of a given samplex(t) at time
t is expressed as

m∗(t) = arg max
mi∈M

{p(x(t)|mi)p(mi)} , (i = 1, 2, 3),

(8)
wherep(mi) is thea priori probability of phasemi. These
probabilities were estimated in advance by roughly estimat-
ing the amounts of time teams spent in each individual phase
of the game.

p(M) =

{
[0.4, 0.4, 0.2]T ; basketball

[0.48, 0.48, 0.04]T ; handball
(9)

2.2.2 Support Vector Machines Support Vector Ma-
chines (SVMs) are a well known and useful technique for
data classification which is often used for machine learn-
ing and pattern recognition [14, 18, 19]. The main objec-
tive of the SVM is to find a hyperplane, which separates
the feature space into two parts, each containing the major-
ity of samples from each of the two classes. Further details
on the subject of SVMs can be found in different literature
[14, 19,20,21].

SVMs were originally designed for binary classifica-
tion. However, several methods have been proposed where
a multi-class classifier in constructed by combining several
binary classifiers [22]. The two best known approaches for
combining thebinary classifiers areone-against-allandone-
against-oneapproach. In the first case a (K-1) classifiers
are built using samples from one class as positive examples
and semples from all other classes as negative examples. In
this case the sample is assigned to the class that receives the
highest vote among the voting classifiers

m∗(t) = max
k=1:K−1

yk(x(t)); . (10)

In the second case a classifier is built for every pair of clases,
building altogetherK(K − 1)/2 classifiers. The test sam-
ple at timet is classified into the classm∗ that receives the
higher number of ”votes” among the voting classifiers.

In our case a SVM with a RBF kernel and theone-
against-oneapproach presented in [21] is used for the multi-
classclassification.

2.3 Enforcing the temporal continuity

The two classifiers described above provide a reasonably
good classification for the individual time instants. How-
ever, when used for trajectory segmentation, they produce
a number of faulty short segments, since they do not en-
code any temporal continuity. To enforce this requirement
we smooth the output of the first step of segmentation using
one of the following kernels:

• In the first case, a nonlinear kernel

m∗∗(t) = arg max
mi∈M

{
t+K∑

k=t−K

Dm∗,mi
(k)

}
, (11)

where

Dm∗,mi
(k) =

{
1; m∗(k) = mi

0; otherwise
(12)

is used to smooth the labels. In this case thet-th sample is
assigned a label that receives the highest score among the
observed individual labels inside the kernel window of
length2K + 1. The kernel width was determined exper-
imentally (see Section3.2 for details) and is set to twice
the lengthof the theoretically shortest possible segment
of play, which in basketball as well as in handball, ac-
cording to the experts’ opinion, corresponds to approxi-
mately three to four seconds.

• In the second case, a Gaussian kernel is used to smooth
the labels

m∗∗(t) = arg max
mi∈M

{
t+3σ∑

k=t−3σ

N (k; t, σ) ·Dm∗,mi
(k)

}
.

(13)

In this case the individual neighboring label are first
weighted using the Gaussian distribution and the ob-
served sample is classified into the class with the highest
sum of weighted label scores.

3 Experimental results

We present the experiments which were carried out on two
datasets of basketball and handball matches. Trajectory data
from three basketball and three handball matches were ac-
quired using the method described in subsection3.1. This
way we have obtained about 376000 trajectory samples
for each basketball player and 331000 trajectory samples
for each handball player. Several experiments were per-
formed to test different aspects of the proposed segmenta-
tion method.
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3.1 Data acquisition and preparation

We have used two 25fps PAL video cameras, fixed to the
ceiling of the sports hall. An image from one of the cameras
is shown in Figure2.

To obtainmotion data we performed operator-supervised
tracking on the obtained videos. We used a modified color-
histogram-basedCONDENSATIONalgorithm [23,24] as
the trackingengine, built into a user-friendly graphical in-
terface. The sport expert supervised the tracking and cor-
rected the errors that appeared during the tracking process.
The tracking was coupled with the appropriate calibration,
which made it possible to map the image coordinates to the
real-world (court) coordinates and compensate for the ra-
dial distortion that is present in the original video data. At
the end of the tracking the data were smoothed using a 25-
samples-wide symmetric Gaussian filter kernel [25], which
proved to be most suitable for reducing the tracking jitter
and retaining the measurement accuracy.

5
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Figure 2: Operator-supervisedtracking in progress.

3.2 Defining the parameters of GMM

Our segmentation procedure has two free parameters which
have to be determined prior to the segmentation procedure.
The first one is the number of components of the GMM that
are used to model each of the game phases and the other is
the length of the smoothing kernel.

To determine the number of components of GMM, we
used nonlinear smoothing kernel and fixed its width to 180
frames. We selected different number of components for
each of the game phases (see Figure3). For each set of
components, asix-fold cross-validation test was performed,
so that each subset of the original database represented one
half of the game (approximately 54000 samples) and the av-
erage classification rate was calculated.

By studying carefully Figure3, one can observe that,
in the case of basketball, the classification rate does not
vary significantly when two or more components are used to
model the individual game phase. On the other hand, in the
case of handball, the increase in the number of components
significantly influences the segmentation results. The main
reason for these is that the handball rules permit many more
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classification rate [%]

number of components
per phase

Figure 3: Classificationratefor different number of components.
Numbers on the x-axis represent the number of components per
phase (e.g. 1,1,1 - denotes that one component was used to model
each phase of the game).

unusual events such as player exclusions (i.e. the team is
playing with less players) or rapid substitution during the ac-
tive game, which have to be incorporated into the model. By
considering the obtained results and considering the fact that
the time needed to build the model and to perform the seg-
mentation increase when a more complex model is used, we
decided to model each phase of the game as a six-component
mixture of Gaussians (Figures4 and5).
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0.304
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0.098
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0.3470.229
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Figure 4: Game model for basketball: (a) offense, (b) defense,
(c) time-out. Numbers on the ellipses denote the values of the mix-
ing coefficients.

The aim of our second experiment was to determine the
best type (nonlinear or Gaussian) and the optimal width of
the smoothing kernel. For this purpose, we repeated the
above experiment by fixing the number of GMM compo-
nents to six and selected different width of the two smooth-
ing kernels. Our aim was to determine how the kernel length
influences the overall classification rate (Figure6-a) as well
as thesmoothing capabilities of the two kernels which can
be determined as a ration between the number of game seg-
ments produced by our method and true number of segments
which were determined by the game expert (Figure6-b).

In Figure6(a) one can observe that the two kernels pro-
ducevery similar segmentation results. However, by com-
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Figure 5: Game model for handball: (a) offense, (b) defense,
(c) time-out. Numbers on the ellipses denote the values of the mix-
ing coefficients.
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Figure 6: Segmentation results for different lengths of nonlinear
and Gaussian smoothing kernel. (a) Classification rate. (b) Ra-
tion between number of phases obtained with our procedure and
number of manually labelled phases.

paring the results by sport one can observe, that when the
nonlinear kernel is used in both sports the peak is obtained
when the kernel length is around 200 samples or eight sec-
onds which is exactly twice the length of the theoretically
shortest possible game phase. By observing the results when
the Gaussian kernel is used, one can notice that although the
obtained results are more stable for different lengths of ker-
nel, the peak result is radically different when the type of the
analyzed sport changes.

By studying carefully Figure6(b), one can observe that
both kernels significantly reduce the number of false, usu-
ally very short segments from almost five times the true
number to approximately the same number. Additionally,

one can observe that the number of segments is equal when
the width of nonlinear kernel is between 200 and 300 frames
which is exactly where the peak in the classification rate oc-
curs. In the case of the Gaussian kernel the optimal width is
between 400 and 500.

Given the above results, one can conclude that the nonlin-
ear kernel is a more suitable choice since it allows a single
selection of the kernel length for both sports. However, if
the stability of the results would be the main selection crite-
ria, then the Gaussian kernel with a different width for each
sport would be a more suitable choice.

3.3 Segmentation results

In our last experiment we investigated how the number of
training samples that are used to build the game model in-
fluences the segmentation results. The main purpose of this
experiment was to determine if it is possible to obtain good
results in cases when the game model is built from relatively
small amount of data. For this purpose, we repeated the
six-fold cross-validation test several times. The amount of
training samples varied from 500 to 270000 samples. Since
the samples were selected randomly, we repeated the exper-
iment 20 times for each selection of sample amount. To
demonstrate the efficiency of the GMM, we performed the
same experiment by replacing the GMM classifier with a
SVM classifier. Additionally, we used different types of
state vector to model the game flow. In all cases, a 200-
samples-wide nonlinear kernel was used to smooth the la-
bels obtained from the classifiers.

Type of Model Basketball Handball
Single team GMM model 89.18 90.55
SVM Model 90.05 90.73
Normal Joined GMM Model 92.18 92.83
Robust Joined GMM Model 92.47 93.11

Table 1: Average classification rate when 270000 samples were
usedfor training the model.

Table 1 presents the classification results for four dif-
ferent segmentation approaches when maximum amount of
data was used for training. First row shows the results for a
two-component GMM model with a single team state vec-
tor which was used in our previous research [11]. In the
second, theresults for SVM which uses the robust state vec-
tor that considers players from both teams are shown. The
last two rows present the result for a six-component GMM
model with a normal and robust state vector computed from
players from both teams. Additionally, Figure7 presents the
averagesegmentation results for different amounts of train-
ing data and Figure8 shows the times needed to build the
game modeland the times needed to perform the segmenta-
tion of one half of a handball game.

By studying the segmentation results for the four meth-
ods (Table1), one can conclude that a significantly better
result canbe obtained when a GMM model with a normal or
robust joined state vector is used for classification. If the re-
sults for the two joined state vectors are compared, a slightly
better result is obtained when the robust joined state vector is
used, although the difference is not statistically significant.
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Figure 7: Segmentation results when using different amount of data were used to train the model. The dashed lines represent the variability
in the results. a) Basketball. b) Handball.
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Figure 8: Times needed to learn the game model (a) and segment
anentirehalftime of a handball game (b).

Additionally, by studying Figure7, it can be observed that
the resultsdo not change significantly in case when smaller
amount of data (e.g. 500 samples) is used to build the game
model. Although in general the game model needs to be
built only once, this information suggests that a large train-
ing database is not needed to obtain a good segmentation
model. This is especially important in cases when a method
would be applied to new sports or a different analysis do-
main.

By studying Figure8, it can be observed that if SVM
is usedfor classification, the training and testing times in-
crease from a few seconds up to a few hours in the train-
ing stage and from a few second up to a few minutes in the
testing stage. On the other hand, if a GMM model is used,
the learning time only increases from a few second up to a
minute and the testing time does not change. The reason

for this is that the hyperplane of the SVM model is encoded
in the form of the support vectors. With the increase of the
learning samples the number of support vectors that define
the hyperplane also increases. Thus with the increased com-
plexity of the learned SVM model the time to classify indi-
vidual test sample also increases. On the other hand, in the
case of the GMM the testing time does not increase since the
complexity of the model changes with the number of GMM
component and not with the amount of the training data.

Although our approach was principally developed for the
off-line segmentation, one can observe that average time to
process a single frame of the game is approximately 0.39
ms (21.09 seconds for on average 54000 samples). This
would suggest that the described approach could also be
used for thenear realtimesegmentation since the whole pro-
cedure would only have to be delayed for a half of the kernel
width. Moreover, in the case when only the classification
step would be used, the method could also be used for real-
time segmentation.

However there is also a downside of the GMM model in
comparison to the SVM. The main drawback of the GMM
is the minimum amount of data that is needed to build the
model. In the case of the SVM this number can be very
small (less then 50 samples). Although the obtained result
would be very poor, the method would still work. However,
this is not the case when GMM is used. The main reason
for this is that the GMM is a statistical model and if the
number of training samples is small the problem becomes
numerically ill-posed.

Given the obtained results one can conclude that by us-
ing either of the two classifiers, it is possible to segment the
multi-player games reasonably well since in both cases the
obtained classification rate is near or over 90 %. The GMM
model with a robust joined state vector is more suitable for
segmentation since it produces better results, is less sensitive
to the amount of the training data and is less computationally
demanding.
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4 Conclusion and future work

A method forautomatic trajectory-based group motion seg-
mentation was presented. Our ultimate goal was an auto-
matic segmentation of the sport-related trajectory data into
meaningful game phases (offense, defense and time outs).
We have shown that by observing the centroid position of the
players on the court, it is possible to segment different game
sports with reasonable accuracy. We have shown how a ro-
bust, team and sport independent feature vector can be com-
puted. Additionally, we have presented a two-step segmen-
tation method which can be applied to different sports. The
first step represents the classification of individual time in-
stances using a pre-computed six-component Gaussian mix-
ture model. In the second step the temporal continuity of the
game is enforced by smoothing individual game labels using
a nonlinear or Gaussian smoothing kernel.

The presented results suggest that the use of Gaussian
Mixture Model in the first step of segmentation is signifi-
cantly more efficient when compared with the Support Vec-
tor Machines and that by considering all player on the court
the segmentation result can be additionally improved. More-
over, we have shown that even by using a very small amount
of training data, it is possible to derive a general game
model, which can be used to successfully segment trajec-
tories into the game phases without any tuning.

Even though we only tested the proposed segmentation
method on sport data, we believe that the same approach
could be applied to other domains. For example in video
surveillance this approach could be used to segment scenes
where groups of people move in different directions (e.g.
streets or subways).

Our future work will be focused on developing new game
models for other sports such as soccer, hockey, volleyball
or beach volley, where the structure of the player motion is
very similar to the motion in basketball or handball. Finally,
since the presented segmentation framework can be easily
extended to consider new game features, we will try to im-
prove it by consider new features such as distance between
the offensive and defensive players or position of the ball.
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S. Kovǎcič. Physics-based modelling of human
motion using kalman filter and collision avoidance
algorithm. InInternational Symposium on Image and Signal

Processing and Analysis, ISPA05, Zagreb, Croatia, pages
328–333, September 2005.
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