
R

In this
issue:
• Atmel Notes
• Novice’s Guide to AVR

Development
• Basic Interrupts and I/O
• Device Drivers and the

Special Function
Register Hell

• Variable Message Sign
Development

• GPS-GSM Mobile
Navigator

• AT86RF401 Reference
Design

• Designer’s Corner
• Atmel AVR and

Third-Party Tools
Support

• And More.

Special AVR
Microcontrollers
ISSUE

A T M E L A P P L I C A T I O N S Number 1 • Summer, 2003

Check out AVR today at www.atmel.com/ad/fastavr

Introducing the Atmel AVR®. An 8-bit MCU that
can help you beat the pants off your competition.

AVR is a RISC CPU running single cycle instructions.
With its rich, CISC-like instruction set and 32 working registers,

it has very high code density and searingly fast execution–up to
16 MIPS. That’s 12 times faster than conventional 8-bit micros.
We like to think of it as 16-bit performance at an 8-bit price.

With up to 128 Kbytes of programmable Flash and EEPROM,
AVR is not only up to 12 times faster than the MCU you’re using
now. It’s probably 12 times smarter, too.

And when you consider that it can help slash months off your
development schedule and save thousands of dollars in project
cost, it could make you look pretty smart, too.

AVR comes in a wide range of package and performance
options covering a huge number of consumer and industrial
applications. And it’s supported by some of the best development
tools in the business.

So get your project started right. Check out AVR today at
www.atmel.com/ad/fastavr. Then register to qualify for your free
evaluation kit and bumper sticker. And get ready to take on the world.

Our AVR microcontroller is
probably 12 times faster than
the one you’re using now.
(It’s also smarter.)

AVR 8-bit RISC Microcontrollers Memory Configurations (Bytes) Debug and
Processor Package Flash EEPROM RAM Development Tools
tinyAVR™ 8-32 pin 1-2K up to128 up to128 Available Now

low power AVR 8-44 pin 1-8K up to 512 up to1K Available Now

megaAVR® 32-64 pin 8-128K up to 4K up to 4K Available Now

© 2002 Atmel Corporation. Atmel and the Atmel logo are registered trademarks of Atmel Corporation.

R

The AVR Microcontroller introduced by Atmel in 1997 is the only new 8-
bit Architecture launched in the last two decades. During the first six
years of production, the AVR attracted twenty thousand new customers
because of its unique in-system programmable Flash program memory
and price performance.

The success of the AVR Architecture is due in part to the large and grow-
ing number of partners and suppliers offering products and services that
reduce development and programming time and cost. Developers using
the AVR in their next application require all manner of support including
design services; help in using new tools, compilers and the ability to
communicate and share lessons learned with other engineers who
encountered and solved similar problems. In addition to the application
notes on the Atmel web site and AVR Freaks.com users forum, we now
have our own publication-- the Atmel Applications Journal. Here is the
charter issue, dedicated to the AVR Microcontroller.

The Mega AVR Family has a unique Self-Programming Memory and Read while
Write capability. This is a break through technology that enables new appli-
cations and provides the user a significant cost reduction by eliminating addi-
tional circuitry including a second CPU to implement remote programming
capability. Today the AVR is more than a solution supporting the general-pur-
pose marketplace. The product family now integrates unique peripheral func-
tions that provide solutions for specialized markets. Examples are the portable
appliances, wireless communication, security and PC segments.

Atmel recently introduced four new application specific extensions to the AVR
Family. The Mega 169 is the first member of a family of devices with an inte-

grated LCD controller. Typical power consumption is less than 20uA at 32KHz
operation. It targets battery-powered applications like residential thermostats,
portable medical instruments and cordless communication devices.

The AT86RF401 SmartRF processor combines the AVR with a high perform-
ance RF transmitter operating at 250 – 460MHz.

It is targeted at cost sensitive wireless remote control markets such as auto
keyless entry, garage door openers and home convenience controls. The
AT97SC3201 Trusted Computing Platform Module brings affordable hardware
security to the PC Platform. It consists of an AVR with sophisticated tamper
detection circuitry designed to be mounted on the motherboard of the small-
est platforms including pocket PC’s and PDA’s. AT90SC Secure AVR Family
integrates a random word generator, crypto coprocessor and on chip security
to enable GSM SIM card, Internet transaction, pay TV and banking designs.
These smart card applications require high performance to perform encryption
functions in real time. There are six members of the USB AVR product offering.
The AT43USB351M is the only configurable low / high speed USB controller
supporting five end points. With integrated 12 channel 10-bit A/D capability,
it supports video game controllers, data acquisition devices, and sensors and
mass storage applications.

Based on unprecedented market acceptance and customer demand, Atmel cre-
ated two new AVR design teams. One is located in Nantes, France, the other
in Helsinki, Finland. These teams have specialized DSP, analog and communi-
cation protocol design skills, which will expand the product portfolio and open
new markets for the AVR. To ensure adequate production capacity, we com-
missioned a new 8-inch wafer Fab in Tyneside, UK. This facility is capable of
processing twelve thousand eight-inch wafers per week with geometries as
small as 0.13u technology. This new production facility will accelerate cost
reduction efforts for both existing and new AVR components. Atmel has made
a significant investment in design capability, process technology, plant and
equipment to ensure that state of the art AVR solutions are readily available
and are cost effective. ❑

www.atmel.com
page 1

A T M E L A P P L I C A T I O N S J O U R N A L

Welcome to the AVR Edition of the
Atmel Applications Journal

Jim Panfil,
Director of Marketing

CPU

4-WIRE IN/OUT 3-WIRE IN/OUT

CONTROL
LINES

JTAG
INTERFACE FLASH

OCD

INSTRUCTION
REGISTER

RAM
INSTRUCTION

REGISTER ALU

WATCHDOG
TIMER

I/O
PORTS INTERRUPTS TIMER/

COUNTERS

TWI

SPI

USART

LCD
INTERFACE

A/D
CONVERTER

ANALOG
COMPARATOR

PROGRAM
COUNTER

32 GENERAL
PURPOSE
RIGISTERS

EEPROM
SERIAL

PERIPHERAL
INTERFACE

AVR Chip Diagram

AVR

AVR

MEGA AVR

FPGA AVR

TINY AVR

MEGA AVR

SECURE AVR

USB AVR

AVR

RF AVR

TINY AVR

ASIC AVR

LCD AVR

CAN AVR

FPGA AVR

DVD AVR

1997 2000 2003

AVR Family Roadmap

AVR Roadmap

By Jim Panfil, Director of Marketing

www.atmel.com
page 2

A T M E L A P P L I C A T I O N S Number 1 • Summer, 2003

T A B L E O F C O N T E N T S

1
Welcome to the AVR Edition of
the Atmel Applications Journal

By Jim Panfil, Atmel

20
GPS-GSM Mobile Navigator
By Ma Chao & Lin Ming

25
AT86RF401 Reference Design
By Jim Goings, Atmel

18
Device Drivers and the Special

Function Register Hell
By Evert Johansson, IAR Systems

6
Novice’s Guide to AVR

Development
By Eivind A. Sivertsen, Sean Ellis &

Arild Rødland, AVR Freaks

11
Basic interrupts and I/O

By Eivind A. Sivertsen, Sean Ellis &
Arild Rødland, AVR Freaks

5
An Inexpensive Altitude

Deviation Alert
By Larry Rachman, Innovation Design

and Solutions, Inc.

28
An RF-Controlled Irrigation
System
By Brian Miller

CPU

4-WIRE IN/OUT 3-WIRE IN/OUT

CONTROL
LINES

JTAG
INTERFACE FLASH

OCD

INSTRUCTION
REGISTER

RAM
INSTRUCTION

REGISTER ALU

WATCHDOG
TIMER

I/O
PORTS INTERRUPTS TIMER/

COUNTERS

TWI

SPI

USART

LCD
INTERFACE

A/D
CONVERTER

ANALOG
COMPARATOR

PROGRAM
COUNTER

32 GENERAL
PURPOSE
RIGISTERS

EEPROM
SERIAL

PERIPHERAL
INTERFACE

page 32

page 11

R

page 1

page 28

Departments
Atmel Notes Page 3
Designer’s Corner Page 32
Atmel AVR Third Party Tools Page 34
Atmel AVR Devices Page 35
Atmel AVR Tools & Software Page 37

19
Variable Message Sign Develop-
ment with AVR and ImageCraft
By Patrick Fletcher-Jones and Chris Willrick

Atmel Notes...

www.atmel.com

First secureAVR
Microcontroller with
32Mega-bit Flash
Atmel® Corporation announced that it is sampling a
secureAVR™ RISC Microcontroller with 32Mega-bit Flash.
This product is based on the AT90SC3232CS (secureAVR
processor, 32Kbytes Flash, 32Kbytes EEPROM) with in addi-
tion 32Mega-bit of Flash for very efficient and secure data
storage. The AT90SC3232CS-F32M is a unique and innova-
tive solution that combines programmability and processing
power with a very large Flash memory.

With the AT90SS3232CS-F32M, mobile communication
operators have access to a powerful product for emerging
applications with an important secure memory in a SIM
card. For other applications, wherever any system requires a
large amount of data to be protected, the AT90SC3232CS-
F32M provides a highly secure, high memory capacity solu-
tion.

The AT90SC3232CS-F32M offers all of the AT90SC3232CS
features, a flexible secure microcontroller using Flash pro-
gram memory to satisfy a user's code modification require-
ments. For example, its state-of-the-art security features that
make it resistant against the most aggressive hardware or
software attacks and its powerful cryptography capabilities
(Elliptic Curves hardware support, fast DES/TDES and fast
RSA processor). It is designed to meet Common Criteria
EAL4+ security certification. The AT90SC3232CS-F32M is
available in a 3V version, as well as 5V, and can be deliv-
ered in module form or in package form.

Herve Roche, Smart Card IC Marketing Manager stated,
"The content protection barrier is being surpassed. The
AT90SC3232CS-F32M is the industry's first high-end secure
microcontroller with this type of large Flash memory capaci-
ty. The other great performance is the availability of this out-
standing product for the smart card market with deliveries in

module form. For example the ITSO's (Interoperable
Transport Smartcard Organization) secure

access module has been developed with
the AT903232CS-F32M in a standard

SIM format". The AT90SC3232CS-
F32M is available in engineer-

ing samples. The price for
1000 units is $20.

❑

Atmel Corporation is sampling a fully integrated USB Full-
Speed secure microcontroller in a PQFP44 package. The
AT90SC6464C-USB-I integrated package solution that
requires no external clock is based on Atmel's
secureAVR(TM) RISC microcontroller. It includes 128Kbytes
of on-chip non-volatile memory, powerful cryptography capa-
bilities, a very high level of physical and data security, and a
dual interface USB V2.0 Full-Speed interface as well as the
standard ISO 7816 smart card interface.

The AT90SC6464C-USB-I targets eTokens used in PC-based
secure applications. This package solution can also be
embedded in peripherals, set-top boxes, modems, PDAs
(Personal Digital Assistants), copyright protection devices
and other equipment. Wherever data needs to be protected,
the AT90SC6464C-USB-I can provide highly secure and cost-
effective solutions in applications such as transactional secu-
rity, e-mail and network encryption, software and file pro-
tection, MP3 and digital camera data storage protection.
The AT90SC6464C-USB-I features a dual communication
interface, including both USB V2.0 Full-Speed (12 Mbps)

and ISO 7816, for direct connection to either of these pop-
ular communication parts. It also incorporates 64Kbytes of
on-chip Flash memory and 64Kbytes of EEPROM. Flash pro-
gram memory gives unrivalled flexibility for new applications
with the ability to load or upgrade application code during
the production run with no delay.

The AT90SC6464C-USB-I includes all the security features
already built into the AT90SC secure microcontroller series.
In particular, it provides a 16-bit RISC crypto processor for
very efficient execution of the highest-level encryption algo-
rithms, RSA, AES 128/128, SHA-256. In addition, a hard-
ware T-DES (Triple Data Encryption Standard) coprocessor, a
true RNG (Random Number Generator) and support for ECC
(Elliptic Curve Cryptography) enhance the high cryptography
performance of this device.

The AT90SC6464C-USB-I in PQFP44 package is available
now in engineering samples. Production quantities are also
available at a price of US $4.00 in quantities of 200.000
units. ❑

page 3

A Fully Integrated USB Secure µC Solution in a Single Package

IAR visualSTATE® for AVR tool entry updated
Automated design and code generation with IAR visualSTATE for AVR:

The first state machine graphical design tool generating highly compact C code for embedded systems
• Automatic generation of C/C++ code from state machine models
• Automatic generation of full documentation
• Intuitive, easy to use graphical editor
• Full verification and simulation tools including on-target debug capability using RealLink
• UML compliant state machine standard

IAR visualSTATE allows you to represent your specification/requirement in a graphical state machine model, debug,
simulate, document and generate micro-tight C code for your embedded device.

Benefits include:

• Faster development through graphical design of any application
• Rapid implementation of change requests avoiding C code rewrite
• Accurate, structured documentation that is always in-sync with the final design
• Interactively simulate and model your system before committing to hardware
• Embedded applications that are much easier to maintain
• Generate micro-tight embedded C code from graphical design with a single mouse click

A T M E L A P P L I C A T I O N S J O U R N A L

Atmel Notes... continued

Atmel Extends the 8-bit
AVR Product Family
New Devices Serve Wireless,
PC Peripheral and Security Markets
Atmel announced today four new application specific exten-
sions to the AVR Family. The AVR Microcontroller introduced
by Atmel in 1997 is the industry's only new 8-bit
Architecture launched in the last two decades. During the
first six years of production, the AVR has become the design
engineers' microcontoller of choice because of its unique in-
system- programmable Flash program memory and price
performance. Today the AVR represents more than a solution
supporting the general-purpose marketplace as the product
family now integrates unique peripheral functions that pro-
vide solutions for specialized markets. Examples of this inte-
gration now support wireless communication, security and
PC peripheral segments.

The four new application specific extensions to the AVR
Family include the AT86RF401 SmartRF processor, which
combines the AVR with a high performance RF transmitter
operating at 250 - 460MHz. It is targeted at cost sensitive
wireless remote control markets such as auto keyless entry,
garage door openers and home convenience controls.

The second application specific area is covered by the
AT90SC Family Secure AVR, which integrates a random
word generator, crypto coprocessor and on chip security to
enable GSM SIM card, Internet transaction, pay TV and
banking designs. These smart card applications require high
performance to perform encryption functions in real time.
There are six members of the USB AVR product offering. The
AT43USB351M is the only configurable low / high speed

USB controller supporting five end points. With inte-
grated 12 channel 10-bit A/D capability, it

supports video game controllers, data acqui-
sition devices, and sensors and mass

storage applications.

Finally, the Mega 169 is
the first member of a

family of devices
with integrat-

ed LCD con-
t r o l l e r .
Ty p i c a l
p o w e r

www.atmel.com
page 4

consumption is less than 20uA at 32KHz operation. It targets
battery-powered applications like residential thermostats,
portable medical instruments and LCD cordless communica-
tion devices.

"Based on unprecedented market acceptance and customer
demand Atmel created two new AVR design teams located in
Nantes, France and Helsinki, Finland in addition to those in
San Jose, CA, Rousset, France and Trondheim, Norway to
work on further expanding this award winning product port-
folio. These teams have specialized skills in analog, DSP and
communication protocol design which will open new markets
for the AVR." Said Jim Panfil, Director of Microcontroller
Products. To ensure adequate production capacity, we com-
missioned a new 8-inch wafer Fab in Tyneside, UK. This facil-
ity is capable of processing ten thousand eight-inch wafers
per week with geometries as small as 0.13u technology. We
are making a significant investment in design capability,
process technology, plant and equipment to accelerate the
growth of the AVR portfolio." He added. ❑

Atmel Announces a New
Secure Memory Solution
for Embedded Applications
Boasting the industry's ONLY family of secure memory
devices with data encryption
Atmel announced that its CryptoMemory® product line is now
available in plastic packages. These integrated circuits are the
industry's only low cost, high security memory chips with
data encryption utilizing synchronous protocols for embedded
applications. The CryptoMemory family of products, available
from 1K bit to 256K bits, fills an industry need for affordable,
secure devices for customers who require traditional plastic
packages. CryptoMemory's secure nonvolatile EEPROM pro-
vides the customer with data security through an authentica-
tion protocol, data encryption and tamper protection circuits.
A common 2-wire serial interface is used for fast data rate
exchanges. This innovative technology, which previously was
available in physical forms suitable for only the smart card
market, opens up new opportunities for customers who need
embedded security at an affordable price.

The CryptoMemory family can be used to secure an endless
array of embedded applications, including authenticating indi-
vidual users who need access to sensitive information and
securing data on printed circuit boards, networking systems,

PDAs and other electronic equipment. The ability to authenti-
cate OEM subassemblies within a system, including remov-
able storage devices, automotive piece parts, and replace-
able components such as printer cartridges, is now an afford-
able option.

"We are pleased with the technology advancements we have
made in our secure portfolio over the last few months. We
are well positioned to provide leading edge solutions to the
security and embedded markets," said Kerry Maletsky,
Business Unit Director for Atmel Corporation. "This new tech-
nology secures Atmel's position as the only semiconductor
manufacturer to provide an affordable, secure solution for
embedded applications."

High volume pricing of these new products in package form
range from $.30 to $.85 depending on memory density.

❑

A T M E L A P P L I C A T I O N S J O U R N A L

Publisher: Glenn ImObersteg
glenn@convergencepromotions.com

Managing Editor: Bob Henderson
bob@convergencepromotions.com

Designer: Dave Ramos
dbyd@garlic.com

This Special Issue of the Atmel Applications Journal is published by
Convergence Promotions. No portion of this publication may be repro-
duced in part or in whole without express permission, in writing, from
the publisher. Copyright © Atmel corporation 2003. Atmel®, AVR® and
combinations thereof, and megaAVR®, tinyAVR® are the registered
trademarks, and AVRStudio™ and SecurAVR™ are the trademarks of
Atmel Corporation or its subsidiaries. AVRFreaks®, IAR Systems,
Innovative Design and Solutions, Inc®, Visual State®, eTokens®,
Motorola®, and ARM® are the trademarks of their respective companies.
All product copyrights and trademarks are property of their respective
owners. All other product names, specifications, prices and other infor-
mation are subject to change without notice. The publisher takes no
responsibility for false or misleading information or omissions. Any com-
ments may be addressed to the publisher, Convergence Promotions at
2220 Sunset Point, Discovery Bay, CA 94514.

Printed in the USA.

www.atmel.com
page 5

being measured is static, though it may be static at any point over a range of
2.3 to 4.6 volts. If the voltage were scaled to the point where the required 4
millivolt resolution were measurable with the AVR ADC, it would be out of
range for other altitudes.

The problem was solved by implementing a 4-bit resistor ladder Digital to
Analog Converter driven by the AVR controller. The output of this DAC was used
to control the offset of the gain stage between the pressure sensor and the
ADC. (Figure 2) This permitted a step selection to be made by the AVR
firmware, insuring that the voltage being measured was within the ADC rails.
Since only a delta measurement was being made, the DAC could be con-
structed with relatively low-precision resistors (1%). By choosing offset and
gain stage values appropriately, the steps were overlapped, permitting any
voltage over the input range to be offset to a point in the center 80% of the
ADC range.

When a stable altitude is reached a button press initiates a search for the DAC
output step that will cause the ADC input to fall near the center of its range.
Based on the step selected, the firmware can compensate for the non-lineari-
ty of the relationship between altitude and air pressure. The deviation alert is
generated both by LED indicator and an audio tone introduced into the aircraft
intercom system. The tone is generated with one of the AVR programmable
timers, with a second timer used for both system timing and control of the tone
cadence. Different tones indicating climb, descent, return to proper altitude,
and low battery (detected by another ADC channel) are generated while the
processor spends approximately 99% of its time asleep, saving power.

The application firmware was developed using Atmel AVR Studio, the ICE200,
and the Imagecraft AVR Compiler. The AVR's complier-friendliness allowed the
application to be implemented in C with code size being only a minor factor.
Source-level debugging simplified the development effort and later bug fixes.
During debugging, software state and ADC input values were reported to the
AVR serial port, simplifying the development process.

A 0.050" (1.27 mm) PCB card-edge pattern was included in the PCB design
for the AVR in-system programming connections. The connector also included
power and ground connections, permitting one-step production programming
of the AVR in-situ, without bed-of-nails ICT fixturing, and with zero additional
component cost.

Conclusion
By re-examining our design goals, we were able to utilize the ADC in the
at90s4433, where at first this did not seem possible. With the exception of a
buffer, the AVR was the only digital part in our design, keeping both cost and
size to a minimum. (PCB dimension was 2x2" (50x50 mm) including con-
nectors and the pressure transducer) With a remaining code space of 50%, as
well as a pin-compatible growth path in the Mega8, we have an ample growth
path for new features. ❑

A T M E L A P P L I C A T I O N S J O U R N A L

Overview
A complex and expensive
regulatory approval process
for avionics equipment in
the US and other countries
has created a market for
accessories and devices that,
since not connected directly
to the aircraft, are exempt
from the approval process.
Such devices are expected
to be substantially less
expensive than panel-
mounted equipment,
yet the pilot-user's
expectation of low cost is
still accompanied by one for
high reliability, ease of
operation, and the small
size expected of a portable
device. Our challenge was
to provide an altitude
deviation alarm that
would alert the pilot to
an inadvertent climb or
descent, possibly into
restricted airspace. Given
recent global events, such
deviations are subject to
quick and often extreme

Background
Altitude is most commonly measured by its non-linear relationship to air pres-

sure (Figure 1). At sea level, air pressure is approximately 30 in. Hg (100
kPa), decreasing to approximately 13 in. Hg (45 kPa) at an altitude of
18,000 feet (5500 m). Traditionally altimetry is performed by mechani-

cal means – a sealed air bellows is subject to atmospheric pressure; its
dimensional changes are geared to move indicators on a mechanical
display, or to operate a Gray-coded encoder wheel providing the infor-

mation in electronic form. Cost and size limitations would not permit
such a solution for this project; instead a monolithic piezoresistive pres-

sure sensor was used. The device is comprised of a sealed vessel con-
taining a known air pressure, one wall of which is a silicon die incorporating

a micromachined strain gauge and amplification stage. The package design
permits air pressure to be introduced to the other side of the die, causing it to
deflect due to the pressure differential. A buffered voltage proportional to the
pressure differential is provided as output.

Our goal was to sound an alert upon a deviation as small as 100-200 feet.
This required a resolution of 4 millivolts over a range of 2.3 volts, correspon-
ding to an Analog-to-Digital Converter resolution of 10 bits, before allowing for
granularity, hysteresis, or low-order-bit ADC noise. Ideally, a resolution of 13-
14 bits would be needed to accomplish our goal.

Design Strategy
Our processor selection was the Atmel AVR at90s4433, chosen for size, cost,
and low power consumption. The part includes an excellent low-power ADC,
but with a resolution of only 10 bits. There are numerous serial ADC devices
available in the market, but costs tend to rise above 10-12 bits. With cost,
size, and power consumption all factors, we decided to re-examine our design
requirements. In normal operation the voltage corresponding to the altitude

Figure 1

Air
Pressure

Transducer

Resistor
Ladder
DAC

Gain
and
offset
stage

Audio
to Intercom

AVR
at90s4433

microcontroller

Figure 2

By Larry Rachman, Innovation Design and Solutions, Inc.

An Inexpensive Altitude Deviation Alert

FOOTNOTES:
1- Several drawings of a conventional barometric altimeter have been made
available at http://www.4innovation.biz/altimeter
2- Motorola MPX5100 series, http://www.motorola.com/webapp/sps/site/
prod_summary.jsp?code=MPX5100&nodeId=01126990368716
3- Imagecraft, http://www.imagecraft.com/software/ adevtools.html

Novice’s Guide to AVR
Development

An Introduction
intended for
people with no
prior AVR
knowledge.

Preparing your PC for AVR Development
Let's make an easy start, and download the files that we will need later on.
First you should download the files to have them readily available when you
need them. This could take some time depending on your internet connection.

Download these files to a temporary folder on your computer. (e.g. C:\Temp):

When you have downloaded the files, it is time to install the software you
need.

Step 2. Installing AVR Studio 4
AVR Studio is also available in a version 3. We will use AVR Studio 4 since this
is the version that will eventually replace version 3.

Important note for people using Windows NT/2000/XP:
You must be logged in with administrator rights to be able to successfully
install AVR Studio. The reason is that these Windows systems have restrictions
regarding who can install new device drivers!

Installation:
1) Double click on the AVRSTUDIO.EXE file you downloaded. This file is a self
extracting file, and will ask where you want to extract the files. The default
path points to your "default" temp folder, and could be quite well "hidden" on
your hard disk, so make sure to read and remember this path, or enter a new
path to where you want the files placed (e.g. c:\temp)

2) Once all the files are extracted, open the temp folder, and double click on
the SETUP.EXE file. Just follow the installation, and use the default install path.
NB: You can use another path, but this tutorial assumes that you install it to
the default path.

That's it. Now you have installed all the software you'll need to write code and
run programs for all available AVR devices! Keep the Datasheet and Instruction
set Manual in a place you remember.

Basic AVR Knowledge
The AVR Microcontroller family is a modern architecture, with all the bells and
whistles associated with such. When you get the hang of the basic concepts
the fun of exploring all these features begins. For now we will stick with the
"Bare Bone" AVR basics.

The 3 different Flavors of AVR
The AVR microcontrollers are divided into three groups:
• tinyAVR
• AVR (Classic AVR)
• megaAVR

The difference between these devices lies in the available features. The
tinyAVR µC are usually devices with lower pin-count or reduced feature set
compared to the megaAVR's . All AVR devices have the same instruction set
and memory organization, so migrating from one device to another AVR is
easy.

Some AVR's contain SRAM, EEPROM, External SRAM interface, Analog to
Digital Converters, Hardware Multiplier, UART, USART and the list goes on.

If you take a tinyAVR and a megaAVR and strip off all the peripheral mod-
ules mentioned above, you will be left with the AVR Core. This Core is the
same for all AVR devices. (Think of Hamburgers: They all contain the same slab
of meat, the difference is the additional styling in the form of tripled-cheese
and pickles :)

Selecting the "correct" AVR
The morale is that the tinyAVR, AVR (Classic AVR) and megaAVR does not real-
ly reflect performance, but is more an indication of the "complexity" of the
device: Lot's of features = megaAVR, reduced feature set = tinyAVR . The "AVR
(Classic AVR)" is somewhere in between these, and the distinctions between
these groups are becoming more and more vague.

So for your project you should select an AVR that only includes the features
that you need if you are on a strict budget. If you run your own budget you
should of course go for the biggest AVR possible, since eh... because!

Learning to write code on the AVR
Learning new stuff is fun, but can be a bit frustrating. Although it is fully possi-
ble to learn the AVR by only reading the datasheet this is a complicated and time-
consuming approach. We will take the quick and easy approach, which is:

1. Find some pre-written, working code
2. Understand how this code works
3. Modify it to suite our needs
The device we will use is the AT90S8515 which is an AVR with a good blend
of peripherals. Take a few minutes to browse through the Datasheet.

Learning to use the AVR Datasheets
It is easy to get scared when looking at the AVR Datasheets. E.g. the
ATmega128(L) datasheet is almost 350 pages long, and reading it start to fin-
ish - and remembering the contents, is quite a task. Luckily you are not sup-
posed to do that, either. The datasheets are complete technical documents that
you should use as a reference when you are in doubt how a given peripheral
or feature works.

AVR STUDIO 4
(~15MB)

Assembly Sample Code
(~1kB)

AT90S8515 Datasheet
(~4MB)

Instruction Set Manual
(~2MB)

This file contains the AVR Studio 4 Program. This
program is a complete development suite, and
contains an editor and a simulator that we will
use to write our code, and then see how it will
run on an AVR device.

This file contains the Assembly Sample code
you will need to complete this guide.

This is the Datasheet for the AT90S8515 AVR
Microcontroller. This is a convenient "Getting
Started" device. For now you don't have to worry
about the different types of AVR micros. You'll see
that they are very much alike, and if you learn
how to use one (eg. 8515), you will be able to
use any other AVR without any problems.

This is the Instruction Set Manual. This document
is very useful if you want detailed information
about a specific instruction.

An Introduction
intended for
people with no
prior AVR
knowledge.

Starting with a new µC
architecture can be quite
fustrating. The most dif-
ficult task seems to be
how to get the informa-
tion and documentation
to get the first AVR pro-
gram up running.
This tutorial assumes
that you do not yet own
any AVR devices or AVR
development tools. It
also assumes that you
have no prior knowledge
of the AVR architecture
or instruction set. All you
need to complete this
tutorial is a computer
running some flavour of
the Windows operating
system, and an internet
connection to download
documents and files.

www.atmel.com
page 6

A T M E L A P P L I C A T I O N S J O U R N A L

By Arild Rødland,
AVRFreaks

www.atmel.com
page 7

When you open an AVR Datasheet you will discover that it can be divided into
these groups:
1. First Page Containing Key information and Feature List
2. Architectural Overview
3. Peripheral Descriptions
4. Memory Programming
5. Characteristics
6. Register Summary
7. Instruction Set Summary
8. Packaging Information

This is quite convenient. When you are familiar with how to use the
AT90S8515 Datasheet, migrating to another Datasheet should be a breeze.
After completing this tutorial you should take some time and read through the
Architectural Overview sections of the datasheets (At the beginning of the
Datasheets). These sections contain a lot of useful information about AVR
memories, Addressing modes and other useful information.

Another useful page to look at is the Instruction Set Summary. This is a nice
reference when you start developing code on your own. If you want in-depth
information about an instruction, simply look it up in the Instruction Set
Manual you previously downloaded!

OK! You have now installed the software, you have a vague knowledge of the
different types of AVRs, and know that there is a lot of information in the
datasheet that you don't yet know anything about! Good, now it's time to get
developing! Click "Next" to advance to the next part of this tutorial.

AVR Studio 4 GUI
Note: If you have not yet installed AVR Studio you should go to the Preparing
your PC for AVR Development section of this tutorial before continuing.

Step 1: Creating a New Project
Start AVR Studio 4 by launching AVR Studio 4 located at [START] | [Programs]
| [Atmel AVR Tools]. AVR Studio will start up, and you will get this dialog box.

We want to create a new Project so press the "Create New Project Button"

Step 2: Configuring Project Settings
This step involves setting up what kind of project we want to create, and set-
ting up filenames and location where they should be stored.

This is done in four steps:
1. Click on this to let the program know you want to create an Assembly

program
2. This is the name of the project. It could be anything, but "Leds" is quite

descriptive of what this program is going to do
3. Here you can specify if AVR Studio should automatically create a initial

assembly file. We want to do this. The filename could be anything, but use
"Leds" to be compatible with this tutorial!

4. Select the path where you want your files stored
5. Verify everything once more, and make sure both check-boxes are checked.

When you are satisfied, press the "Next >>" button

Step 3: Selecting Debug Platform
The AVR Studio 4 Software can be used as a frontend software for a wide
range of debugging tools.

1. AVR Studio 4 supports a wide range of emulation and debugging tools.
Since we have not purchased any of these yet, we will use the built in
simulator functionality.

2. ..and we want to develop for the AT90S8515 device
3. Verify all settings once more, then press "Finish" to create project and go

to the assembly file

Step 4: Writing your very first line of code
AVR Studio will start and open an empty file named Leds.asm. We will take a
closer look at the AVR Studio GUI in the next lesson. For now note that the
Leds.asm is not listed in the "Assembler" folder in the left column. This is
because the file is not saved yet. Write in this line: "; My Very First AVR
Project" as shown in the figure below. The semicolon ; indicates that the rest
of the line should be treated as a comment by the assembler.

To save the line press - S or select [Save] on the [File] menu. The Leds.asm
will now show up in the Left Column as shown below.

A T M E L A P P L I C A T I O N S J O U R N A L

OK! You have now installed

the software, you have a

vague knowledge of the

different types of AVRs,

and know that there is a

lot of information in the

datasheet that you don't

yet know anything about!

Good, now it's time to get

developing! Click "Next"

to advance to the next

part of this tutorial.

At this point you

should have installed

the software, and started

up the a new project

called "Leds" You should

also have the AT90S8515

Datasheet, stored some-

where you can easily find

it. If you can answer "Yes"

to both these questions,

you are ready to continue

writing some AVR Code.

www.atmel.com
page 8

OK, Now that we have AVR Studio up and running, it's time to take a closer
look at the AVR Studio GUI..

AVR Studio 4 GUI
Let's take a closer look at the AVR Studio Graphical User Interface (GUI).

As you can see below, we have divided the GUI into 6 sections. AVR Studio 4
contains a help system for AVR Studio, so instead of reinventing the wheel
here, I'll just explain the overall structure of AVR Studio 4 and point to where
in the AVR Studio 4 On-line Help System you can find in depth information.

1. The first line here is the "Menus" Here you will find standard windows
menus like save and load file, Cut & Paste, and other Studio specific menus
like Emulation options and stuff.

2. The next lines are Toolbars, which are "shortcuts" to commonly used
functions. These functions can be saving files, opening new views, setting
breakpoints and such.

3. The Workspace contains Information about files in your Project, IO view,
and Info about the selected AVR

4. This is the Editor window. Here you write your assembly code. It is also
possible to integrate a C-Compiler with AVR Studio, but this is a topic for
the more advanced user

5. Output Window. Status information is displayed here.
6. The System Tray displays information about which mode AVR Studio is

running in. Since we are using AT90S8515 in simulator mode, this will be
displayed here

More about the GUI
To complete this bare bone guide you don't need any more knowledge of the
GUI right now, but it is a good idea to take a look at the AVR Studio HTML
help system. You can start this by opening [HELP] [AVR Studio User Guide]
from AVR Studio, or by clicking this link (and select: Open) if you installed AVR
Studio to the default directory. When you have had your fill, we'll continue
working on our first AVR Program.

Writing your First AVR Program
At this point you should have installed the software, and started up the a new
project called "Leds" You should also have the AT90S8515 Datasheet, stored
somewhere you can easily find it. If you can answer "Yes" to both these ques-
tions, you are ready to continue writing some AVR Code.

In the Editor view in AVR Studio, continue your program (which at this point
only consists of the first line below) by adding the text top of next colum.
(Cheaters can simply cut & paste the source below into AVR Studio...)

Note that the source code changes color when written in the editor window.
This is known as syntax highlighting and is very useful make the code more
readable. Once the Source code is entered, press CTRL + F7 or select [Build
and Run] from the [Project] Menu.

In the output view (at the bottom left of the screen) you should get the fol-
lowing output indicating that the Project compiled correctly without any errors!
From this output window, we can also see that our program consists of 6
words of code (12 bytes).

Congratulations!! You have now successfully written your first AVR program,
and we will now take a closer look at what it does!

Note: If your program does not compile, check your assembly file for typing
errors. If you have placed the include files (8515def.inc) in a different folder
than the default, you may have to enter the complete path to the file in the
.include "c:\complete path\8515def.inc" statement. When it compiles we will
continue explaining and then debugging the code.

Sample Code (~1kB)

;My Very First AVR Project

.include "8515def.inc" ;Includes the 8515
definitions file

.def Temp = R16 ;Gives "Defines" Register
R16 the name Temp

.org 0x0000 ;Places the following code
from address 0x0000

rjmp RESET ;Take a Relative Jump to the
RESET Label

RESET: ;Reset Label
ldi Temp, 0xFF ;Store 255 in R16 (Since we

have defined R16 = Temp)
out DDRB, Temp ;Store this value in The

PORTB Data direction
Register

Loop: ;Loop Label
out PORTB, Temp ;Write all highs

(255 decimal) to PORTB
dec Temp ;Decrement R16 (Temp)
rjmp Loop ;Take a relative jump to the

Loop label

A T M E L A P P L I C A T I O N S J O U R N A L

www.atmel.com
page 9

Understanding the Source Code
OK so the code compiled without errors. That's great, but let us take a moment
to see what this program does, and maybe get a feeling how we should sim-
ulate the code to verify that it actually performs the way we intended. This is
the complete source code:

Now let's take a line-by-line look at what's going on in this code.

;My Very First AVR Project
Lines beginning with " ; " (semicolon) are comments. Comments can be added
to any line of code. If comments are written to span multiple lines, each of these
lines much begin with a semicolon

.include "8515def.inc"
Different AVR devices have e.g. PORTB placed on different location in IO memory.
These .inc files maps MNEMONICS codes to physical addresses. This allows you
for example to use the label PORTB instead of remembering the physical location
in IO memory (0x18 for AT90S8515)

.def Temp = R16
The .def (Define) allow you to create easy to remember labels (e.g. Temp)
instead of using the default register Name (e.g. R16). This is especially useful in
projects where you are working with a lot of variables stored in the general pur-
pose Registers (The Datasheet gives a good explanation on the General Purpose
Registers!)

.org 0x0000
This is a directive to the assembler that instructs it to place the following code at
location 0x0000 in Flash memory. We want to do this so that the following RJMP
instruction is placed in location 0 (first location of FLASH). The reason is that this
location is the Reset Vector, the location from where the program execution starts
after a reset, power-on or Watchdog reset event. There are a also other interrupt
vectors here, but our application does not use interrupts, so we can use this space
for regular code!
rjmp RESET
Since the previous command was the .org 0x0000, this Relative Jump (RJMP)
instruction is placed at location 0 in Flash memory, and is the first instruction to
be executed. If you look at the Instruction Set Summary in the Datasheet, you
will see that the AT90S8515 do not have a JMP instruction. It only has the RJMP
instruction! The reason is that we do not need the full JMP instruction. If you
compare the JMP and the RJMP you will see that the JMP instruction has longer
range, but requires an additional instruction word, making it slower and bigger.
RJMP can reach the entire Flash array of the AT90S8515, so the JMP instruction
is not needed, thus not implemented.

RESET:
This is a label. You can place these where you want in the code, and use the dif-
ferent branch instructions to jump to this location. This is quite neat, since the
assembler itself will calculate the correct address where the label is.

ldi Temp, 0xFF
Ah.. finally a decent instruction to look at: Load Immediate (LDI). This instruction
loads an Immediate value, and writes it to the Register given. Since we have
defined the R16 register to be called "Temp", this instruction will write the hex
value 0xff (255 decimal) to register R16.

out DDRB, Temp
Why aren't we just writing "ldi DDRB, Temp"? A good question, and one that
require that we take a look in the Instruction Set Manual. Look up the "LDI" and
"OUT" instructions. You will find that LDI has syntax : "LDI Rd, K" which means
that it can only be used with General Purpose Registers R16 to R31. Looking at
"OUT" instruction we see that the syntax is "OUT A, Rr" Which means that the
content that is going to be written by the OUT instruction has to be fetched from
one of the 32 (R0 to R31) General Purpose Registers.
Anyway, this instruction sets the Data Direction Register PORTB (DDRB) register to
all high. By setting this register to 0xFF, all IO pins on PORTB are configured as
outputs.

Loop
Another label...

out PORTB, Temp
We Now write the value 0xFF to PORTB, which would give us 5V (Vcc) on all
PORTB IO pins if we where to measure it on a real device. Since the IO ports is
perhaps the most used feature of the AVR it would be a good idea to open the
Datasheet on the PORTB. Notice that PORTB has 3 registers PORTB, PINB and
DDRB. In the PORTB register we write what we want written to the physical IO
pin. In the PINB register we can read the logic level that is currently present on
the Physical IO pin, and the DDRB register determines if the IO pin should be con-
figured as input or output. (The reason for 3 registers are the "Read-Modify-Write"
issue associated with the common 2 register approach, but this is a topic for the
Advanced class.)

dec Temp
This Decrement (DEC) instruction decrements the Temp (R16) register. After this
instruction is executed, the contents of Temp is 0xFE. This is an Arithmetic instruc-
tion, and the AVR has a wide range of Arithmetic instructions. For a complete list-
ing of available instruction: Look in the Instruction Set Summary in the Datasheet!

rjmp Loop
Here we make a jump back to the Loop lable. The program will thus continue to
write the Temp variable to PORTB decrementing it by one for each loop.

I guess you have figured out what our masterpiece is doing. We have made a
counter counting down from 255 to 0, but what happens when we reach
zero?

Simulating with the Source Code
AVR Studio 4 operates in different "modes". Back when we where writing the
code, we where in editor mode, now we are in debugging mode. Lets take a
closer look at these:
1. Note that a Yellow arrow has appeared on the first RJMP instruction. This

arrow points to the instruction that is about to be executed.
2. Note that the workspace has changed from Project to IO view. The IO view

is our peek-hole into the AVR, and it will probably be your most used view.
We will look closer at this one in a short while.

3. The bottom line contains status information. This Reads:
AT90S8535 Simulator, Auto, Stopped. This is followed by a yellow icon. It
is a good idea to check this information to verify that you have selected
the correct device and emulation tool.

Sample Code

;My Very First AVR Project

.include "8515def.inc" ;Includes the 8515 defini-
tions file

.def Temp = R16 ;Gives "Defines" Register R16
the name Temp

.org 0x0000 ;Places the following code
from address 0x0000

rjmp RESET ;Take a Relative Jump to the
RESET Label

RESET: ;Reset Label
ldi Temp, 0xFF ;Store 255 in R16 (Since we

have defined R16 = Temp)
out DDRB, Temp ;Store this value in The

PORTB Data direction Register

Loop: ;Loop Label
out PORTB, Temp ;Write all highs

(255 decimal) to PORTB
dec Temp ;Decrement R16 (Temp)
rjmp Loop ;Take a relative jump to the

Loop label

A T M E L A P P L I C A T I O N S J O U R N A L

I guess you have figured

out what our masterpiece

is doing. We have made

a counter counting down

from 255 to 0, but what

happens when we

reach zero?

After running through

this introduction you

should have a basic

idea of how to get a

program up and

running on the

AVR µC.

www.atmel.com
page 10

Setting up the IO View
Since our program mainly
operates on PORTB registers,
we will expand the IO view so
that we can take a closer look
at the contents of these regis-
ter. Expand the IO view (tree)
as shown in the figure on left:

Stepping through the Code
AVR Studio allows running the
code at full speed until a given
point, and then halt. We will
however take if nice and slow, and manually press a button for every instruc-
tion that should be executed. This is called single-stepping the code.

Press [F11] once. This is the key for single-stepping. Note that the yellow
arrow is now pointing at the LDI Temp, 0xFF instruction. This is the instruc-
tion that is going to be executed next.

Press [F11] once more. The LDI instruction is executed, and the arrow points
to the OUT instruction. The Temp Register has now the value 0xFF. (If you
open the "Register 16-31" tree you will see that R16 contains 0xFF. We
defined Temp to be R16, remember?)

Press [F11]. DDRB is now 0xFF, As shown in the IO View above this is rep-
resented as black squares in the IO View. So, a white square represents logi-
cal low "0" and black squares are logical high "1". By setting DDRB high, all
bits of PORTB is configured as outputs.

Press [F11]. 0xFF is now written to PORTB register, and the arrows points
to the DEC instruction. Note that PORTB is equal to 0xFF. Note also that the
PINB register is still 0x00!

Press [F11]. The Temp variable is decremented (0xFF - 1 = 0xFE). In addi-
tion the PINB register changes from 0x00 to 0xFF! Why? To find out why this
happens you have to look at the PORT sections of the datasheet. The expla-
nation is that the PORTB is first latched out onto the pin, then latched back to
the PIN register giving you a 1 clock cycle delay. As you can see, the simula-
tor behaves like the actual part! The next instruction is a relative jump back
to the Loop label.

Press [F11]. The RJMP is now executed, and the arrow is back pointing at
the OUT PORTB, Temp instruction.

Press [F11] to write the new Temp value to the PORTB register. Note that
the content of PORTB is now updated to 0xFE! Continue pressing F11 until
you have counted down the PORTB register to 0x00. What happens if you con-
tinue running the Program?

Conclusion and Recommended Reading
After running through this introduction you should have a basic idea of how to
get a program up and running on the AVR µC.

As mentioned before, one of the most efficient methods of learning AVR pro-
gramming is looking at working code examples, and understanding how these
work. Here on AVRfreaks.net you will find a large collection of projects suitable
to learn you more about the AVR.

In our tools section we have also linked up all Atmel AVR Application Notes.
These are also very useful reading.

❑

A T M E L A P P L I C A T I O N S J O U R N A L

Basic Interrupts and I/O

an introduction
to interrupts
and I/O with
the AVR

Eivind, AVRfreaks.net,

Oct.2002

Lets' get physical
The natural place to start is the STK500. It is a very nice development board
for the AVR, reasonably priced (~USD79) and provides all the environment we
need to test some pretty real applications on the AVR out in the wild.

We're gonna start out with some simple counting controlled by external inter-
rupts and exposed on the nice LEDs of the STK500. Then we'll add a speaker
(Oh yeah!), and before we know it we'll have a miniature amusement park
on our desks; with lights AND noise and buttons to push! Perhaps fire as well,
if something REALLY goes wrong.
This is what we'll use:

1. AVRstudio 3 or 4
2. STK500 development kit, all set up with your computer and ready to go
3. An AT90s8515 microcontroller (usually comes with the STK500)
4. Some small speaker that works, including wires soldered in place

The setup is based on a Windows configuration, but it is very possible use
some other software as well, since we won't concentrate much on the use of
AVRstudio besides assembling the project. If you are a Linux user, you could
use:

* avr-gcc (i.e. avrasm) for the assembly
* uisp for programming

The program will be written in assembly, because:

* assembly is very "machine-near" and provides a very educative approach
to what goes on inside the processor during our program

* high-level languages and different compilers all have different notations
and routines for doing the same thing. Learning a compiler and the
respective C-style (e.g.) is a story of itself.

The code for this project is something we found among leftovers from O'Guru
Sean Ellis; which we brutally and without due respect ripped apart. Shame on
us.

Basic interrupts
An interrupt is a flow control mechanism that is implemented on most con-
trollers, among them the AVR. In an MCU application interacting with the out-
side world, many things are happening at the same time, i.e. not in a syn-
chronized manner, that are to be handled by the microcontroller.

Examples: a switch pressed by the user, a data read on the UART (serial port),
a sample taken by the ADC, or a timer calling to say that "time is up!". All
these events neeeds to be handled by the MCU.

Instead of polling each instance round-Robin style to ask whether they are in
need of a service, we can have them call out themselves when they need
attention. This is called "interrupts", since the peripheral device (e.g. a switch
pressed) interrupts the main program execution. The processor then takes time
out of the normal program execution to examine the source of the interrupt
and take the necessary action. Afterwards, normal program execution is
resumed.

An interrupt service in other words is just like a subroutine; except that it is not
anticipated by the processor to occur at a particular time, since there are no
explicitly placed calls to it in the program.

What's in a name?
When reading this article you will from time to time get the feeling that you
are confronting a term possibly denoting an actual physical entity or an entity
in some sense relevant to the current activity; namely playing around or build-
ing serious applications with the AVR...: INT0, INT1, GIMSK, PORTB,
PB7 etc...

You are sure to come across such names in any assembly code, Atmel app-
note, AVRfreaks Design Note or any posting in the AVRforum.

One might think these are just common names used by individuals accustomed
to the jargon, but we will try to use them consciously - in the sense that these
names actually denote actual memory locations in the AVR you will be pro-
gramming.

The mapping of these name to actual memory locations is in the part's def
file (*def cacros vn unknown term:

When including this file in the assembly program file, all I/O register n ames
and I/O register bit names appearing in the data book will be known to the
assembler and can be used in the program.

Note that some high-level language compilers may use proprietary terms
other than these. But they will have files similar to this def file, defining the
memory space of the AVRs. As previously stated; this is another story.

Another document that will prove very useful to anyone working with the AVR,
is this document:Manual you previously downloaded!

8515 datasheet
The datasheet.

(~2MB)
The datasheet is the ultimate reference for any
AVR microcontroller. It even includes an instruc-
tion set summary; look up every instruction you
don't know when you come across it!

an introduction
to interrupts
and I/O with
the AVR

This article is a small project
for you people who are just
getting into the AVR, and
perhaps even microcontrollers
in general.

www.atmel.com
page 11

8515def.inc Example snippet; only a few lines are shown

(~6kB)

;***** I/O Register Definitions
.equ SREG =$3f
.equ SPH =$3e
.equ SPL =$3d
.equ GIMSK =$3b
..
..

A T M E L A P P L I C A T I O N S J O U R N A L

By Eivind Sivertsen,
AVRFreaks

The vector table is reserved

for storing interrupt vectors;

i.e. locations to jump to

when this or that interrupt is

calling. This means that each

interrupt has a reserved

memory location, and when

a particular interrupt comes

in, the MCU looks in this

location to find the address

where code that handles this

interrupt resides.

www.atmel.com
page 12

In this article, we will be using the 8515.
Download this .pdf and keep it close for
reference.

You may even want to print it, but think twice.
It is long.

Now you know where to look when anything unknown pops up. Let's move
on >.

Structure of an interrupt-driven program on the AVR
Take a deep breath. This is the heaviest part.
We are going to write an "interrupt-driven" program where the main
loop simply does nothing but wait for interrupts to occur. What interrupts?

External interrupts
INT0 and INT1 on
pins PD2 and PD3

The interrupts are handled in turn, and a return to the main program is per-
formed at the end of each interrupt service (that's what I call it; "service").
This is a rather wide topic with many pitfalls. But we need somewhere to start
and will mainly discuss aspects concerning elements of our little example appli-
cation. The main important thing that constitutes such elements in a program
is:

1. Setting the interrupt vector jump locations: .org
2. Setting the correct interrupt mask to enable desired interrupts: GIMSK
3. Make necessary settings in control registers: MCUCR
4. Globally enable all interrupts: SREG

Setting the interrupt vector jump locations: .org
The lowest part of the AVR program memory, starting at address $0000, is
sometimes referred to as the "Program memory vector table", and the actual
program should start beyond this space.

The vector table is reserved for storing interrupt vectors; i.e. locations to jump
to when this or that interrupt is calling. This means that each interrupt has a
reserved memory location, and when a particular interrupt comes in, the MCU
looks in this location to find the address where code that handles this interrupt
resides.

8515 Vector table Example; only the few first
vectors are shown

Program memory address Vector Comment
$0000 Reset Start address of Reset handler is stored here
$0001 INT0 Start address of code to handle external INT0 is stored

here
$0002 INT1 Start address of code to handle external INT1 is stored

here
etc...

The number of interrupts available varies from processor to processor.

The .org directive
In assembly code, the .org directive is used to set vector jump locations. This
assembler directive (or "command", if you like) tells the assembler to set the
location counter to an absolute value. It is not part of the AVR instruction set,
it is just a command that the assembler needs to make sure the program code
is mapped correctly when making a binary for the AVR.

Example:

Sample Code

; Interrupt service vectors
; Handles reset and external interrupt vectors INT0

and INT1

.org $0000
rjmp Reset ; Reset vector (when the MCU is reset)

.org INT0addr
rjmp IntV0 ; INT0 vector (ext. interrupt from

pin PD2)

.org INT1addr
rjmp IntV1 ; INT1 vector (ext. interrupt from

pin PD3)

; - Reset vector - (THIS LINE IS A COMMENT)
Reset:

ldi TEMP,low(RAMEND) ; Set initial stack
ptr location at ram end

out SPL,TEMP
ldi TEMP, high(RAMEND)
out SPH, TEMP
...
...

Note that labels are used instead of absolute numbers to designate address-
es in assembly code - The assembler stitches it all together in the end. All we
need to do is tell the assembler where to jump when e.g. the reset vector
is calling, by using the name of the code block meant for handling resets.

A label denotes a block of code, or function if you like; which is not termi-
nated with a "}", an .endfunc or anything like that. The only thing that ends
a code block definition, is it being released by another block name, followed
by a colon (":").

This also implies, unlike with functions in e.g. C, that all blocks are run by the
processor consecutively, unless the flow is broken up by un/conditional jumps,
returns, interrupts etc. In assembly, the whole file is the main() function, and
the flow control is more like Basic...

Please also note the first lines of the reset handler. This is where the stack
is set up. The stack is used to hold return addresses in the main program code
when a sub- or interrupt routine is run; i.e. when a "digression" from the main
program is made. For any interrupt service or subroutine to return to the main
program properly; the stack must be placed outside their vector space. The SP
is namely initialized with the value $0000, which is the same location as the
reset vector. This goes for any program, especially such as this, where we are
involving several interrupt vectors besides the reset vector.

For AVRs with more than 256 bytes SRAM (i.e. none of the Tinys, nor 2343
and 4433), the Stack Pointer register is two bytes wide and divided into SPL
and SPH (low and high bytes).

Setting the interrupt mask: GIMSK
The GIMSK register is used to enable and disable individual external interrupts.

GIMSK General Interrupt Mask register
Bit 7 6 5 4 3 2 1 0

INT1 INT0 - - - - - -
Read/write R/W R/W R R R R R R
Init. value 0 0 0 0 0 0 0 0
Note that only the INT0 and INT1 bits are writable. The other bits are
reserved and always read as zero.

A T M E L A P P L I C A T I O N S J O U R N A L

This is what our code

will do. Nothing more.

Besides initialization,

the short routine for

handling the other switch

(generating INT1) and a

few directives for the

assembler, that's it all.

www.atmel.com
page 13

We are going to use the external interrupts INT0 and INT1 for the switches on
the STK500. These interrupts are enabled by setting INT0 and INT1 in GIMSK;
i.e. bits 6 and 7.

We will be using bits 0,1,2 and 3 in this register to control the interrupt from
INT0 and INT1. These bits control how to sense the external interrupts; either
by level, falling edge on pin, or rising edge of pin:

We will use the rising edge of the switch-
es on the STK500 to trig the interrupt; so
the 8515 must be programmed to trig
external interrupts on rising edges of each
pin PD2 and PD3. Hence; all the ISCx bits
must, for our program, be set to "1".

You can see on the diagram to the right how
pushing the switch will close the lower
branch and pull the pin low. Hence; releasing the switch causes a rising edge
when the branch is re-opened and the pin is pulled high.

Globally enable all interrupts: SREG
In addition to setting up the interrupts individually, the SREG (Status Register)
bit 7 must also be set to globally enable all (i.e. any) interrupts.

All these bits are cleared on reset and can be read or written by a program.
Bit7 (I) is the one we are currently interested in; as setting this bit enables
all interrupts. Vice versa, resetting it disables all interrupts.

In AVR code, we have an instruction of its own to set this flag; sei:

; lots and lots of initialisation, and then...

sei ; this instruction enables all interrupts.
;...and off we go!

Real code part 1
OK, let's start with the real code. Assuming you're already able to assemble
your own code and even program the part in the STK500 - we'll just dig
through the code.

Just remember to couple the switches with the appropriate inputs on the
8515; namely PORTD input pins PD2 and PD3. Use any two switches on the
STK500 you like; on the picture to the right I used switches SW0 and SW1.
Also connect the LEDs to PORTB with a 10-pin ISP connector cable.

When running this code on the STK500, at first all LEDs will be off. Press the
switches a few times, and you will realize one of them counts something up,
the other one down, and the results are reflected on the LEDs.

Let's have an overview of the program. Here's an example snapshot, after ini-
tialization:

1. A switch is pressed -> ext. INT0 generated
2. The vector for INT0 is found
3. Code at the according location is run, and jumps to a common subroutine
4. The common subroutine returns to the main loop by reti instruction

This is what our code will do. Nothing more. Besides initialization, the short
routine for handling the other switch (generating INT1) and a few directives
for the assembler, that's it all.

8515def.inc

(~6kB) Just to make sure I'm still not kidding you; have
a look in the 8515def.inc file and search for
"INT0addr" and "INT1addr". Lo and behold; they
are real addresses.
Reset is placed at $0000.

OK, here is the entire program code, with some excessive comments removed
(these are still left in the available file). Look up any unknown instruction for
full understanding while you read through it. You can click each code block
label to jump to their respective comments next page.

MCUCR MCU general control register
Bit 7 6 5 4 3 2 1 0

ISRE SRW SE SM ISC11 ISC10 ISC01 ISC00
Init. value 0 0 0 0 0 0 0 0
The bits in MCUCR allow general processor control.
Consult the datasheet for an in-depth description of the registers and the
individual bits.

ISCx1 ISCx0 Description
0 0 Low level on INTx pin generates interrupt
0 1 Reserved
1 0 Falling edge on INTx pin generates interrupt
1 1 Rising edge on INTx pin generates interrupt

SREG S tatus register
Bit 7 6 5 4 3 2 1 0

I T H S V N Z C
Init. value 0 0 0 0 0 0 0 0
The bits in SREG indicate the current state of the processor.

A T M E L A P P L I C A T I O N S J O U R N A L

www.atmel.com
page 14

OK, lets go through the code step by step, though at a pace. It may be easi-
er if you have the source printed out next to you while reading the following
comments:
The first lines includes the define file for the 8515; thus making all register
and I/O names known to the assembler. What happens next is the Interrupt

vector table is defined. At $0000, the reset vector is set up. This is where
the 8515 wakes up in the morning - everything is supposed to start from here.
Also, the INT0 and INT1 vectors are set up, and their handling routines
named IntV0 and IntV1, respectively. Look up their labels down the code,
and you can see where they are declared.

INTs_1.asm Source for first part of program
;--

(~3kB) ; Name: int0.asm
; Title: Simple AVR Interrupt Verification Program
;--

.include "8515def.inc"

; Interrupt service vectors

.org $0000
rjmp Reset ; Reset vector

.org INT0addr
rjmp IntV0 ; INT0 vector (ext. interrupt from pin D2)

.org INT1addr
rjmp IntV1 ; INT1 vector (ext. interrupt from pin D3)

;--
;
; Register defines for main loop

.def TIME=r16

.def TEMP=r17

.def BEEP=r18

;---
;
; Reset vector - just sets up interrupts and service routines and
; then loops forever.

Reset:
ldi TEMP,low(RAMEND) ; Set stackptr to ram end
out SPL,TEMP
ldi TEMP, high(RAMEND)
out SPH, TEMP

ser TEMP ; Set TEMP to $FF to...
out DDRB,TEMP ; ...set data direction to "out"
out PORTB,TEMP ; ...all lights off!

out PORTD,TEMP ; ...all high for pullup on inputs
ldi TEMP,(1<<DDD6) ; bit D6 only configured as output,
out DDRD,TEMP ; ...output for piezo buzzer on pin D6

; set up int0 and int1

ldi TEMP,(1<<INT0)+(1<<INT1) ; int masks 0 and 1 set
out GIMSK,TEMP
ldi TEMP,$0f ; interrupt t0 and t1 on rising edge only
out MCUCR,TEMP
ldi TIME,$00 ; Start from 0

sei ; enable interrupts and off we go!

loop:
rjmp loop ; Infinite loop - never terminates

;--
;
; Int0 vector - decrease count

IntV0:
dec TIME
rjmp Int01 ; jump to common code to display new count

;--
;
; Int1 vector - increase count

IntV1:
inc TIME ; drop to common code to display new count

Int01:
mov r0,TIME ; display on LEDs
com r0
out PORTB,r0
reti

A T M E L A P P L I C A T I O N S J O U R N A L

OK, here is the entire

program code, with some

excessive comments

removed (these are still

left in the available file).

Look up any unknown

instruction for full under-

standing while you read

through it. You can click

each code block label to

jump to their respective

comments

Py-haa!

The reset label contains

all initialization code;

this block is run at start-up.

The first 4 lines sets up

the stack pointer, as

mentioned earlier.

www.atmel.com
page 15

Following this, registers r16, r17 and r18 have labels put onto them. This is
a way to make variables in assembly - only we also get to decide where
they are placed in memory. Where? In registers r16, r17 and r18... hence;
they are all one byte wide.

The reset label
Py-haa! The reset label contains all initialization code; this block is run at start-
up. The first 4 lines sets up the stack pointer, as mentioned earlier. Note how
the ldi(load immediate) instruction is used to hold any value temporarily
before writing to the actual location by out. low() and high() are macros
returning the immediate values of their arguments, which are memory loca-
tions defined in the .def file.

The next six lines sets the Data Direction Registers of ports PORTB (used for
LEDs) and PORTD (switches). Please check the datasheet under "I/O Ports"
for functional descriptions of these registers.
Now, notice this line:

ldi TEMP,(1<<DDD6)

This line of code simply (!) means:

"Load TEMP register with a byte value of 1 shifted DDD6 places leftwards".

Ok. Then what is DDD6? From the .def file, we find that this value is 6, and
it is meant to point to the 6th bit of the PORTD Data Direction Register. The
value loaded into TEMP and then into DDRB, becomes 01000000 in
binary. Hence, the bit in this position in the DDRB register is set.

So what happens? That pin (pin PD6) is to be used for a special twist in the
next stage of the program, so that particular pin is set as an output; the oth-
ers will be inputs. For now, just notice the notation.

You can probably imagine what happens if you combine such notation in an
addition? Well, this is what happens next, when the GIMSK register is
loaded, and then the MCUCR. Please refer to the previous section or the
datasheet for a description of these registers and why they are set this way.

Only thing remaining in the reset block now, is to call our friend the sei
instruction for enabling the interrupts we have just set up.

The loop label
The loop label simply contains nothing but a call to itself. It's an equivalent
of writing while(1); in C. After reset is run, the program pointer falls through
to the loop block and it will run forever only interrupted by - interrupts.

The IntV0 label
This label comtains the handling code for the INT0 interrupt. Whenever that
interrupt calls, this code will be run. It will simply decrement the TIME register.
Then it just jumps to a common block called...:

The Int01 label
This block consists of common code that displays the value of TIME (r16) on
the LEDs connected to PORTB. Note that the value is inverted by 1's comple-
ment (com instruction) before written to PORTB, since a low value means no
light and vice versa. This block then performs a return to wherever it was called
from through the reti instruction - which was from the loop label.

The IntV1 label
You've probably figured that this code runs every time the switch connected to
pin PD3 is pressed (i.e. released, due to our MCUCR settings). It increases
TIME. Then it just falls through to the common routine Int01, since it contains

no jump or return instruction. We could just as well have put in an

rjmp Int01

here as well. But we don't need it. Though it may be good common practice
to be consequent with this :-)

Now, take a last
look at this figure
to recollect,
before moving.

The timer overflow interrupt
After stating our success with the
previous experiment, we are
going to ameliorate this little
design a little more. We are going
to add another interrupt into the
application; a Timer Overflow
interrupt for the timer/counter
0 of the 8515. Also, we're going
to supply a small speaker to make
some noise.

If you think the hardware requirements for this project are getting too demand-
ing now, you don't have to hook up the speaker. It is for illustrative purpos-
es only, and your code will work perfectly well without it.

Every which way; you will see how to set up the timer overflow interrupt and
write handling code for it.

Timer overflow 0
The 8515 has two timer/counters; one 8 bits wide and one 16 bits wide.
This means that they are capable of counting from any value you set, until they
reach their limit which is determined by the number of bits available (256 or
65535, respectively). Then they will issue an interrupt, if you have set it up
to do so.

Upon overflow; the Timer/Counter just keeps counting "around" the range...
so if you have set the timer to start from some special value and want it to
start from there again; you will have to reset it to that value. What we need
to do in the code, is to add three little blocks of code more. These are (could
you guess them?):

1. Another interrupt vector, for the TimerOverflow 0 interrupt: OVF0addr
2. Initialization code for timer/counter 0: TIMSK, TCCR0,TCNT0
3. The interrupt handling subroutine.

OVF0addr
This is the name set in the 8515def.inc file for the location where this inter-
rupt vector should reside (check it, I may be pulling your leg). We add these
two lines of code to the vector block:

; -- new interrupt vector -

.org OVF0addr
rjmp TimerV0 ; T/C0 overflow vector

A T M E L A P P L I C A T I O N S J O U R N A L

www.atmel.com
page 16

You are very able to read this now, and realize that it is just like the previ-
ous .org's in this program. Let's move on!

TIMSK, TCCR0,TCNT0
Together, these 3 registers are all we need consider to have timing interrupts
in an application on the AVR.

TCCR0 controls the operation of Timer/counter 0. The count is incremented
for every clock signal at the input of the timer. But the clock input can be
selected, and prescaled by N. We'll just consider the 3 lowest bits of this
register:

This table shows the different settings of these 3 control bits:

TIMSK; the Timer/Counter Interrupt Mask register is simply a "mask" regis-
ter for enabling/disabling interrupts just like you have already seen with the
GIMSK register:

...and again; the only thing you really need to know for this little tutorial; is
the position of one special little bit: this one is called "Timer/Counter0
Overflow Interrupt enable", abbreviated "TOIE0" and found in bit
postition 1 of this register. To enable our Timer interrupt; set this bit (to "1").
TCNT0 is the actual "Timer/Counter" register. This is where the timing and
counting is done, in accordance with the settings in TCCR0. This is simply a
register for storing a counter value; there are no special bits in it. It is entirely
readable/writable; so you can load it with any desired starting value for your
counting if you like. Note that it does not reset itself automatically, even if
an interrupt is issued.

This is already becoming old news to you now, since it's just more or less
another instance of registers controlling similar functions that you have already
heard about regarding the external interrupts... So let's go right to the code>.

Real code part 2
For illustrating the Timer0 Overflow interrupt; we connect a small speaker to
an output pin of the 8515. Each Timer0 overflow interrupt will toggle the pin.
The result is that the speaker will buzz with a base frequency proportional to
the frequency with which the pin is toggled. I.e. the base frequency will be:

CLK/2*Prescale*(256-TIME)

where TIME is the current value in the TIME register (r16).

Also, the two switches affecting the value in TIME will make the buzz fre-
quency waver up or down.

The picture shows how to connect the speaker. We have chosen pin PD6 for
no particular reason.

TCCR0 Timer/Counter0 register
Bit 7 6 5 4 3 2 1 0

- - - - - CS02 CS01 CS00
Read/write R R R R R R/W R/W R/W
Init. value 0 0 0 0 0 0 0 0
Note that bits 7-3 are reserved, and always read as zero

CS02 CS01 CS00 Description
0 0 0 Stop the timer/counter
0 0 1 CK
0 1 0 CK/8
0 1 1 CK/64
1 0 0 CK/256
1 0 1 CK/1024
1 1 0 Ext. pin T0, falling edge
1 1 1 Ext. pin T0, rising edge

TIMSK Timer/Counter Interrupt Mask register
Bit 7 6 5 4 3 2 1 0

TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 -
Read/write R/W R/W R/W R R/W R R/W R
Init. value 0 0 0 0 0 0 0 0
Note that bits 4,2 and 0 are reserved, and always read as zero

Huh? Why is that the formula for the base frequency?

? The Timer/counter counts up from some value
every clock cycle until it overflows. Then
we reset it, to repeat the drill.

Let's say the timer can only count to 1
before overflow. Flipping the pin every
time, will give us one cycle of a square-
wave like waveform every 2 flips, right?
(up a while, then down a while, repeat...).
Hence, the base frequency would be:

CLK/2

Now; the Timer/Counter register is 8 bits
wide, and can count from any value it is
set (TIME) to 255. The formula becomes:

CLK/2*(256-TIME)

Besides; we have a prescaler which, when
set to N, makes the Timer count just every
Nth cycle...

CLK/2*N*(256-TIME)

A T M E L A P P L I C A T I O N S J O U R N A L

...and again; the only

thing you really need to

know for this little tutorial;

is the position of one

special little bit: this one is

called "Timer/Counter0

Overflow Interrupt enable",

abbreviated "TOIE0" and

found in bit postition

1 of this register.

Now, these were the very

basic basics of interrupts

and I/O. Feel free to

experiment with what you

have learnt in this article;

use other prescaler

settings, try other flanks

of external interrupt

triggering, write programs

that use switches to make

flow control decisions,

whatever...

Good luck!

www.atmel.com
page 17

These are the three snippets of code to insert. Please consult the complete
source code (INTs_2.asm, available below) to where the snippets are insert-
ed:

; - - - - - - - - - - CODE SNIPPET #1 - OVF0addr vector - - - - - - - - - - - - - - - - - - -
This part simply declares the Timer Overflow vector address.

; - - - - - - - - - - CODE SNIPPET #2 - Initializing TIMSK,TCCR0,TCNT0 - - - -
First, we set the TIME register to a higher value (0x80 = 128 decimal) for
starters, and load it into the Timer/Counter register. It's just a more fitting
start value if you run the 8515 on a low CLK freq. Then the relevant interrupt
enable bit is set in the TIMSK register, and the prescaling bits in the Timer
Control register are set to Prescale=8.

This way, if the 8515 runs @ 1.23MHz; the speaker will buzz with a base
frequency equal to 1.23E6/2*8*127 = 605.3 Hz

; - - - - - - - - - - CODE SNIPPET #3 - handling the Timer overflow int. - -
The important issues in handling this interrupt is:
• Resetting the Timer/Counter - it won't do that itself!
• Flipping the beep pin
• Returning to the program

Resetting Timer/Counter is obviously done by loading the value of TIME (r16)
into TCNT0, and returning from the interrupt routine is done by issuing a reti
instruction.

Flipping the beep pin (PD6) is a little curious, however: This is done by invert-

ing every bit in BEEP (r18) with the com instruction, and then OR'ing it with
this value 0xbf = 10111111 b (note the 6th position is '0').

Follow the sequence below:

BEEP 00000000
after com: 11111111
'OR' with: 10111111
Result: 11111111
after com: 00000000
'OR' with: 10111111
Result: 10111111
etc... ...

As you may see; whichever value is in BEEP, the 6th bit of it will flip every
time... So, the pin will toggle up and down, and the speaker beeps this little
song: "...10101010101010...". Haha.

Now, these were the very basic basics of interrupts and I/O. Feel free to exper-
iment with what you have learnt in this article; use other prescaler settings, try
other flanks of external interrupt triggering, write programs that use switches
to make flow control decisions, whatever...

Good luck!

❑

INTs_2.asm Source snippets for second part of program
;------------------ CODE SNIPPET #1 - OVF0addr vector -----------------------------

(~3kB) ; inserted below the existing vector defs

;---

.org OVF0addr

rjmp TimerV0 ; T/C0 overflow vector

.

.

;------------------ CODE SNIPPET #2 - Initializing TIMSK,TCCR0,TCNT0 -------------

; inserted in the Reset: label, right before the 'sei' call

;--

ldi TIME,$80 ; Start from 128. NB!

out TCNT0,TIME ; set Timer/counter also.

ldi TEMP,(1<<TOIE0) ; timer overflow interrupt enable 0

out TIMSK,TEMP

ldi TEMP,$02 ; clock prescaler = clk/8

out TCCR0,TEMP

.

.

;---------- CODE SNIPPET #3 - handling the Timer overflow int. --

; new subroutine label, inserted at the end of the file

;--

TimerV0:

out TCNT0,TIME ; reset time

com BEEP

ori BEEP,$BF ; bit 6 only

out PORTD,BEEP

reti ; important!

A T M E L A P P L I C A T I O N S J O U R N A L

bit needs to be set or cleared in a register before a bit in the corresponding reg-
ister can be read or updated.

Get your product to the market quickly
IAR MakeApp for Atmel megaAVR is a tool that guides you through the special
function register hell, and helps you with the writing of device drivers. This new
low-cost product from IAR Systems includes property dialog boxes which make
it easy to configure the megaAVR microcontroller to suit your needs. IAR
MakeApp warns you if you try to make a setting that will occupy an already
used resource, e.g. the same I/O pin. The product also presents a visual view
of the microcontroller and how the pins are configured. Special function regis-
ter values are calculated automatically according to your settings, and a com-
plete set of device drivers can be generated. The product also includes a com-
ponent browser and a project report generation function that helps you with
the design and documentation.

Device drivers generated by IAR MakeApp
IAR MakeApp contains a powerful code generation technology, and generates
a complete set of customized device driver functions according to your project
settings. The code generation engine uses the component database informa-
tion, and automatically calculates the special function register values according
to the current property settings. ANSI C source code is generated for each
peripheral, and the files are well commented and easy to follow. The drivers
include initialization, run-time control, and interrupt handling functions. The
functions are ready to be used by your application software and tested with
IAR Embedded Workbench for AVR and the Atmel STK500 starter kit. Use IAR
MakeApp from Idea to Target. “Click & Go” for driver variants during all phas-
es of your embedded project.

Example: IAR MakeApp USART configuration, code generation, and usage
ATmega128 includes two USART channels for serial communication.

1. Open the USART property dialog box in IAR MakeApp.
2. Make the settings for the channel your hardware is designed for, and

make the following minimum selection: Select operating mode,
activate USART receive/transmit pins, set baud rate, and define your
protocol (number of data bits, parity, and stop bits). Finally, choose if
you want to use interrupts.

3. At any time you can view the special function register settings by
clicking the Registers button in the property dialog box.

4. The output generation tab in the USART property dialog box includes
the device driver functions for USART that will be generated according
to your current settings. The device drivers (APIs) for channel 0
normally include the following functions: MA_InitCh0_USART(),
MA_ResetCh0_USART(), MA_PutCharCh0_USART(),
MA_PutStringCh0_USART(), MA_GetCharCh0_USART(),
MA_GetStringCh0_USART(), MA_IntHandler_RX0_USART(),
MA_IntHandler_TX0_USART(), MA_IntHandler_UDRE0_USART().

If your application software will only use some of these functions, you
can choose to have only these ones generated by the tool.

5. Click OK to save the settings.

www.atmel.com
page 18

A T M E L A P P L I C A T I O N S J O U R N A L

The Atmel megaAVR
devices are designed for
flexible use with a lot of
powerful peripherals
which limit the need of
external components.
These devices are well
designed, and the
peripherals can be
set-up in many different
ways to support many
different application
needs. Because of
the flexibility in the
microcontroller, it is
necessary to set up the
pins in the way your
specific board is
designed, and also to
set the operation of the
peripherals according
to your product needs.

By Evert Johansson, IAR Systems

Using the built-in power of the microcontroller
A modern microcontroller has a lot of peripherals, and it is a time-consuming

part of each embedded project to write the code needed to use that built-
in power and flexibility. It is a tedious work to read the hardware man-
ual and understand how peripheral modules like I/O, timers, USART,
etc are implemented, and how the software is to get access to the
hardware. Each peripheral is controlled via a number of special func-
tion registers where each bit has a special meaning, and many of
these bits need to be written and read using a specific protocol.

Atmel megaAVR
The Atmel megaAVR devices are designed for flexible use with a lot of

powerful peripherals which limit the need of external components. These
devices are well designed, and the peripherals can be set-up in many dif-

ferent ways to support many different application needs. Because of the
flexibility in the microcontroller, it is necessary to set up the pins in the way

your specific board is designed, and also to set the operation of the peripher-
als according to your product needs. For instance, the I/O input/output pins
are multiplexed with peripheral pins, and need to be initialized according to
the hardware implementation.

Application notes
One way to speed up the set up and coding is to use software application
notes, which help to use the peripheral. The drawback with application notes
is that you do not have the same requirements for your product as the engi-
neer who wrote the application note. Therefore, you need to update the spe-
cial function register settings manually, and you might also need to modify the
application note source code to suit your needs.

Software analysis
If device driver software written for different products is analysed, you will see
that most of these drivers are written in much the same way. The reason for
this is that the microcontroller is designed in a particular way, and therefore
the access to the special function register bits, such as control/status and data
bits, needs to be done in a certain way. This actually means that a lot of engi-
neers are writing the same kind of software for different products over and
over again. Writing the same kind of software at different places will also need
a lot of extra testing to verify that the code runs correctly in the hardware.

The special function register Hell
Microcontrollers include hundreds of special function registers placed at certain
addresses in the address space, and it is common that a register is made up
of many bitfields or bits. This means that the application needs to access or
control thousands of bits, and the access needs to be performed in the way
the microcontroller is designed for. Therefore, the productivity for modelling
and writing device driver software is normally four times lower than ordinary
software coding.

Some registers or bits are both read- and write-accessible, while others are only
accessible via read, write, set, or clear. It is also common that registers need
to be accessed via a specific protocol. Sometimes the register or bit needs to
be read by the software before it can be updated with a write, set, or clear
instruction. Some registers are also related to each other, so that one register

Device Drivers and the
Special Function Register Hell

continued on page 40

Variable Message Sign
Development with AVR
and ImageCraft

To launch their new
Variable Message Sign
products, a leading UK
supplier of street
lighting and exterior
decorative lighting
equipment obtained
consulting services
from Dedicated
Controls Ltd. This
article is a case study
on the design and
implementation of this
project. By selecting
the right hardware and
software development
tools, this project was
finished within
6 months.

Product Requirements
The design was to have LED dot matrix characters that would be mounted into
road traffic information signs. The LED characters would then plug into a con-
troller board, which had the ability to communicate with the traffic control cen-
ter. Various communication methods such as unlicensed radio bands, cellular
phone network and private wire network had to be supported.

The remote signs had to support a level of intelligence such as automatically
adjusting the LED character brightness for different viewing conditions includ-
ing bright sunlight and at night. For product maintenance and support, remote
error or fault detection was also needed for detecting communication prob-
lems, vandalism, fuse failures etc…

The remote signs needed to be easily configurable, as no two sites were the
same. However, to reduce cost and maintenance, the main controller cards need-
ed to be generic, without custom code programmed in for each remote sign.

The signs also had to support a number of different characters; some signs
might only have 6 characters where another might have 40. The design of the
hardware and software needed a modular approach.

Finally, to allow remote checking of system status and some amount of remote
configuration using standard technology, we decided the system should com-
municate with the control center using TCP and HTML so that a standard
Internet browser might be used for these tasks.

Selecting the Hardware and Software
General system architecture was defined where there would be a generic con-
troller card, which supported a serial interface plugged into intelligent expan-
sion cards that would drive the LED characters. Each intelligent expansion card
would be uniquely addressable so that multiple expansion cards could sit on
the same serial interface bus. It was decided that each intelligent splitter card
would support up to 8 characters, so a sign of 8 characters or less would only
consist of the generic controller and one intelligent splitter board. 16 charac-
ters would only need the addition of another splitter board.

Choosing the processor was fairly simple. Patrick had used the Atmel AVRs suc-
cessfully on several other projects in the past, and the customer liked the In
System Programming (ISP) of the internal flash. (With flash, program updates
no longer require swapping out EPROMs or even worse, replacing OTP
devices.) The latest flagship AVR device from Atmel is the Mega128 with two
serial ports, 128K bytes flash, 4K bytes RAM and 4K bytes EEPROM; it was
the perfect choice for the main controller.

The intelligent splitter boards and characters were more cost-sensitive, espe-
cially the character cost. This prohibited the use of a processor for each char-
acter, but the 8535 seemed the perfect choice for the intelligent splitter with
the built-in ADC, IO count, and only needed the addition of a simple connector
for the ISP interface.

One of the customer’s requirements was the ability to maintain the source

code themselves if necessary. There are
a few different C compilers available for
the Atmel AVR, and ImageCraft ICCAVR
came out on top after careful evaluation
- for easy of use, code generation quality and support. It was a professional
package that did not need a degree in computer science to set up before any
code could be compiled. One of the many great features about the ImageCraft
tools is the Application Builder, which allowed quick setting up of all the AVR’s
peripherals. ICCAVR also includes a built in ISP tool which made the whole
development process very easy. Another important feature about ImageCraft is
its conformance to standard C. Other C compilers have too many unnecessary
extensions to the C language, which can make coding seem quicker at first,
but the code is then a lot less portable and the source code is then tied to that
individual C compiler. Standard C has enough expressiveness for most of
Embedded Systems needs, even on an 8 bit CPU such as the Atmel AVR. In
places where extensions are needed (for example, writing a function as an
interrupt handler), the syntax is clean and even follows the Standard C rec-
ommended method of using the #pragma facility. Also, the source code for the
library functions within ICCAVR, such as the EEPROM read and write routines,
are accessible to the programmer. Other C compilers may provide you with sim-
ilar functions but they may not allow you to tweak the source code at a C level
if required.

On to Development
Now that the processors and development tools had been chosen, the task of
product development started. The Atmel development kits STK500 and
STK501 provide a great development platform on which 90% of the code
could be developed without having to have any custom PCBs made. Using
them allowed software development to start with an already known good
hardware platform.

To quickly demonstrate to the customer how the system would eventually be
set up and configured, Patrick prototyped a terminal driver user configuration
interface using the one of the serial ports on the Mega128. Rapid develop-
ment of the main core software functions was made easy by using the
Application Builder within ICCAVR to set up the timers, ADC and UARTs.

After the basic user interface was running, and with a bit of debug information
thrown in to make life easier, development of the communications protocol
using the second serial port could start. The primary communications medium
is unlicensed radio operating on 458MHz at 500mW, so a fully synthesised
radio transceiver was used giving over 64 channels to choose from. For initial
prototyping and design, the communications protocol was done using the seri-
al connection between the PC and the STK500 development board. Once that
was done, the serial connection was replaced with the radio modems.

Gremlins in the Air!
Replacing the simple serial connections with the radio modems immediately
introduced new gremlins. Radio preamble was needed; this is where you
transmit a number of bytes first, for example;

continued from page 39

To launch their new
Variable Message Sign
products, a leading UK
supplier of street
lighting and exterior
decorative lighting
equipment obtained
consulting services
from Dedicated
Controls Ltd. This
article is a case study
on the design and
implementation of this
project. By selecting
the right hardware and
software development
tools, this project was
finished within
6 months.

Patrick Fletcher-Jones is the
principal engineer of
Dedicated Controls Ltd, which
designs embedded software
and electronics systems pri-
marily for industrial control
and traffic management sys-
tems. Dedicated Controls Ltd.
specializes in embedded
TCP/IP, radio telemetry, GSM
and low power battery oper-
ated products. He can be con-
tacted via patrick@dedicated-
controls.com

Chris Willrich is the web
designer and technical writer
of ImageCraft Creations Inc.,
the producer of the ICCAVR
compiler. She can be reached
at chris@imagecraft.com

www.atmel.com
page 19

A T M E L A P P L I C A T I O N S J O U R N A L

by Patrick Fletcher-Jones and Chris Willrich

GPS-GSM Mobile Navigator

What’s the more
laudable engineering
feat, designing a
navigation system
capable of tracking
ships in Shanghai
Port or placing at
the top of a compet-
itive design contest?
With the award-win-
ning GPS-GSM Mobile
Navigator, Ma and
Lin accomplished
both.

With today’s stand-alone global position system (GPS) receivers, you are able
to pinpoint your own position. But, what’s more useful about stand-alone GPS
receivers is that they can transmit your position information to other receivers.
We decided to use both of these features to create a wireless vehicle tracking
and control system for the Design Logic 2001 Contest, sponsored by Atmel
and Circuit Cellar.

To design the Port Navigation System, we combined the GPS’s ability to pin-
point location along with the ability of the Global System for Mobile
Communications (GSM) to communicate with a control center in a wireless
fashion. The system includes many GPS-GSM Mobile Navigators and a base
station called the control center.

Let us briefly explain how it works. In order to monitor ships around a port,
each ship is equipped with a GPS-GSM Mobile Navigator. The navigator on
each ship receives GPS signals from satellites, computes the location informa-
tion, and then sends it to the control center. With the ship location informa-
tion, the control center displays all of the ships’ positions on an electronic map
in order to easily monitor and control their routes. Besides tracking control, the
control center can also maintain wireless communication with the GPS units to
provide other services such as alarms, status control, and system updates.

Hardware
GPS became available in 1978 with the successful launch of NAVSSTAR 1.
Later, in May of 2000, the U.S. government ended selective availability (SA);
as a result, the GPS accuracy is now within 10 to 30 m in the horizontal plane
and slightly more in the vertical plane. For more information on GPS and its
accuracy, read Jeff Stefan’s article, “Navigating with GPS” (Circuit Cellar
123).

The GPS-GSM Mobile Navigator is the main part of the Port Navigation
System. The design takes into consideration important factors regarding both
position and data communication. Thus, the project integrates location deter-
mination (GPS) and cellular (GSM)—two distinct and powerful technolo-
gies—in a single handset (see Photo 1).

The navigator is based on a microcontroller-based system equipped with a GPS
receiver and a GSM module operating in the 900-MHz band. We housed the
parts in one small plastic unit, which was then mounted on the ships and con-
nected to GPS and GSM antennas. The position, identity, heading, and speed
are transmitted either automatically at user-defined time intervals or when a
certain event occurs with an assigned message (e.g., accident, alert, or leav-
ing/entering an admissible geographical area).

This information is received by the system in the dispatching or operations cen-
ter, where it is presented as a Short Message Service (SMS) message on a PC
monitor. SMS is a bidirectional service for sending short alphanumeric (up to
160 bytes) messages in a store√and√forward fashion. If the only data
received is time and position, then the data can be displayed on a digitized
map and also recorded in a database file; the recorded information can be
replayed later for debriefing or evaluation of a mission.

The hardware block diagram is shown in Figure 1. The AT90S8515 microcon-
troller assures that all of the components work well together; it controls all
incoming and outgoing messages as well as the I/O channels, serial interfaces
(RS-232), peripheral devices (e.g., LCD and buttons), and all other parts. The

GPS module receives the
GPS signals and outputs the
data to the AT90S8515
microcontroller via a TTL-level
asynchronous serial (UART)
interface. The microcontroller
works with the GSM module
by communicating with the
GSM network. The interface
between the GSM module
and AT90S8515 is also TTL
async serial. An RS-232
interface is used to exchange
data with the PC.

Because the AT90S8151
has only one UART, a three-
channel multiplexer is used
to switch among three work-
ing modes. The location
information and other data is
stored in the 2-Mb serial
data flash memory of the
AT45D021. The flash mem-
ory stores up to 2160 pieces
of location information in 12
h, because the GPS-GSM
Mobile Navigator saves GPS
signals every 20 s. Four buttons, an LCD, and a buzzer enable you to display
the system status and information and control the navigator.

System Features
As we explained, the GPS module outputs the ship location information such
as longitude, latitude, and Greenwich Time every 2 s. The location information
is then stored every 20 s in flash memory, which has enough power to mem-
orize the track of a ship even when the power is off.

What’s the more
laudable engineering
feat, designing a
navigation system
capable of tracking
ships in Shanghai
Port or placing at
the top of a compet-
itive design contest?
With the award-win-
ning GPS-GSM Mobile
Navigator, Ma and
Lin accomplished
both.

Ma Chao is a professor of
Electronic Engineering at East
China Normal University in
Shanghai, China. He is a spe-
cialist in digital image com-
pression and processing,
embedded control systems,
and computer network sys-
tems. You may reach Ma at
ma-chao@online.sh.cn.

Lin Ming is a graduate stu-
dent completing a Master’s
degree in Electronic
Engineering at East China
Normal University. He works
primarily with embedded sys-
tems and microcontroller-
based applications. You may
reach him at
lmcrr@online.sh.cn.

www.atmel.com
page 20

A T M E L A P P L I C A T I O N S J O U R N A L

By Ma Chao & Lin Ming

Photo 1—On the front side of the main board,
you can see an LCD, four programmable keys, a
GSM module, an RS-232 connector, and some
other components.

LCD
Button
control

AT45D021
Flash

memory

AT90S8515
Microcontroller

Alarm

Power
supply 3:1

Mux

GPS
module

RS-232
Interface

GSM
module

SPI

UART

Figure 1—The AT90S8515 microcontroller is the basis for the GPS-GSM Mobile
Navigator.

www.atmel.com
page 21

Note that the GSM wireless communications function is based on a GSM net-
work established in a valid region and with a valid service provider. Via the
SMS provided by the GSM network, the location information and the status of
the GPS-GSM Mobile Navigator are sent to the control center. Meanwhile, the
mobile navigator receives the control information from the control center via
the same SMS. Next, the GPS-GSM Mobile Navigator sends the information
stored in flash memory to the PC via an RS-232 interface. (Note that you can
set up the navigator using an RS-232 interface.)

There are two ways to use the mobile navigator’s alarm function, which can
be signified by either a buzzer or presented on the LCD. The first way is to
receive the command from the control center; the second way is to manually
send the alarm information to the control center with the push of a button.

The GPS-GSM Mobile Navigator is powered by either a rechargeable battery or
DC input.

Getting GPS Data
After the GPS module computes the positioning and other useful information,

it then transmits the data in some standard format—normally in NMEA-0183
format. When you’re building this project, it’s nice to be able to buy stand-
alone GPS OEM modules. Just check the pages of Circuit Cellar for manufac-
turers. We used a Sandpiper GPS receiver from Axiom for this project. The
Sandpiper is intended as a component for an OEM product that continuously
tracks all satellites in view and provides accurate satellite positioning data.
With differential GPS signal input, the accuracy ranges from 1 to 5 m; howev-
er, without differential input, the accuracy can be 25 m.

The Sandpiper has two full-duplex TTL-level asynchronous serial data interfaces
(ports A and B). Both binary and NMEA initialization and configuration data
messages are transmitted and received through port A. Port B is configured to
receive RTCM DGPS correction data messages, which enable the GPS unit to
provide more accurate positioning information. But, we didn’t require the use
of port B for this project.

About 45 s after the GPS module is cold booted it begins to output a set of
data (according to the NMEA format) through port A once every second at
9600 bps, 8 data bits, 1 stop bit, and no parity. NMEA GPS messages include

A T M E L A P P L I C A T I O N S J O U R N A L

Name Example Units Description

Message ID $GPRMC – RMC protocol header
UTC Position 161229.487 – hhmmss.sss
Status A – A = data valid; V = data not valid
Latitude 3723.2475 – ddmm.mmmm
N/S Indicator N – N = north; S = south
Longitude 12158.3416 – dddmm.mmmm
E/W Indicator W – E = east; W = west
Speed over ground 0.13 Knots –
Course over ground 309.62 Degrees True
Date 120598 – ddmmyy
Magnetic variation – Degrees E = east; W = west
Checksum *10 – –
<CR><LF> – – End of message termination

Table 1—The NMEA RMC data values are based on the following example: $GPRMC,161229.487,A,3723.2475,N,12158.3146,W,0.13,309.62,120598,,*10.

Name Byte Definition Description

Start byte 1 : Start symbol of data package
Data package ID 1 0~9 Package ID is repeated from 0 to 9
System password 3 000~999 System password
Terminal ID 4 0000~9999 Terminal ID
Position data 19 E000000000~E180000000 E means east longitude, which is from 000° and 00.0000 min. to 180°

and 00.0000 min.
N00000000~N90000000 N means north latitude, which is from 00° and 00.0000 min. to 90° and

00.0000 min.
UTC 6 hhmmss Greenwich Time (hour, minute, second)
Upload time rate 3 001~255(003) Upload time interval = basic upload time ˘ upload time rate
Alarm information 4 xxxx 0 means OK; 1 means alarm

Byte 1: aberrance alarm
Byte 2: over-speed alarm
Byte 3: dangerous area alarm
Byte 4: manual alarm

Stop byte 1 # Stop symbol of data package

Table 2—Take a look at the 42-byte data package format and the following example ready to be saved: :10019999E121263457N311864290742160030000#.

Reprinted with permission
of Circuit Cellar® -
Issue 151
February 2003

PROJECT FILES
To download the pin assignments and
source code, go to ftp.circuit
cellar.com/pub/Circuit_Cellar/
2003/151/.

www.atmel.com
page 22

six groups of data sets: GGA, GLL, GSA, GSV, RMC, and VTG. We use only the
most useful RMC message—Recommended Minimum Specific GNSS Data—
which contains all of the basic information required to build a navigation sys-
tem. Table 1 lists the RMC data format.

We only need position and time data, so the UTC position, longitude with
east/west indicator, and latitude with north/south indicator are picked out
from the RMC message. All of this data will be formatted into a standard fixed-
length packet with some other helpful information. Next, this data packet will
be transmitted to the control center and stored in the AT45D021’s flash mem-
ory.

The data packet is a 42-byte long ASCII string, which includes the package ID,
system password, terminal ID, position data, UTC, and other operational infor-
mation. Table 2 shows the definition of a reforming data packet and an exam-
ple ready to be saved or transmitted.

GSM TRANSMITS DATA
A committee of telecom vendors and manufacturers in Europe—the European
Telecommunications Standards Institute (ETSI)—designed GSM as a digital
wireless communications system. Commercial service began in mid√1991,

and by 1993 there were 36 GSM networks in 22 countries, with 25 additional
countries looking to participate. Furthermore, the standard spread quickly
beyond Europe to South Africa, Australia, and many Middle and Far Eastern
countries. By the beginning of 1994, there were 1.3 million subscribers world-
wide. Today, GSM is also the most widely used communications standard in
China, and covers almost all of the country. So, we didn’t need to set up a
communications base station for our system; this, of course, significantly
reduced the total cost of the project. The most basic teleservice supported by
GSM is telephony. Group 3 fax, an analog method described in ITU√T recom-
mendation T.30, is also supported by the use of an appropriate fax adapter.
SMS is one of the unique features of GSM compared to older analog systems.
For point√to√point SMS, a message can be sent to another subscriber to the
service, and an acknowledgment of receipt is sent to the sender. SMS also can
be used in Cell Broadcast mode to send messages such as traffic or news
updates. Messages can be stored on the SIM card for later retrieval.

SMS is effective because it can transmit short messages within 3 to 5 s via
the GSM network and doesn’t occupy a telephony channel. Moreover, the cost
savings makes it a worthwhile choice (i.e., in China, each message sent costs
$ 0.01 and receiving messages is free). With SMS transmitting, gathering
position data is easy and convenient.

A T M E L A P P L I C A T I O N S J O U R N A L

Figure 2—Jack port JP1 is the 20-pin GPS socket header. Jack port JP2 is the 40-pin GSM socket header. U2 is the dual four-channel multiplexer controlled by PA2 through
PA3. All of the data traffic runs at 9600 bps.

Command Definition

AT+CSCA Set the SMS center address. Mobile-originated messages are transmitted through this s
ervice center.

AT+CMGS Send short message to the SMS center
AT+CMGR Read one message from the SIM card storage
AT+CMGD Delete a message from the SIM card storage
AT+CMGF Select format for incoming and outgoing messages: zero for PDU mode, one for Text mode
AT+CSMP Set additional parameters for Text mode messages

Table 3—To send SMS messages, you can use these (mainly) AT commands. For more details, you may want to read the GSM 07.07 protocol on the ETSI web site.

REFERENCES
[1] European Telecommunications Standards
Institute, “ETSI GTS GSM 07.05,” V.5.5.0,
1998.

[2] ———, “ETSI GTS GSM 07.07,”
V.5.0.0, 1996.
RESOURCE
NMEA Specification
National Marine Electronics Association
(919) 638-2626
www.nmea.org

SOURCES
AT90S8515 and AT45D021
Atmel Corp.
(714) 282-8080
www.atmel.com

Sandpiper GPS receiver
Axiom Navigation, Inc.
(714) 444-0200
www.axiomnav.com

FALCOM A2D GSM module
Falcom Wireless Communications GmbH
(800) 268-8628
www.falcom.de

BASCOM-AVR
MCS Electronics
+31 75 6148799
www.mcselec.com

www.atmel.com
page 23

As with GPS modules, stand-alone GSM OEM modules are available. We used
the FALCOM A2D from Wave-com for this project. The FALCOM A2D is a dual-
band embedded GSM module (GSM900/DCS1800). It features the following
services: telephony, SMS, data, and fax. The GSM module has one TTL-level
serial data interface. We use AT commands to control and program the FAL-
COM A2D. The data and control commands are exchanged between the micro-
controller and GSM module through the serial interface.

There are many groups of AT commands, including: Call Control, Data Card
Control, Phone Control, Computer Data Card Control, Reporting Operation,
Network Communication Parameter, Miscellaneous, and Short Message
Service. We use some of the SMS commands to communicate with the con-
trol center. The main AT commands for using SMS are listed in Table 3. You
can download the GSM 07.07 and GSM 07.05 protocols for more details
about the AT commands that are used in GSM communications. [1, 2]

Let’s review an example of how to make a GSM module send and read a sam-
ple SMS in Text mode. First, initialize the GSM module with AT commands
AT+CSCA and AT+CMGF. Using the former sets the SMS center number to be
used with outgoing SMS messages. Remember, the number will be saved on
the SIM card just like in normal mobile phones. There are two different
modes—Text mode and Protocol Data Unit (PDU) mode—for handling short
messages. The system default is PDU mode; however, Text mode is easier to
understand. So, use the AT+CMGF=1 command to set the module to the GSM
07.05 standard SMS Text mode.
The AT+CMGS command is used to send a short message. The format of this
command is:

AT+CMGS=<da><CR>Message

Texts<CTRL-Z>

Here, <da> is a subscriber’s mobile phone num-
ber that you want to send the short message to.
The GSM module can receive incoming short mes-
sages and save them on the SIM card automati-
cally. You can use the AT+CMGR command to
read an incoming short message from the SIM
card storage, and then use the AT+CMGD com-
mand to delete it when you’re finished.

If you want to read an SMS message, then send
a AT+CMGR=x command to tell the GSM module
which short message you want to read. Next,
check the serial port to receive the message from
the GSM module. Rs232_r is a subroutine used
to receive data from the UART. Listing 1 demon-
strates sending and reading a short message in a
BASCOM-AVR program. In this code segment,
chr(34) converts the ASCII value 34 to the right
quote character (”). It also converts chr(13) to
<CR> and chr(26) to <CTRL-Z>. As you can see,
“My SMS Message” is the message you want to
send.

Circuit Description
The difficult part of designing this project was
learning both the NMEA GPS message and GSM
AT command protocols. The easy part was design-
ing the hardware circuit (see Figure 2). You may
download a table of the pin assignments from the
Circuit Cellar ftp site. As you can see from the
schematic, there are three jack ports. JP1 (20

pins) is used for the GPS module, JP2 (40 pins) is for the GSM module, and
JP3 is used for communication with the PC.

The AT90S8515 (U1) is the core of the circuit. This low-power CMOS 8-bit
microcontroller is based on the AVR-enhanced RISC architecture. By executing
powerful instructions in a single clock cycle, the AT90S8515 achieves through-
puts approaching 1 MIPS per megahertz, allowing you to optimize power con-
sumption versus processing speed. The AT90S8515 features 8 KB of in-system
programmable flash memory, 512 bytes of EEPROM, 512 bytes of SRAM, and
32 general-purpose I/O lines. Flexible timer/counters with compare modes,
internal and external interrupts, a programmable serial UART, an SPI serial
port, and two software-selectable power-saving modes are also available. The
high speed of the AT90S8515 makes it possible to complete multiple tasks
between the GPS and GSM modules, although it has only one UART serial port.
With the programmable flash memory, you have high reliability and can
update your system. The EEPROM makes it possible to store system parame-
ters such as the SMS center number, control center number, and predeter-
mined time intervals.

Other components on the board are the four-channel multiplexer, a large capac-
ity data memory, and the user interface. The latter consists of a 2 ˘ 16 LCD,
a buzzer, and three push buttons.

Accessories
An AT45D021’s serial-interface flash memory is used as a black box to store
data packages. The 2,162,688 bits of memory are organized as 1024 pages
of 264 bytes each. In addition to the main memory, the micro also contains
two data SRAM buffers of 264 bytes each. The simple SPI serial interface facil-
itates the hardware layout, increases system reliability, and reduces the pack-
age size and active pin count. The AT90S8515 saves GPS data to flash mem-
ory via an SPI port at a user-defined specific interval. Or it reads data from the

A T M E L A P P L I C A T I O N S J O U R N A L

Initialization
EEPROM check

Flash memory check
GPS/GSM reset

Mode select
(= 0, 1, 2, 3)

N
Power Off

button
pressed

>1s

Y
Power off

Prepare UART
communication

Reset
system parameters

Received
"$"

from the PC

Send all of the data in
 flash memory to PC

Standard
working mode

Update system
parameters with data

Data
 received is in
 correct format

Display current
system parameters

while receiving
data from PC

Return to
mode select

Return to
the current mode

Y

N

M = 3

M = 2
M = 1

M = 0

Y

N N

Y

Power on

Figure 3—After initialization, you can select the function mode by pressing the Menu button and Enter button. The
LCD will show the status and system parameters.

Our system is now being used

in Shanghai Port, China for

navigation and monitoring of

ships. Aside from tracking

ships, the GPS-GSM Mobile

Navigator can also find use in

other applications, such as

navigating taxis. The system

works quite well, and we plan

to adapt it for future projects.

www.atmel.com
page 24

flash memory to backup to PC. Up to 2160 pieces of information can be stored
in flash memory. Because the AT90S8515 has only one UART port, another
chip is used to expand the serial port for three kinds of different functions. The
digitally controlled MC14052B analog switch is a dual four-channel multiplex-
er. With two I/O pins, the AVR controls it to switch among three channels, all
of which are UART serial interfaces.

One MAX202 chip accomplishes the conversion between TTL/CMOS level and
RS-232 level, which is necessary for the RS-232 interface between the navi-
gator and PC. Using the RS-232 port, the system can backup the data in flash
memory to the PC. Also, you can change some system parameters through the
PC via the RS-232 port.

With two control pins and four data pins, the AVR gives the LCD specific infor-
mation to display. Port pins PC2 through PC4 individually sense the three push-
button switches. There is a Menu button to select the work mode, and an Enter
button to confirm the selection. The third is an SOS button used to send an
alarm message to the control center.

Software Description
We used the powerful BASCOM-AVR to develop the software. An IDE is pro-
vided with an internal assembler. You can also generate Atmel OBJ code.
Additionally, the BASCOM-AVR has a built-in STK200/300 programmer and
terminal emulator. Other notable features include: structured BASIC with
labels; fast machine code instead of interpreted code; special commands for
LCDs; I2C; one wire; PC keyboard and matrix keyboard; RC5 reception; and
RS-232 communications. The BASCOM-AVR has an integrated terminal emula-
tor with download option, an integrated simulator for testing, and an integrat-
ed ISP programmer.

You can easily write the firmware for this project using the BASCOM-AVR. And
with the ISP benefit of AVR, on-line emulation is almost unnecessary, so you
can program and test with ease. The flow charts in Figures 3 and 4 describe
the AT90S8515 program that controls the devices. The software handles a
number of key functions, such as initializing the system and starting the GPS
and GSM modules. The software also selects the working mode. Additionally,
it checks and sets the system parameters in mode 0, backs up the trace data
stored in flash memory to the PC in mode 2, and resets the system parame-
ters in mode 3.

Mode 1 is the standard working mode during which many tasks are complet-
ed. During mode 1, the GPS signals are read every 2 s from a satellite; the
location information is saved in flash memory every 20 s; and the GSM mod-
ule sends location data to the control center according to the given interval
time. Meanwhile, the navigator receives the control information from the con-
trol center from the GSM module.

❑

A T M E L A P P L I C A T I O N S J O U R N A L

To set
GSM module
work mode

The time
is even second
or odd second

To set
a 1-s timer

Even Odd

Check
GSM status

The time
is what?

Else 12, 16, 18 s

Read
GPS information

from GPS
module

Save GPS
data to

flash memory

Let GSM module
send GPS data out
according to given

interval

Display messages or
 alarm according to

the process done above

Count to
20 s

N

Clear
counter to 0

Y

Check if
there is a short

message

Y

Display short
message for

 4 s, and then clear

N

Mode = 1

Figure 4—The main function is mode 1. The AT90S8515 microcontroller receives
the ship location data every 2 s from the GPS module, and then saves the data in
flash memory every 20 s. At a user-defined time interval, the AT90S8515 sends
the location data to the control center, and then receives the control information
from the control center via the GSM module.

Listing 1—We created a program to send an SMS message to a mobile phone (13916315573). The program directs the GPS-GSM Mobile Navigator to read and delete
an incoming short message. The Print command is a BASCOM-AVR instruction that sends output to the serial port. The Rs232_r subroutine is used to read input from
the serial port.

constant definition
Const Gsm_center = “+8613800210500”//SMS center number
Const Send_number = “13916315573” //Phone number the SMS sends to
Const Sms_texts = “My SMS Message” //Message texts to be sent

//Initialize the GSM module
Print “AT+CMGF=1”
//Set GSM module in Text mode
Print “AT+CSCA=” ; Chr(34) ; Gsm_center ; Chr(34)

//Set SMS center number
//Send a message
Print “AT+CMGS=”; Chr(34); Send_number; Chr(34); Chr(13); Sms_texts; Chr(26)

//Read and delete an incoming short message
Print “AT+CMGR=1” //Read first short message from SIM card storage
Gosub Rs232_r //Receive message
Print “AT+CMGD=1” //Delete message from SIM card storage

AT86RF401
Reference Design

AT86RF401
Reference
Design

It seems that many systems are requiring a radio frequency (RF) wireless link.
We don’t like standing on a chair to adjust the ceiling fan speed, we don’t like
climbing out of our car to open the garage door, and we certainly don’t like
walking outside on an early winter morning to see just how cold it is. Whether
we’re driven by cost, convenience, or performance, low cost RF wireless
designs are here to stay. So, if you’re not an expert in manipulating Maxwell’s
equations… is there an easy way to add RF to your design?

Fortunately, the answer is an emphatic YES. Atmel made your work much eas-
ier by recently introducing the AT86RF401, an RF wireless data micro-trans-
mitter. By developing a chip that integrates the mysterious part of the RF
transmitter design (normally reserved for an RF expert) and throwing in an
AVR® microcontroller, your life just got a little bit simpler.

The heart of this chip is an AVR® microcontroller that’s been given supervisory
responsibility over a narrowband Phase-Locked-Loop (PLL) RF transmitter.
What sets this device apart from many on the market today is that the solu-
tion is a true System On a Chip (SOC). It isn’t a multi-chip package where
each chip was designed by different teams having different priorities. Rather,
it is a SINGLE chip resulting from the cooperative efforts of a cross-functional
design team where the RF and control logic were designed to work togeth-
er… from the beginning. With access to key RF control parameters such as

output power attenuation, voltage controlled oscillator tuning, RF modulation
and PLL lock/unlock criteria, the AVR core takes much of the headache out of
getting your RF link’s performance up to where you’d like it.

The AT86RF401 (see Figues A; page 40) is designed to operate down to
2.0V. C1, C7, and C8 provide an attenuation path to ground for unwanted
high frequency transients. J2 provides an interface to the software develop-
ment tools and allows you to flash the AVR®’s memory while it’s still soldered
onto the PCB. Switches, S1 – S4, along with the current limiting resistors, R1
– R4, trigger an event that awakens the device from a very low current sleep
mode (typically less than 100 nA) and initiates the RF transmission.

The rest of the parts on the PCB support the RF transmitter. While X1 provides
a clock source for the AVR®, it also is used as the reference frequency for the

PLL. The PLL contains an internal divider fixed to 24 so the RF carrier will
always be 24 times the frequency of X1 (24*13.125MHz = 315MHz). The
VCO requires L2 to put its output in a controllable range enabling the PLL to
closely track the reference frequency X1. All that’s left to finish the design is
to attach a tuned antenna to the chip and your hardware is ready. The com-
plete Parts List is shown in table 1 below.

To minimize cost (while not the most efficient way to radiate RF), a tuned loop
PCB trace antenna can be used. A reasonable impedance match between the
output of the AT86RF401 and the PCB trace antenna AND assurance of an
Federal Communications Commission (FCC) compliant design can be obtained
using the component placement and geometry of the traces as shown in Figure
1a (top side PCB artwork including antenna) and Figure 1b (bottom side PCB
artwork). Complete PCB design and fabrication documentation is available
upon request. See contact information at the conclusion of this article.

In this design, peak resonance of the tuned loop antenna occurs with a non-
standard capacitance value. So, three capacitors, C2-C4, are required to be
connected in series to achieve this equivalent capacitance. This isn’t neces-
sarily a bad thing as a benefit to a series connection of three capacitors is a
reduction in the overall variation of the equivalent capacitance.

Software development for this device can be done using AVRStudio. A recent
upgrade, AVR Studio4, now includes drop down menus unique to the
AT86RF401. When used with an AVR Starter Kit, STK500, a complete soft-
ware development environment including editing, assembly, simulation, and
serial flash programming can be realized.

But, if you’re anxious to start playing with the hardware in the lab, try using
the SPI Controller software (included with the AT86RF401U-EK1 Evaluation
Kit). The SPI Controller gives you real time access to the key registers within
the AT86RF401 that control the RF transmitter using a graphical user interface
(GUI) as shown in Figure 2. By connecting the cable & dongle assembly (pro-
vided in AT86RF401U-EK1) between the parallel port of your PC and the pro-
gramming header on the reference design, you'll be ready to go! Once you’ve
connected your hardware and initialized the software, you can toggle the

AT86RF401
Reference
Design

www.atmel.com
page 25

A T M E L A P P L I C A T I O N S J O U R N A L

By Jim Goings, Applications Manager, Atmel, North American RF&A

ATMEL REMOTE KEYLESS ENTRY TRANSMITTER 315MHz version (REV B1 APRIL 15, 2003)
Item Moose Qty Ref Designator Description Manufacturer Part Number Value Tolerance Rating PCB Decal
1 2 C2 C4 0603 SIZE SMT CERAMIC CAPACITOR Any 6p8F +-.25pF 50V NPO 603
2 1 C3 0603 SIZE SMT CERAMIC CAPACITOR Any 33pF 5% 50V NPO 603
3 2 C1 C8 0603 SIZE SMT CERAMIC CAPACITOR Any 100pF 5% 50V NPO 603
4 1 C7 0603 SIZE SMT CERAMIC CAPACITOR Any 10nF 10% 50V X7R 603
5 1 J1 2032 COIN CELL HOLDER SMT KEYSTONE 1061 KEYSTONE-1061
6 1 J2 3X2 PIN 0.1" RIGHT ANGLE HEADER 3M 929838-04-03 RTHEAD-2X3
7 1 L2 0603 SIZE CHIP INDUCTOR COILCRAFT 0603CS-82NXJB 82nH 5% 603
8 4 R1 R2 R3 R4 0603 SURFACE MOUNT RESISTOR Any 1k 5% 1/16 W 603
9 4 S1 S2 S3 S4 LIGHT TOUCH SWITCH PANASONIC EVQ-PPDA25 PANASONIC-EVQ-PP
10 X 1 U1 "SMARTRF" WIRELESS DATA ATMEL AT86RF401U TSSOP20
11 X 1 X1 CSM-7 STYLE SMT CRYSTAL CRYSTEK 16757 13.125MHz +/-20ppm CL 20pF ECS-CSM-7
12 1 PCB 1 PRINTED CIRCUIT BOARD JET AT0308 rev B

Table 1 - Parts list

www.atmel.com
page 26

appropriate bits in various registers to do things like change the output power
of the RF signal (PWR_ATTEN[5:0) or activate the RF power amplifier
(TX_CNTL[6:4,2]. Be sure to check out some of the canned routines located
under the tool button labeled “PRESET FUNCTIONS” as shown in Figure 3.
There are quite a few helpful programs that will allow you to evaluate many
aspects of the RF transmitter without having to write any software.

Now that you’ve had a chance to try out the ‘401 in the lab using the SPI
Controller tool, it’s time to understand a sample software program that was
developed to demonstrate the generation of a constant RF carrier whenever
any of the switches S1 through S4 are pressed.

Using the AVRStudio4 and file CW Mode.asm as an example (see Figure 4),
the essential elements of the software are:

• initialization of digital logic (e.g. AVR clock divide, stack pointer, I/O
definition, etc.) and RF control registers (e.g. fine tuning the VCO, defining
the PLL lock detector criteria, selecting output power, etc.)

• controlling the RF signal
• entering the sleep mode after RF transmission is complete

Upon power up, the program counter is reset to 0x0000 and execution begins
at the “Reset” label. Initialization starts with establishing the AVR clock divider
ratio and defining the stack pointer address. After these tasks are completed
the “VCO” subroutine is called. This subroutine steps through an internal VCO
tuning capacitor array to determine the optimal setting for the tuning capacitor
array. This tuning process monitors both the PLL’s ability to lock (TX_CNTL,
Bit[2]) and the value of the VCO’s control voltage window comparator (VCO-

TUNE, Bits[7:6]). When both of these conditions are determined to be accept-
able, the value of the tuning capacitor is retained in VCOTUNE, Bits[4:0].

It is important to note that optimal performance of the PLL lock detec-
tor has been determined empirically at the factory. Therefore, the con-
stants programmed into registers LOCKDET1 and LOCKDET2 (0x07 and
0x85 respectively) do not require modification in most applications. The
final steps of initialization involve the definition of the I/O registers cor-
responding to switches S1-S4. In this application, they are configured
as inputs capable of generating a “button wake-up” (IO_ENAB,
bits[5:0] and IO_DATOUT, bits[5:0]). This feature allows a switch
depression to awaken the AT86RF401 from its low current sleep mode.
Polling of the Button Detect Register (B_DET, bits[5:0]) provides an
indication of which I/O was the source of wake up. Care must be taken
to clear the bit(s) set in this register prior to entering the sleep mode.

After initialization is complete, generation of the RF carrier is straight-
forward. When, the appropriate bits in the Transmit Control Register,
TX_CNTL, bits[5:4] are set, the RF carrier is routed to the antenna pins
of the AT86RF401. This is controlled in the subroutine called “Tx”. The
RF continues as long as the Button Detect register indicates a switch was
pressed (B_DET, bits[5:0]). Once the switch is released, the entire PLL
controlling the RF carrier is powered off and the software resumes its
sequence of control defined in the main loop of the program, “Main”
and quickly enters the sleep mode.

This design was successfully tested for FCC compliance and yielded an
output field strength of 85.8 dBuV/m. The FCC limit at 315MHz is
75.62dBuV/m but up to 20dB of relaxation on this limit is allowed if
the RF is modulated. This raises the FCC limit to 95.62dBuV/m. This

A T M E L A P P L I C A T I O N S J O U R N A L

Figure 1a Figure 1b

Figure 2

Figure 3

Figure 4

www.atmel.com
page 27

means the design has a margin of 9.8dB. Results of FCC compliance testing
for the fundamental and harmonics of interest are shown in Figures 5 and 6.

The formula to calculate the relaxation factor is:
dBrelaxation = 20log(100mS/mS the RF is “on” time during 100mS)

Based on the margin of 9.8dB measured in the lab, we can calculate the max-
imum amount of RF is "on" during 100mS interval to determine the theoreti-
cal boundary of our modulation scheme. Using the equation above we can
solve for RF “on” time as follows:

20dB - 9.8dB = 20log(100/tRF”on”)
tRF”on” ≤ 30.90mS

Based on this information, it would be possible to modulate the RF carrier
using On-Off-Keying with a 50% duty cycle at a data rate of up to 10KHz (lim-

ited by the AT86RF401) for a duration of 61.8 mS and still meet the limits of
the FCC requirements for intermittent operation as defined in FCC part
15.231, “Periodic operation above 70 MHz”. Under these conditions, 618
bits of data could be sent at a data rate of 10Kb/S and the transmitter would
still be FCC compliant!

As you can see, the AT86RF401 can make adding an RF link to your system
easy and economical priced at only $1.36 in quantities of 100K. To get your
design to market faster, try ordering an evaluation kit that contains the hard-
ware and software described in this article. Your local Atmel distributor can
provide this for $199. Use the order number AT86RF401U-EK1 for a 315MHz
design or AT86RF401E-EK1 for a 433.92MHz. Both are available in stock
today!

continued on page 40
For more information on this product or for additional design documentation,
you may contact the author by phone: 719-540-6873 or email:
jgoings@atmel.com. ❑

A T M E L A P P L I C A T I O N S J O U R N A L

Figure 6

Figure 5

An RF-Controlled
Irrigation System

With access to a
steady water supply,
Brian’s garden
should flourish in
even the driest of
times. Having caught
wireless fever, he
set out to use an
AVR and some RF
products to man the
pump and close the
valves. Now, water-
ing only takes a
press of the green
thumb.

When I sat down to write this article last fall, the leaves on the trees had not
yet turned their autumn colors, but the beauty of the flowers in our garden
beds was certainly on the wane. It was a dry summer, particularly punishing
for farmers, and our gardens weren’t particularly splendid last year. Not that I
didn’t try to keep them well watered, it’s just that it’s hard to beat a steady
dose of rainwater.

We’re fortunate to have built a home on a large lake. Twelve years ago, we
chose the lot based mainly on recreational concerns—swimming, canoeing,
and such. I became seriously interested in gardening about five years back,
and decided to install an irrigation system to make use of the unlimited sup-
ply of “free” water.

Our lot is about 25 feet above the lake’s level. As any mechanical engineer
will tell you, it’s a lot easier to “push” water than it is to “pull” it, so I installed
a 0.75-hp jet pump at the water’s edge. I decided against using a pressure
tank and switch, as the water would be needed only when the pump was
switched on, and the maximum continuous flow rate was desirable.

Because most of the rough landscaping had been done when the house was
built, I decided it would be too much effort and expense to bury irrigation lines
throughout the 0.75 acre of lawn and gardens that I have. Instead, I ran 1.5≈
plastic pipe on the surface, along the side border of my property. Six
valves/garden hose fittings are spaced along the 400 foot length.

For a number of years, I was content to run down to the electrical panel in the
basement to switch on the pump when I wanted to do some watering. Besides
being inconvenient, occasionally I’d shut off the water valves when finished

a n d
then for-
get to return to the
basement to turn off the pump. One
year I damaged the pump by leaving it on for sev-
eral days! Also I was getting lazy; I didn’t like the trouble
of hooking up a hose, unraveling 100 feet of it into the desired position,
attaching a sprinkler head, and then having to walk all of the way back to the
other end to turn on the water valve.

I decided what I needed was a controller that allows me to program specific
watering times and durations. Units like this are commercially available, of
course, but I also wanted to be able to control the water using a small keyfob
transmitter while I puttered around in the gardens.

In my last article, I described a wireless MP3 player, which used low-cost UHF
transmitter/receiver modules from Abacom Technologies (“Listen
Everywhere,” Circuit Cellar 134). I was pleased with their performance and
technical support from Abacom, so I decided to check out Abacom’s products
again.

I wanted the transmitter to fit in a keyfob, so I chose the AT-MT1-418 AM
transmitter module, which is about the size of a penny. I also chose Abacom’s
keyfob transmitter case, which comes in various switch cutout configurations.
I decided to use a sensitive receiver because I anticipated a low transmitted
signal level given such a small transmitter. The QMR1 Quasi AM/FM superhet
receiver module fit my needs. I particularly like this module because its 1-

square-inch SIP mounts easily on a circuit board by pins on 0.1≈ cen-
ters. I like one-stop shopping, so of course I was pleased to be able to
get Holtek encoder/ decoder chips from Abacom, as well. I’ll describe
the chips in more detail later in the article.

Controller/Receiver
If you’ve read my recent articles, it should come as no surprise that I
used an Atmel AVR controller chip, the AT90S8535-8PC (40-pin DIP
package), for this project. This device contains four 8-bit ports, eight 10-
bit ADC channels, 8 KB of flash memory, and 512 bytes each of data
EEPROM and RAM. Like most AVR devices, this one is easily serially pro-
grammable in-circuit. You may want to refer to my article, “My
fAVRorite Family of Micros” (Circuit Cellar 133) for an overview of this
family, along with the details of a free ISP programmer for these chips.

I must admit up front that I probably could have done this project with
the smaller AT90S2313 by multiplexing some of the I/O pins and writ-
ing the program in assembly language. I decided it was more produc-
tive for me to spend the extra dollars (Can $) on the ’8535, whose
larger flash memory would allow me to program in BASIC, using the
BASCOM AVR compiler.

With access to a
steady water supply,
Brian’s garden
should flourish in
even the driest of
times. Having caught
wireless fever, he
set out to use an
AVR and some RF
products to man the
pump and close the
valves. Now, water-
ing only takes a
press of the green
thumb.

Author’s Note: I want to
thank John Barclay of
Abacom Technologies for the
support and samples that
helped out significantly while
I was putting this article
together.

Brian Millier is an instrumen-
tation engineer in the
Chemistry Department of
Dalhousie University, Halifax,
Canada. He also runs
Computer Interface
Consultants. You may reach
him at brian.millier@dal.ca.

www.atmel.com
page 28

A T M E L A P P L I C A T I O N S J O U R N A L

By Brian Millier

Photo 1—Here’s the actual controller/receiver sitting in my family room. Just visible in the
background is a glimpse of the lake—the source of water for the gardens. Not visible is the
AC adapter used for power or the power relay, which is located at the electrical panel in the
basement.

www.atmel.com
page 29

Figure 1 is a schematic of the controller/receiver. Let’s start by looking at the
user interface. The user interface consists of a 4 ˘ 20 LCD and four push but-
tons. The display is operated in the common 4-bit mode; in this case, because
it saved some wiring, not because of a shortage of I/O pins.

The four push-button switches are individually strobed by port pins PC0–3 and
sensed by the INT1 input of the ’8535. I hooked up the switches this way
because I originally drove the LCD using the same four port C lines. I had been
saving the ADC inputs of port A for future use, but later changed my mind and
switched the LCD over to port A, leaving this switch circuit intact.

The four push-button switches operate this unit the same way that many small
electronic devices work. There is a Menu button to scroll through several
menus as well as a Select/Cursor button. The buttons are used to position the
cursor within a time field for adjustment purposes or to select a particular value
when finished changing it. Finally, there are plus sign and negative sign but-
tons used to increment or decrement the current parameter.

I chose to implement the real-time clock in the software. One reason I initial-
ly picked the ’8535 over the slightly less expensive ’8515 is because it
includes a third timer, which may be driven by a 32,768-Hz watch crystal. I
must say that my attempts to implement the RTC using this feature gave me
some problems! Atmel’s datasheet for the ’8535 advises you to merely con-

nect the 32,768-Hz watch crystal between the TOSC pins 1 and 2 with no
capacitors to ground. [1]

When I did this, I could see a reasonable 32,768-Hz sine wave signal on either
crystal pin with my oscilloscope using a 10˘ probe. I soon discovered, though,
that my clock was losing about 1 min./h. After troubleshooting, I found that
the crystal oscillator waveform contained serious glitches coinciding with LCD
screen refreshes.

At that point, I was using the port pin adjacent to TOSC1 to drive the LCD
ENABLE pin. Moving the LCD ENABLE pin over to port A eliminated the glitch-
es, but the clock was still slow. This was odd because I could not see anything
wrong with the crystal waveform with my oscilloscope, and the built-in fre-
quency counter in the oscilloscope indicated that the frequency was “bang-on.”
So next, I contacted Mark at MCS Electronics to see if he had run into the prob-
lem. He mentioned capacitors, which made me think that capacitance to
ground was probably needed (contrary to the datasheet). It turns out that my
oscilloscope was providing the necessary capacitance, but only when it was
hooked up. Adding 22-pF capacitors to ground cured the problem, at least with
the particular crystal I was using. However, for this project, I decided to play it
safe and implement the RTC using Timer0 of the ’8535 clocked by the
4.194304-MHz crystal of the CPU, which works perfectly. A side effect of this
was that I couldn’t use BASCOM’s intrinsic real-time clock function and instead
had to write my own routine.

A T M E L A P P L I C A T I O N S J O U R N A L

Figure 1—The Atmel 8535 AVR controller is at the center of the action of the irrigation controller. An Abacom QMR1 receiver takes care of the wireless reception func-
tions. The LCD operates in 4-bit mode.

Reprinted with permission
of Circuit Cellar® -
Issue 138
January 2002

www.atmel.com
page 30

My pump draws about 10 A when running (much more when starting), so I
chose a Potter & Brumfield T9AP5D52-12, which is inexpensive and rated for
20-A continuous current. A small 2N3904 transistor is all that is needed to
handle the 200 mA that its coil requires. This sealed relay is small. I haven’t
used it long enough to know how well it will hold up, so the jury is still out on
this component choice.

The controller/receiver is powered by a 9-VDC adapter followed by a 78L05
regulator. The actual output of the adapter is closer to 12-V, and is enough to
operate the relay coil. Photo 1 shows the controller in place in my family room.
The wireless part of the controller consists of an Abacom QMR1 receiver fol-
lowed by a Holtek HT12D decoder chip. This receiver is one of the choices rec-
ommended for use with the AT-MT1 AM transmitter that I use. The datasheet
that comes with the package (available soon on www.abacom-tech.com) calls
the QMR1 a quasi-AM/FM receiver module. The datasheet doesn’t spell out if
it also works with FM transmitters, but it sounds like it would.

In any AM transmitter/receiver link, one thing for certain is that the receiver
will spit out a stream of noisy data during much of the time when its com-
panion transmitter is not transmitting. The QMR1 is sensitive (RF sensitivity
specification is –110 dBm) and it has no squelch circuitry to suppress spuri-
ous output signals arising from any RF interference that it might receive. With
cell phone towers cropping up all over the countryside, even my rural home is
probably not “RF-quiet” anymore. I definitely see lots of noise output from the
QRM1 receiver module.

My intention is to emphasize the need for some form of error detection/ data
formatting in any AM RF link. What I haven’t mentioned is that the circuitry in
the receiver that recovers the data from the RF signal (called the data slicer)
is choosy about the form of data modulation that it will accept.

For example, most data slicers work reliably only if there is a roughly even dis-
tribution of zeros and ones in the datastream, even within the short-term such
as the time taken to send 1 byte of data. This means that you cannot, for
example, just feed in the signal from a UART
to an AM transmitter, and expect to hook up
a UART to the receiver output.

Instead, Manchester encoding is generally
used because it guarantees an equal number
of zeros and ones in the datastream, regard-
less of the particular data being sent.
Furthermore, it is good practice to send the
same data several times and check that it
matches when it comes out of the receiver. A
final precaution could include some form of
checksum or better still, a CRC byte in the
data packet to further verify the integrity of
the received data.

Another concern is the amount of time it
takes the receiver to adjust itself to the
strength of the incoming signal or wake up
from an idle state if that feature is present in
your receiver module. To allow for this, the
transmitter must send out a short stream of
known data, called a preamble, to allow the
receiver to get ready for data reception, so to
speak.

This is a lot tougher than your average RS-
232 serial data link! There are many books

that cover in depth the theory of reliable RF data communication; An
Introduction to Low Power Radio by Peter Birnie and John Fairall is a good
starting point for those of you starting out in this area. [2]

Encoder/decoder
To address these concerns, it made sense to use the inexpensive line of
encoder/ decoder devices from Holtek (HT12D/E) rather than roll my own.
These matching chips address the concerns, at least for applications that need
only to transmit the status of a small number of switches.

There are a number of good reasons for choosing this device. The HT12E
encoder chip consumes only about 0.1 µA in Standby mode, so it can be left
permanently connected across the small transmitter battery. It comes in a
small, 20-pin SOP and fits in a small transmitter case (the same could be said
for the Atmel ATiny and smaller PIC processors). To reduce parts count and
cost, it uses a single resistor to set its internal RC clock. RC clocks are not
known for their frequency stability; the design of this encoder/ decoder pair
allows the receiver to be able to lock onto the transmitter’s data clock fre-
quency even though it may vary considerably over time or temperature. Refer
to Figure 2 for the schematic of the transmitter module.

Both the encoder and decoder sample eight lines (A0 through A7), which act
as device address inputs. That is to say, a given encoder/decoder pair can be
set to operate at one of 256 discrete addresses. This strategy, for example, pre-
vents your neighbor’s remote control from operating your garage door opener.

Addressing can be done with a dip switch, jumpers, or by cutting traces on a
PCB. Modern encoder/decoder chipsets used in remote car starters use, by
necessity, a much more complex addressing scheme because there’s a much
greater chance of false triggering by other, unintended transmitters in the vicin-
ity. Obviously, this leads to worse repercussions.

The data packet sent by the HT12E consists of the 8-bit address followed by a
4-bit data field corresponding to the state of up to four switches connected to

SOFTWARE
To download the code, go to
f tp . c i r cu i t ce l l a r. com/pub/C i r cu i t_
Cellar/2001/138/.

REFERENCES
[1] Atmel Corp., “8-bit AVR
Microcontroller with 8K Bytes
In-System Programmable
Flash—AT90S8535

AT90LS8535,” rev. 1041GS,
September 2001.

[2] P. Birnie and J. Fairall, An
Introduction to Low Power
Radio, Character Press Ltd., UK,
1999.

[3] Holtek Semiconductor Inc., “212 Series
of Decoders,” July 12, 1999.

[4] ———, “HT12A/HT12E 212 Series
of Encoders,” April 11, 2000.

A T M E L A P P L I C A T I O N S J O U R N A L

Figure 2—There isn’t too much to the schematic diagram of the keyfob transmitter. However, getting it to fit into the
small keyfob was another matter!

www.atmel.com
page 31

inputs D8–D11. The datasheets for the HT12D/E devices don’t mention a pre-
amble being sent before the data, nor do they mention a checksum nor CRC
bytes for data checking. [3, 4]

In place of this, the data packet is transmitted three times for each switch clo-
sure and then checked for equality by the receiver. Holding the switch down
for any more than an instant, will result in the repetition of the datastream.
Presumably this is how the lack of a preamble is handled—the receiver like-
ly misses out on the first occurrence of the data packet, but catches subsequent
ones.

The Abacom AT-MT1 transmitter has a maximum data transmission rate of
2400 bps. There-fore, I set the encoder’s oscillator of the HT12E to 2 kHz by
using a 1.5-MW resistor across OSC1 and OSC2. [4]

The AT-MT1 transmitter is a two-wire device. It is not modulated per se; instead
it is powered up and down in step with the datastream. The SAW oscillator
used in this module is able to turn on and off quickly—fast enough to handle
the maximum data rate. The output of an encoder chip is supposed to direct-
ly power the AT-MT1, according to its datasheet. Although the data output pin
of the HT12E is capable of sourcing up to 1.6 mA, the AT-MT1 requires up to
9 mA at 12 V to operate. So, in this case, I had to add a 2N3904 emitter fol-
lower to provide the necessary current boost.

I intended to use a Linx Splatch antenna, which is a small PCB containing a
418-MHz antenna and ground plane. Unfortunately, this small antenna radi-
ated much less signal than a quarter-wave whip antenna and would not pro-
vide the range I wanted. However, it wasn’t too great a loss because I was
having trouble fitting everything into the keyfob anyway. I ended up using a
6.25≈ piece of flexible wire as an antenna, which just hangs out of the key-
fob case and doesn’t mind being stuffed into my pocket.

Photo 2 is a close-up of the transmitter PCB, which has to fit in the case and
line up with the switch cutouts. I included the PCB layout in PDF format along
with the firmware files, because the design of the transmitter PCB is tedious.
Choosing a battery for the transmitter wasn’t difficult. There seems to be only
two choices in small batteries: 3.6-V coin cells and the 12-V alkaline batteries
used in many remote car starters. The HT12E encoder would have worked fine
at 3.6 V, but the output power of the transmitter module would have been
low. Thus, I chose the 12-V batteries.

The Firmware
One of the reasons for choosing the
AT90S8535 instead of one of its little broth-
ers, like the ’2313, was to allow me the lux-
ury of programming the firmware in BASIC.
From past experience, I thought there was not
enough space in the 2-KB flash memory of the
’2313 for an application such as this using
compiled BASIC.

I wrote the firmware using the MCS Electronics
BASCOM-AVR compiler. It took up more than
half, 4800 bytes, of the 8192 bytes of flash
program memory, confirming my fears that it
would not have fit into the memory of the
smaller ’2313 device. Incidentally, the demo
version of the BASCOM-AVR is available free
from MCS Electronics, and is fully functional
apart from the fact that its program size limit
is 2 KB.

As I mentioned earlier, problems I had using
Timer2 (designed for RTC purposes) of the ’8535 prevented me from using
the built-in RTC routines in the BASCOM-AVR. This had an upside: The RTC rou-
tines needed by this application do not require week, month, or year, so they
use less memory space even though they were coded in BASIC (Note: The
BASCOM intrinsic RTC function is done in assembly language).

Most of the firmware takes care of the user interface. An LCD with four push
buttons is easy to build, but takes up considerable program space to imple-
ment a friendly user interface. There is a routine that allows you to set the
clock to the current time. Another routine enables you to enter up to six pro-
grams. Each program consists of a time, action (pump on/off), and a Daily or
Once-Only mode. And, a final menu item allows you to turn the pump on and
off immediately from the controller.

The six user-defined programs are stored in EEPROM, so that they survive a
power failure. However, because the CPU (and therefore the RTC) will stop if
the power goes off, this is a moot point, unless I add a battery backup for the
controller’s CPU.

When a command comes in from the wireless transmitter, the valid transmis-
sion (VT) line on the decoder will go high, and its four data output lines will
reflect the state of the four buttons on the keyfob transmitter. The VT signal is
fed into the INT0 interrupt input of the ’8535 (through RC filtering to prevent
false triggering). An interrupt service routine checks the state of the decoder’s
four outputs and turns the pump on or off accordingly. Although I fitted four
buttons into the transmitter and allowed for all four in the controller, the
firmware currently responds to only two switches—pump on and pump off. I
will likely think of some other device to hook up to this in the future.

Time’s up
There’s no doubt that it’s much less expensive to buy a remote control module
off the shelf than it is to build your own, if you can find one that suits your
needs. However, if your requirement is unique or you can combine a few func-
tions into one unit, then the satisfaction of designing your own unit makes it
all worthwhile. I find building these wireless gadgets addictive. In the back of
my mind, I’m already thinking of my next project: a controller for air exchang-
er in my home using indoor/outdoor temperature and humidity sensors and a
power line modem.

❑

Photo 2—The PCB that I fabricated for the transmitter sits below the keyfob case. You can see a bit of the thin black
wire, which forms the antenna, connected to the tiny transmitter module.

SOURCES

AT-MT1-418 AM Transmitter module
Abacom Technologies
(416) 236-3858
Fax: (416) 236-8866
www.abacom-tech.com

AT90S8535-8PC Microcontroller
Atmel Corp.
(714) 282-8080
Fax: (714) 282-0500
www.atmel.com

HT12D/E Decoder chip
Holtek Semiconductor Inc.
(510) 252-9880
Fax: (510) 252-9885
www.holtek.com

BASCOM-AVR Compiler/programmer
MCS Electronics
31 75 6148799
Fax: 31 75 6144189
www.mcselec.com

A T M E L A P P L I C A T I O N S J O U R N A L

I like working with microcontrollers from sunrise to
sunset and then just a little bit more at night as a hobbyist

building robotic applications. The time I enjoy the most while
working with microcontroller is my spare hours at night when I
develop robots and gadgets. This implies that I have to use my
budget to buy all the necessary components, at the same time
I pay my house and other bills. That is why I can not afford to

buy a 10K emulator to make my embedded system design expe-
rience easier. While most companies think of hobbyists just as a group of peo-
ple playing and not big expenders (reason for which our needs are not neces-
sarily supported), I like to think that most us could easily be the future of
many microcontroller based applications.

I knew I was not alone when a company decided to target designers with lim-
ited budget to use their microcontroller. Atmel's AVR 8 bit RISC architecture is
one of the greatest and easiest I have explored, but its real kick to me was
that the tools were inexpensive and extremely powerful. With an ICE200 for
around $200 (at the time, it sells for $100 now!) and the STK200 at hand,
my home projects started to take place and my wallet to breath with ease!

I never found a complaint with regards to the ICE200. The STK200 on the
other hand was a different story. The tool was great and economical when
evaluating a particular microcontroller for a small project. Unfortunately it
lacked a vital part for my style of development. I needed many boards where
each could hold a microcontroller based application with little breadbording or
wire wrapping as possible. Also, I wanted to interconnect these boards without
having to use tedious harnesses.

What I needed was a development board with prototyping space and some
means to connect more than one together. Browsing through the web didn’t
help. That was when I designed the AT90SMINIPB. This little board has ton of
prototyping space. It will accommodate IC’s, passive components as well as all
the other items a designer need to develop an application revolving around any
20 pin or 8 pin device from the AT90S Clasical and ATtiny architectures (Refer
to Figure 1).

The board worked awesomely! Thanks to the easy access to all ports I was
able to develop applications to control steppers, DC motors, high power loads,
sound recording chips, etc very, very fast!

In order to interconnect more than one board together so that they could share
signals such as power and control lines, the board bottom side has an edge
connector with extra pads to give a door for the microcontroller to the outer
world.

For this concept to work we need the PBMB (Project Board Mother Board).
This board has three edge card slots where the project boards can be plugged
in. Each connector contains 62 signals which are totally shareable between the
three cards. Thanks to a fourth set of pads, these signals can also be inter-
connected to the available prototyping area. To make it more universal, the
PBMB already comes with its own RS-232 port. Extremely handy when want-
ing to use the UART on most of the AVR microcontrollers.

Of course most designers will agree that not all projects can be achieved with
an AT90S2313 or an ATtiny. It came to the fact that I needed more power;
something along the line of an AVR Mega. To meet this requirement, the
AT90S15PB and AT90S35PB were designed. I was now able to create mas-
sive projects with up to 32 I/O lines which included resources such as ADC,
Timers, PWM, Input Captures, SPI, etc.

Again life was good. But I had learned my lesson and remembered the con-
cept of flexibility. What if I were to need more space? More holes to put extra
components that the microcontroller needs to fully work as intended in the
desired application. The ProtoXP (from Prototype Expander) gives new added
flexibility as even more holes with the same architectural pattern can now be
plugged into one of the PBMB slots.

What you get:
Each Project Board contains either one large microcontroller (AT90S15PB and
AT90S35PB) or two small ones (AT90SMINIPB). To make the microcontroller
work, the board includes all necessary circuitry such as voltage regulator, crys-
tal based external oscillator and reset voltage manager (brownout detector).

www.atmel.com
page 32

A T M E L A P P L I C A T I O N S J O U R N A L

AVR Project Boards Make Embedded
System Design Modular and Easier

Figure 1

Figure 2

Designer’s
Corner:

We’re interested in your
experiences in working
with the AVR. Please
send your tips, shortcuts,
and insights to:
bob@convergencepro-
motions.com, and we’ll
try and print your
submissions in future
issues.

www.atmel.com
page 33

To allow the board to be pro-
grammed, the MINIPB includes an
ISP connector per chip, compatible
with the ATAVRISP cable.
AT90S15PB and AT90S35PB boards
include the same ISP connector plus
the JTAG connector that allows in cir-
cuit debugging, as well as program-
ming, with the ATJTAG-ICE cable. The
boards also include a good set of pins
and pads that connect to the micro-

controller ports. This is the place were the microcontroller is connected to the
external peripherals localized on the huge prototyping area. The prototyping
area is not a bunch of independent holes as in other prototyping boards. There
are spaces were the holes are connected to other holes, but there are as well
patches of independent holes and power planes holes.

Finally, but equally important, each board contains a female DB9 meant for RS-
232 communications. The board does not include the RS-232 driver, but there
is enough space to interface such device if needed.

These projects boards can be used as a stand alone unit, but in the case more
than one are to be interconnected the PBMB offers such capability. The PBMB
does contain the fully functional RS-232 standard driver and is ready to work.
Just patch the RS-232 Rx and Tx to the microcontroller through the edge con-
nector bus and the application has PC compliant serial communications. The
PBMB also offers voltage regulation to generate 12V and 5V.

The last board is the ProtoXP. Its middle name is expandability and it is noth-
ing more than an extended prototyping area to add more and more compo-
nents to the embedded system application. It has the same edge connector so
that it can be connected on the PBMB along with other Project Boards.

Conclusion:
The ideas behind Avayan Electronics’ Project Boards are modularity, flexibility
and general purpose design. Users will find that a project based on a mother
board is desirable as it allows for the different modules to be worked upon.
Obviously this implies expandability as well. Because the boards are not set in
stone and simply include all the necessary circuitry for the microcontroller to
work, as well as a good amount of prototyping area, any application can be
designed. Some designers may argue that the boards are too simple and that
some important components are missing like LED’s, drivers, etc. Because not
everybody needs the same features, the boards were designed as general pur-
pose as possible. The huge prototyping area should be enough to accommo-
date such needed features. For more information visit www.avayanelectron-
ics.com or contact Avayan@avayanelectronics.com. ❑

A T M E L A P P L I C A T I O N S J O U R N A L

Figure 3

Figure 4

Third Party Hardware and Software Tools Support

www.atmel.com

ADAPTERS
Adapters.Com
Programming and emulator adapters
Tel: +1 408 855-8527 Fax: +1 408 855-8528
Aprilog
Adapters for programming, emulation, logic analyzers and
breadboarding.
Tel: +1 702 914-2361 Fax: +1 702 914-2362
Email: sales@aprilog.com
Emulation Technology, Inc.
Programming and emulator adapters. Online store
Tel: +1 408 982-0660 Fax: +1 408 982-0664
Logical Systems
Programming and emulator adapters
Tel: +1 315 478-0722 Fax: +1 315 479-6753
Winslow Adaptics
Programming and emulator adapters adapters@winslow.co.uk
Tel: +44 1874 625555 Fax: +44 1874 625500

APPLICATION BUILDERS
Gennady Gromov
Development tools
Tel: +7 0872 458 225 algrom@tula.net
IAR Systems
IAR MakeApp for AVR. Device driver
America: Tel: (415) 765-5500
UK: Tel: +44 207 924 3334
Germany: Tel: +49 89 90069080
Sweden: Tel: +46 18 167800
Kanda Systems
STK200 value added pack info@kanda.com
Tel: +44 1970 621030 Fax: +44 1970 621040
Mentjies, Dirk
Assembler template builder dirk@kivtronics.co.za
Unis
Processor expert, multi language builder

ASSEMBLERS
Gennady Gromov
Graphic Visual Macroassembler (editor, compiler, simulator, pro-
grammer)
Tel: +7 0872 458 225, algrom@tula.net
GNU
Freeware compiler from the GNU Project
IAR Systems
IAR Embedded Workbench
America: Tel: +1 415 765-5500
UK: Tel: +44 207 924 3334
Germany: Tel: +49 89 90069080
Sweden: Tel: +46 18 167800
Mortensen, Tom
Assembler
Virtual Micro Design
AT90S/ATmega Assembler and Simulator
Tel: +33 559 013 080 Fax: +33 559 013 081

COMPILERS
AVR-GCC, GNU Project
Freeware C Compiler
CodeVisionAVR C Compiler
C Compiler
Tel: (+40) 723469754 Fax: (+401) 722181658
office@hpinfotech.ro
Digimok
BASIC Compiler and Java Virtual Processor
Tel: +33 3 21 86 54 88 Fax: +33 3 21 81 03 43
Dunfield Development Systems
Micro-C Developers Kit
Tel: +1 613 256-5820
E-Lab Computers
Pascal Compiler
Tel: +49 7268 9124-0 Fax: +49 7268 9124-24
FastAVR
Basic Compiler
microdesign@siol.com
FORTH, Inc.
Forth Compiler
forthsales@forth.com
IAR Systems
IAR Embedded Workbench, C and C++ Compiler America: Tel: +1
415 765-5500
UK: Tel: +44 207 924 3334
Germany: Tel: +49 89 90069080
Sweden: Tel: +46 18 167800
ImageCraft Inc.
C Compiler for tiny, classic and mega AVR
Tel: +1 650 493-9326 Fax: +1 650 493-9329
Kreymborg, Ron
C Compiler
Kuehnel, Dr. Ing. Claus
C-, Pascal- and C BASIC Compiler
Fax: +41 1 7850275 info@ckuehnel.ch
MCS Electronics
BASCOM-AVR BASIC compiler
Tel: +31 75 6148799 Fax: +31 75 6144189
info@mscelec.com
RAM Technology Systems
Multi-Tasking Forth Optimising Compiler
tel: +44 1202 686308 alan@ram-tech.co.uk
Rhombus
Basic compiler including simulator, ISP,
Terminal Emulator
Tel: +1 864 233-8330 Fax: +1 864 233-8331
info@rhombusinc.com
SPJ Systems
C Compiler
spj@spjsystems.com

DEBUGGERS
IAR Systems Ltd.
AT90S/ATmega Debugger
Tel: +46 1816 7800 Fax: +46 1816 7838
Virtual Micro Design
AT90S/ATmega Debugger
Tel: +33 559 438 458 Fax: +33 559 438 401

DEVELOPMENT BOARDS
Akida LLC
Design and develop boards
Minesh@Akida.com
Avayan Electronics
Tel: +1 585 217-9578 avayan@avayanelectronics.com
Baritek Inc.
AT90S8535 & ATmega103 Development Boards
Tel: +1 781 749-2550
Bluoss Elektronik
AT90S2313 Development Board
Fax: +49 911 474 2588 info@bluoss.de
Dontronics, Inc
AVR Simmstick
Embedded Systems, Inc
Self-contained microprocessor module
Tel:+1 763 757 3696
Fax:+1 763 767-2817
Equinox Ltd
AVR Evaluation Board(s)
Tel: +44 1204 529000
Fax: +44 1204 535555
Flash Designs Ltd.
Development Boards
Tel: +353 (0) 876 687 763
Fax: +353 (0) 8756 687 763 sales@flash.co.uk
Futurlec
Development board for the AT90S2313 sales@futurlec.com
Lawicel
Evaluation Board and CAN
Tel: +46 0451 59877 Fax: +46 0451 59878
info@lawicel.com
Opticompo
ATmega103/128 Development Board
support@opticompo.com
Progressive Resources LLC
MegaAVR Based, Single Board Computer
Tel: +1 317 471-1577 Fax: +1 317 471-1580
sales@prllc.com
Shuan-Long Electronics
Tel +86 10 82623551
UINFO
AVR Ethernet Controller Development Kit
Tel/Fax: +420 67 721 0608 uinfo@bigfoot.com

page 34

A T M E L A P P L I C A T I O N S J O U R N A L

Third Party Hardware and Software Tools Support

www.atmel.com
page 35

REAL TIME O/S
CMX Systems, Inc.
All AVR platforms, CMX-RTX: Real Time Multi-Tasking O.S., CMX-
Tiny+: Tiny Real Time Multi-Tasking O.S., CMX-MicroNet: Small
TCP/IP stack
Tel: +1 904 880-1840 Fax: +1 904 880-1632
cmx@cmx.com

egnite Software GmbH
Nut/OS and Nut/Net, (RTOS and TCP/IP Stack)
Tel +49 (0)2323-925375 Fax +49 (0)2323-925374
harald.kipp@egnite.de
Micrium, Inc.
AT90S/ATmega RTOS www.micrium.com
Nilsen Elektronikk
AT90S/ATmega RTOS
Tel: +47 6758 3162 Fax: +47 6758 9761

OSE Systems
Tel: +1 214 346-9339 support@enea.com
Progressive Resources LLC
PR_RTX, a task switcher for CodeVision
Tel: +1 317 471-1577 Fax: +1 317 471-1580
sales@prllc.com
SEGGER Microcontroller Systeme GmbH embOS
Tel: +49-2103-2878-16 Fax: +49-2103-2878-28
ivo@segger.com ❑

Atmel AVR, MEGAAVR, LCD AVR, TINYAVR, USB AVR,
SECURE AVR, DVD AVR, RF AVR and FPGA AVR Devices

AVR
AT90VC8544
8-Kbyte In-System programmable Flash Program Memory,
256 byte SRAM, 512 Byte EEPROM, 8-channel 10-bit A/D.
Up to 4 MIPS throughput at 4 MHz. 3.6 and 5 volt operation.

AT90S1200
1-Kbyte In-System programmable Flash Program Memory,
64-Byte EEPROM, 32-Byte Register File. Up to 12 MIPS
throughput at 12 MHz.

AT90S2313
2-Kbyte In-System programmable Flash Program Memory,
128 Byte SRAM and EEPROM. Up to 10 MIPS throughput at
10 MHz.

AT90S2323
2-Kbyte In-System programmable Flash Program Memory,
128 Byte SRAM and EEPROM. Up to 10 MIPS throughput of
10 MHz. 5V operation.
3V version: AT90LS2323

AT90S2343
2-Kbyte In-System programmable Flash Program Memory,
128 Byte SRAM and EEPROM. Up to 10 MIPS throughput of
10 MHz. 5V operation.
3V version: AT90LS2343

MEGAAVR
ATmega8
8-Kbyte self-programming Flash Program Memory, 1-Kbyte SRAM,
512 Byte EEPROM, 6 or 8 channel 10-bit A/D. Up to 16 MIPS
throughput at 16 MHz. 5V operation.
3V version: ATmega8L

ATmega8515
8-Kbyte self-programming Flash Program Memory,
512 Byte SRAM and EEPROM. Up to 16 MIPS throughput at
16 MHz. 5V operation.
3V version: ATmega8515L

ATmega8535
8-Kbyte self-programming Flash Program Memory,
512 Byte SRAM and EEPROM, 8 channel 10-bit A/D. Up to
16 MIPS throughput at 16 MHz. 5V operation.
3V version: ATmega8535L

ATmega162
16-Kbyte self-programming flash Program Memory,
1-Kbyte SRAM, 512 Byte EEPROM, JTAG interface for on-chip-
debug. Up to 16 MIPS throughput at 16 MHz.
1.8V version: ATmega162V

ATmega16
16-Kbyte self-programming Flash Program Memory,
1-Kbyte SRAM, 512 Byte EEPROM, 8 channel 10-bit A/D,
JTAG interface for on-chip-debug. Up to 16 MIPS throughput at
16 MHz. 5V operation.
3V version: ATmega16L

ATmega32
32-Kbyte self-programming Flash Program Memory,
2-Kbyte SRAM, 1-Kbyte EEPROM, 8 channel 10-bit A/D, JTAG
interface for on-chip-debug. Up to 16 MIPS throughput at 16
MHz. 5V operation.
3V version: ATmega32L

ATmega64
64-Kbyte self-programming Flash Program Memory,
4-Kbyte SRAM, 2-Kbyte EEPROM, 8 channel 10-bit A/D,

JTAG interface for on-chip-debug. Up to 16 MIPS throughput at
16 MHz. 5V operation.
3V version: ATmega64L

ATmega128
128-Kbyte self-programming Flash Program Memory,
4-Kbyte SRAM, 4-Kbyte EEPROM, 8 channel 10-bit A/D, JTAG
interface for on-chip-debug. Up to 16 MIPS throughput at
16 MHz. 5V operation.
3V version: ATmega128L

LCD AVR
ATmega169
16-Kbyte self-programming Flash Program Memory,
1-Kbyte SRAM, 512 Byte EEPROM, 8 channel 10-bit A/D,
JTAG interface for on-chip-debug. 4 x 25 Segment LCD driver.
Up to 16 MIPS throughput at 16 MHz. 5V operation.
3V version: ATmega169L
1.8V version: ATmega169V

TINYAVR
ATtiny11
1-Kbyte In-System programmable Flash Program Memory,
32 byte SRAM. Up to 6 MIPS throughput at 6 MHz.

ATtiny12
1-Kbyte In-System programmable Flash Program Memory,
32 Byte SRAM, 64 Byte EEPROM. Up to 12 MIPS throughput
at 12 MHz.

ATtiny15L
1-Kbyte In-System programmable Flash Program Memory,
64 Byte EEPROM, 32 Byte Register File, 4 channel 10-bit A/D.
Up to 1.6 MIPS throughput at 1.6MHz. 3V operation.

ATtiny26
2-Kbyte In-System programmable Flash Program Memory,
128 Byte SRAM and EEPROM, 11 channel 10-bit A/D. Universal
Serial Interface. High Frequency PWM. Up to 16 MIPS throughput
at 16 MHz. 5V operation.
3V version: ATtiny26L

A T M E L A P P L I C A T I O N S J O U R N A L

Atmel AVR, MEGAAVR, LCD AVR, TINYAVR, USB AVR,
SECURE AVR, DVD AVR, RF AVR and FPGA AVR Devices

www.atmel.com
page 36

ATtiny28L
2-Kbyte In-System programmable flash Program Memory,
128 Byte SRAM, 32 Byte Register File, Keyboard interrupt.
Up to 4 MIPS throughput at 4 MHz. 3V operation.
1.8V version: ATtiny28V

USB AVR
AT43USB320A
512 Byte SRAM, Full Speed USB, 3 Function Endpoints, 4 Hub
Ports. Up to 12 MIPS throughput at 12 MHz. 5V operation.

AT43USB325E/M
16-Kbyte EEPROM or Mask ROM, 512 Byte SRAM, Full Speed
USB, 4 Function Endpoints, 4 Hub Ports, 5 LED Driver.
Up to 12 MIPS throughput at 12 MHz. 5V operation.

AT43USB325
16-Kbyte Mask ROM, 512 Byte SRAM, Full Speed USB,
3 Function Endpoints, 2 Hub Ports, 4 LED Driver.
Up to 12 MIPS throughput at 12 MHz. 5V operation.

AT43USB351M
24-Kbyte Mask ROM, 1-Kbyte SRAM, Low-Full Speed USB,
5 Function Endpoints. Up to 24 MIPS throughput at 24 MHz.
5V operation.

AT43USB353M
24-Kbyte Mask ROM, 1-Kbyte SRAM, Full Speed USB, 4 Function
Endpoints, 2 Hub Ports. Up to 24 MIPS throughput at 24 MHz.
5V operation.

AT43USB355E/M
24-Kbyte EEPROM or Mask ROM, 1-Kbyte SRAM, Full Speed
USB, 4 Function Endpoints, 2 Hub Ports. Up to 12 MIPS through-
put at 12 MHz. 5V operation.

AT76C711
Full Speed USB to Fast Serial Asynchronous Bridge.

Secure AVR
AT90SC19236R
192-Kbyte Mask ROM, 36-Kbyte EEPROM, 4-Kbyte RAM.
3-5V operation.

AT90SC19264RC
192-Kbyte Mask ROM, 64-Kbyte EEPROM, 6-Kbyte RAM,
Crypto Engine. 3-5V operation.

AT90SC25672R
256-Kbyte Mask ROM, 72-Kbyte EEPROM, 6-Kbyte RAM.
3-5V operation.

AT90SC320856
32-Kbyte Mask ROM, 8-Kbyte Flash, 56-Kbyte EEPROM,
1.5-Kbyte RAM. 3-5V operation.

AT90SC3232CS
32-Kbyte Flash, 32-Kbyte EEPROM, 3-Kbyte RAM, Crypto Engine.
3-5V operation.

AT90SC4816R/RS
48-Kbyte Mask ROM, 16-Kbyte EEPROM, 1.5-Kbyte RAM.
3-5V operation.

AT90SC6404R
64-Kbyte Mask ROM, 4-Kbyte EEPROM, 2-Kbyte RAM.
3-5V operation.

AT90SC6432R
64-Kbyte Mask ROM, 32-Kbyte EEPROM, 2-Kbyte RAM.
3-5V operation.

AT90SC6464C
64-Kbyte Flash, 64-Kbyte EEPROM, 3-Kbyte RAM, Crypto Engine.
3-5V operation.
USB version: AT90SC6464C-USB

A T M E L A P P L I C A T I O N S J O U R N A L

The Best User’s Forum for AVR Freaks!

www.avrfreaks.com

Atmel AVR, MEGAAVR, LCD AVR, TINYAVR, USB AVR,
SECURE AVR, DVD AVR, RF AVR and FPGA AVR Devices

www.atmel.com
page 37

AT90SC9608RC
96-Kbyte Mask ROM, 8-Kbyte EEPROM, 3-Kbyte RAM,
Crypto Engine. 3-5V operation.

AT90SC9616RC
96-Kbyte Mask ROM, 16-Kbyte EEPROM, 3-Kbyte RAM,
Crypto Engine. 3-5V operation.

AT90SC9636R
96-Kbyte Mask ROM, 36-Kbyte EEPROM, 3-Kbyte RAM.
3-5V operation.

AT97SC3201
Trusted Computing Platform Compliant Security Processor,
On-Chip Secure Key Storage, 33 MHz LPC Interface.
3.3V operation

DVD AVR
AT78C1501
DVD/CD Interface Controller, ATAPI Compatible, Ultra DMA
Support at 66 MB/sec.

AT78C1502
DVD Servo Controller, On-Chip Debugger Monitor. Up to 120 MIPS
throughput at 40 MHz. 3V and 5V operation.

RF AVR
AT86RF401
11-19 MHz, 2-Kbyte In-System programmable Flash Program
Memory, 128 Byte SRAM and EEPROM. 2V operation.

FPGA AVR
AT94K05AL
4-16 Kbyte In-System programmable Flash Program Memory,
4-16 Kbyte SRAM, JTAG interface for on-chip-debug, 5K FPGA
Gates. 3V operation.

AT94K10AL
20-32 Kbyte In-System programmable Flash Program Memory,
4-16 Kbyte SRAM, JTAG interface for on-chip-debug, 10K FPGA
Gates. 3V operation.

AT94K40AL
20-32 Kbyte In-System programmable Flash Program Memory,
4-16 Kbyte SRAM, JTAG interface for on-chip-debug, 40K FPGA
Gates. 3V operation.

AT94S05AL
4-16 Kbyte In-System programmable Flash Program Memory,
4-16 Kbyte SRAM, 256 Byte EEPROM, JTAG interface for
on-chip-debug, 5K FPGA Gates. 3V operation.

AT94S10AL
20-32 Kbyte In-System programmable Flash Program Memory,
4-16 Kbyte SRAM, 512 Byte EEPROM, JTAG interface for
on-chip-debug, 10K FPGA Gates. 3V operation.

AT94S40AL
20-32 Kbyte In-System programmable Flash Program Memory,
4-16 Kbyte SRAM, 1-Kbyte EEPROM, JTAG interface for
on-chip-debug, 40K FPGA Gates. 3V operation.

❑

AVR Development Tools

AVR Studio 4.0
AVR Studio 4 is the Integrated Development Environment (IDE) for
writing and debugging AVR applications in Windows 9x/NT/2000
environments. AVR Studio 4 includes an assembler and a simulator.
The Studio supports the following tools: ICE50, ICE40, JTAGICE,
ICE200, STK500/501/502 and AVRISP.

STK500
The STK500 is a starter kit and development system for Atmel’s
tinyAVR, megaAVR and LCD AVR devices. It gives designers a quick
start to develop code on the AVR combined with features for using
the starter kit to develop prototypes and test new designs. The
STK500 interfaces with AVR Studio for code writing and debugging.

JTAGICE
The JTAGICE is an In-Circuit Emulator for Atmel’s megaAVR and LCD
AVR devices with 16K or more program memory. The JTAGICE com-
municates to the On-Chip debug module on the AVR which provides
the most accurate emulation possible. The Emulator assists devel-
opers in identifying software bugs significantly reducing the devel-
opment time. The JTAGICE interfaces with AVR Studio for code
development and debugging.

A T M E L A P P L I C A T I O N S J O U R N A L

JTAGICE

STK94
The STK94 is a low-cost development kit for the designer who wish-
es to begin working with the FPGA AVR devices. A comprehensive
tutorial takes designers through the complete FPGA AVR develop-
ment process. The starter kit, which runs on PC Windows-based plat-
forms, has everything needed to get started, including all software,
boards, parts, cable, and documentation. ❑

ICE50
The AVR ICE50 is a top-of the-line development tool for in-circuit
emulation of most megaAVR and LCD AVR, and tinyAVR devices.
The ICE50 and the AVR Studio 4 user interface give the user com-
plete control of the internal resources of the microcontroller, help-
ing to reduce development time by making debugging easier.

43DK355
The 43DK355 development kit has everything you need to devel-
op your full-featured USB application using AT43USB355. It comes
complete as a working hub with a programmable embedded USB
function and up to four USB downstream ports. USB source code
for an embedded function and a USB library for the HUB are pro-
vided, thus relieving the user from the tedious task of developing
such code on their own.

www.atmel.com
page 38

AVR Development Tools

86RF401E/U-EK1
The RF AVR evaluation kit was developed to familiarize the user
with the features of the AT86RF401 MicroTransmitter and to pro-
vide all the tools needed to develop an application based on this
device. Sample code is provided in the evaluation kit to speed
development of this device, and allows the user to evaluate RF
parameters without having to write software.

ATV1-90SC
The ATV1 provides a flexible emulation platform to support current
and future Secure AVR devices. For maximum flexibility, the system
has been designed to be upgraded easily. Switching to support
other devices within a given core family is done simply by running
a software utility that guides the user through the device update
process - there is no need to change PCBs or jumper settings.

A T M E L A P P L I C A T I O N S J O U R N A L

Next Issue:
Third-Party AVR Emulators,
Programmers, Consultants,
and More!

ICE50

43DK355

86RF401E/U-EK1

ATV1-90SC

STK94

www.atmel.com
page 39

10 bytes of 0x0AA (b10101010). This allows the receiving radio
to synchronize with the incoming signal and stopped the first few
bytes in the radio packet sometimes being lost. Another problem
was noise on the output of the radio. Random radio output, for
example, from the local taxi firm, could under some circumstances
look like the start of a radio packet. This caused the radio receiv-
ing software function to get confused; it would see the start of a
packet, shove the received data into a buffer, and then expect the
remainder of the packet to arrive, which of course it never did.
When a valid radio packet arrived the buffer was already half full
of junk so the software went haywire. Although it was not so easy

to track down this problem, it was fairly easy to fix. Since we know how long
our maximum packet length is, and from the baud rate we could calculate how
long the maximum packet should take to arrive from start to finish. By adding
a simple timer that was started when the radio preamble and sync bytes were
detected, we could delete the erroneous data from the buffer if the data did
not arrive within the allotted time period.

Other functionality was added to the user diagnostic interface that
allowed testing of various radio functions, which made develop-
ment easier and has proven to be very helpful in fieldwork.

Sometimes Extensions Are Useful
So now we had our user terminal driven configuration interface,
which was starting to have quite large, but well structured menu
pages. Initially the standard C function, printf, was used to output
the menu text. To preserve the semantics of the C language,
ICCAVR by default allocates quoted literal strings (e.g. “HIGHWAY
CLOSED”) in the RAM space. With the large amount of strings in
the menu system, the 4K bytes of RAM in the Mega128 were rap-
idly being used up. Fortunately, the Mega128 has a lot of flash
(128K bytes). ICCAVR allows literal strings to be placed in the flash

as an option. This means that some of the standard C functions will no longer
operate on literal strings. This is a side effect of the Atmel AVR using a Harvard
architecture: code and data are in separate address spaces (in flash and RAM
respectively). While this allows the CPU core to run faster, it makes some com-
mon C usage slightly less convenient. Again ICCAVR came to the rescue by pro-
viding variants of the standard C functions that are compatible with flash based
literal strings. For example, cprintf is used in place of the printf function. Again,
we see that it is important to have the right extensions to C without polluting
the source code unduly. Our radio communications were now operating quite
happily and reliably with our user interface, and so far we were still using the
STK500 and only 18% of the Mega128 memory.

Down the Home Stretch
Next was the expansion board that would interface between the characters and

main controller. This used the 8535, and again the ICCAVR
Applications Builder was used to generate all the code required for
setting up the peripherals.

A simple SPI bus interface was used for communication between
the controller and expansion boards with one slight change: the
drive from the expansion board to the controller needed to be tri-
state, as there would be more than one expansion board on the SPI
bus. This was simply achieved by the use of an open collector tran-
sistor and some simple buffer circuits at the controller end. Each
board needed to be addressable so a simple thumb-operated rotary
HEX switch was added which gave 16 address ranges. It was decid-
ed that 0 would never be a valid address, so a handy little test func-
tion was added where if the expansion board was powered up with

address 0 selected it entered a test mode and just cycled through A-Z and 0-9
without the need for a controller. This made basic testing of the expansion
boards and characters very simple. It was decided that the character bit pat-
terns required for the LEDs would be stored as bitmaps within the expansion
boards’ 8535 flash memory. This would allow for custom characters or differ-
ent languages to be stored, or even for creating a bigger image from a num-
ber of characters working together in panels. Unfortunately this meant the rel-
atively small 8 K bytes of flash in the 8535 was being pushed to the limit.
Again ICCAVR came to the rescue, with yet another feature that had not been
needed so far, the ICCAVR code compressor. This allowed around a 7-9% reduc-
tion in code space, which prevented the need for a bigger and more expensive
AVR device.

The initial development for the expansion board was all done on the STK500,
and indeed, if there had been two STK500s available, a lot more system
development could have been done. At this point it was decided to make some
prototype PCBs, starting with the controller card. The first board was built;
given some power (on a current limited PSU!!), and plugged into the ISP lead.
We pressed the ISP button on ICCAVR, and then just happily watched the pro-
gramming progress bar work its way across the screen, to the customers’
amusement. The PCBs work perfectly the first time! Perhaps the gremlins had
taken a vacation elsewhere.

Even 8-Bit Embedded Systems
Can Speak TCP/IP and HTML
The final and possibly the most complex part of the project was implementing
a TCP/IP interface serving up embedded HTML pages giving the status and
control of remote devices. The embedded web server is a separate box resid-
ing in the control room attached to the customer’s local network. Given its own
IP and MAC address, it receives data over a TCP interface converts the data into
the radio packet and sends the relevant packet data over the radio network to
the receiving node. The HTML interface allows anyone with correct passwords
to view the status of remote outstations, and reconfigure certain parameters.

The TCP interface was implemented using a Mega128 with an external 32K
RAM chip and a RTL8019AS Ethernet driver. The TCP stack is a trimmed down
implementation, but supports ARP, ICMP, UDP and TCP communications. It also
has a dynamic HTML interface on the application layer. The dynamic aspect of
the interface is that each web page is generated on the fly when requested,
rather than being a static page retrieved from the Flash of some external EEP-
ROM. This allows for up-to-date system information to be displayed, such as
temperature, radio / GSM signal strength, number of radio / GSM packets
processed, TCP status for received, sent and lost / corrupt packets, etc.

Even though a limited TCP stack was implemented, it was still possible to
achieve, the TCP sliding window, detection of lost packets, and automatic
retries, with adaptive timeouts to cater for different roundtrip delays across dif-
ferent faster or slower networks. The HTML pages as generated by the AVR sup-
port buttons, tick boxes and radio buttons, and text fields where user infor-
mation can be entered. It also supports GIF, animated GIF and JPEG images,
and colour bar graphs. The complete TCP interface with a large quantity of
HTML web pages including graphics still only takes less than 45% of the
Mega128 memory.

Conclusion
All in all, from the start of nothing more than a rough drawing to equipment
being signed off and in use on the UK highways, the whole project was com-
pleted in 6 months. This would not have been possible without quality devel-
opment tools at reasonable prices like the STK500 / 501 and ImageCraft’s
ICCAVR C compiler with ImageCraft’s fantastic after-sales support. ❑

A T M E L A P P L I C A T I O N S J O U R N A L

Variable Message Sign Development with AVR and ImageCraft continued from page 19

www.atmel.com
page 40

A T M E L A P P L I C A T I O N S J O U R N A L

• I/O - I/O ports
• TMR - Timers, counters
• SPI - Serial peripheral interface
• USART - Universal synchronous/asynchronous serial communication
• TWI - Two-wire serial interface
• ACOMP - Analog comparator
• ADC - Analog to digital converter

General IAR MakeApp features:
• CAD-like drawing editor - As devices are configured, their pin usage is

displayed graphically.
• Project explorer – Gives a tree view of the current project.
• Component library – Contains the necessary information about the

components that can be configured.
• Property dialogues – Organized as a set of tabs with headings and

property lists.
• Code generation engine – Contains a powerful code generation technology.

It automatically calculates the special function register values, and
modifies/optimizes the generated source code according to the property
settings.

• Component browser - Gives extensive information on chip-internals, such as
SFR bits, port pins, interrupts, memory maps, etc.

• Data book browser – Lists all known hardware manuals in PDF format in the
databook catalog.

• Report generation and report viewer – The project report contains detailed
information on chip resources (such as SFRs, pins, and interrupts), as well
as the project settings (such as configuration, generated device driver
functions, and function dependencies).

• Low product price! ❑

6. If you want to view the files generated for USART, you can find the
USART module in the project explorer. Here you can open the
<ma_usart.c> or <ma_usart.h> files, and see the device driver source
code.

7. To generate source code and header files to disk, click the code
generation button in the toolbar.

8. Add the generated MakeApp files to your application project, and, with
out having to read or understand the special function register
implementation for the USART, you are now ready to use the USART in
your product. Let your application call the MA_InitCh0_USART() func-
tion. Once the USART is initialized, the MA_PutStringCh0_USART()
function will be ready to output your “Hello world” message.

Product development and product life cycle
IAR MakeApp can be used at all stages in a product, from the first idea, eval-
uation, and design, to the final test and maintenance of the product. It also
becomes easy to tune system parameters throughout the entire life cycle of
your key products. So not only do you get to market sooner, but, once there,
you can easily and cost-effectively refine and improve your product offering. It
is never too late to start using IAR MakeApp.

IAR MakeApp for Atmel megaAVR
The current product supports: ATmega128(L), ATmega64(L), ATmega32(L),
ATmega16(L), and ATmega8(L).

The property dialog boxes support the configuration of:
• CPU - Bus control and memory
• INTC - Interrupt controller
• WDT - Watchdog timer

AT86RF401 Reference Design continued from page 27

Device Drivers and the Special Function Register Hell continued from page 18

Figure A

Faster, smoother development for Atmel AVR

IAR Embedded Workbench® for Atmel AVR
The state-of-the-art integrated development environment
with a highly optimised IAR C/EC++ compiler and versatile
IAR C-SPY source and assembly level debugger

IAR visualSTATE® for Atmel AVR
The only state machine design tool for embedded systems
generating micro-tight C code

IAR MakeApp® for Atmel megaAVR
The device driver wizard generating initialisation code and
full driver functions

Visit us at www.iar.com
Don’t worry about your upgrade path!
IAR development tools also support
the Atmel ARM 32-bit processor

Smart enough to
choose the Atmel AVR?

Be smart enough to
speed your application to
market with IAR’s highly
competitive, easy-to-use

development tools,
fully supporting the AVR

microprocessor.

Make the
most of Atmel
 AVR power

with IAR
tools

From Idea to Target
LIT#3362A-CORP-VOL.1-20M

IAR-IQ#3-AD 6/30/03 4:17 PM Page 1

	Atmel Applications Journal
	Welcome
	Atmel Notes...
	Table of Contents
	An Inexpensive Altitude Deviation Alert
	Novice's Guide to AVR Development
	Basic Interrupts I/O
	Device Drivers and the Special Function Register Hell
	Variable Message Sign Development with AVR and ImageCraft
	GPS-GSM Mobile Navigator
	AT86RF401 Reference Design
	An RF-Controlled Irrigation System
	Designer's Corner
	Third Party Hardware and Software Tools Support
	AVR Devices
	AVR Development Tools

