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Vision

Vision - the most important and informative human sense
70% of the total information is obtained through vision
Recognition is an essential part of human perception
Recognition implies learning (re- cognition)
Learning-representation-recognition (three inseparable parts
of visual perception)

Visual recognition seems to be an easy task for humans.

— How does human brain learn and store visual information?
— How is the recognition performed?

Psychology, psychophysics, neuroscience

Computer vision

Human perception

Complexity of Recognition
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Complexity of Recognition
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Complexity of Recognition

A mosaic?
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Complexity of Recognition

Complexity of Recognition

Visual Learning and Recognition

Complexity of recognition
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Complexity of Recognition

ing and Recognition A

Complexity of recognition

One or two faces?
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Complexity of Recognition

A duck or a rabbit?

Clinton and Gore?
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Motivation
Appearance based learning and recognition
Subspace methods for visual object recognition

— Principal Components Analysis (PCA)

— Linear Discriminant Analysis (LDA)

— Canonical Correlation Analysis (CCA)

— Independent Component Analysis (ICA)

- — Non-negative Matrix Factorization (NMF )

. i — Kernel methods for non-linear subspaces

“ Principal Components Analysis (PCA)

d — Object recognition
— Robot localization

The name of the game

Principal Components Analysis (PCA) - Extensions
Robust recognition
— Robust PCA recognition
— Scale invariant recognition using PCA
— lllumination insensitive recognition
Representations
- Representations for panoramic images
— Incremental building of eigenspaces
— Multiple eigenspaces for efficient representation * complex objects/scenes
— Robust building of eigenspaces
Other subspace representations (LDA, CCA, ICA, NMF, Kernel)
Research issues

« varying pose (3D rotation, scale)
« cluttered background /foreground

« occlusions (noise)

« varying illumination




What objects are we looking at?
— Model search needed, image region search needed
Is this part of the image an instance of X?
— Given model, given image region
What is this part of the image?
— Model search needed, given image region
Are there any instances of X in the image?
— Given model, image region search needed

lllumination

Learning and recognition

3D
reconstruction

leagning

Am i

scene training input
images image

matching Iﬁl

Learning and R

Problems

Segmentation:

Pose/Shape:

ecognition

Interpretation trees
— Given
+ The list of feature descriptors from a given object model
+ The list of feature descriptors detected in the image
+ A list of (geometric) constraints that model features must satisfy

— Find a mapping between model features and image features such that
the constraints satisfied by the model features are satisfied by the
corresponding image features.
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Interpretation trees

Invariants
— Properties of geometric configurations which do not change under a

certain class of transformations (projective invariants)

Appearance-based recognition

Appearance-based approaches

Objects are represented by alarge number of views:
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pace Method

Appearance-based approaches

Attention in the appearance- based approaches

Encompass combined effects of:
« shape,
« reflectance properties,
« pose in the scene,

« illumination conditions.

Acquired through an automatic learning phase.

ce-based approaches

App
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Panoramic image
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Subspace Methods

« Images are representedas points in the high-dimensional vector space
« Set of images populate only a small fraction of the space
« Characterize subspace spanned by images

Image set
||| | |

Image Matching

Representation

—
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Normalized images

Methods for

Learning a

Best basis functions u?

Optimisation problem

Taking the k eigenvectors with the largest eigenvalues of

Subspace Methods

Properties of the representation:
« Optimal Reconstruction p PCA
« Optimal Separation b LDA
« Optimal Correlation p CCA
« Independent Factors b ICA

« Non-negative Factors b NMF

« Non-linear Extension b Kernel Methods

Eigenspace representation

Image set (normalised, zero -mean)
X=| % % .. L e s Lt

We are looking for orthonormal basis functions

= (T T 1T - i g S 1]
Individual image is a linear combination of basis functions

o= =3 g,
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Efficient eigenspace computation

n<<m
Compute the eigenvectors u';, i = 0,...,n-1, of the inner product
matrix
I- -
X P
(W] XX x; X S e I
| =]

The eigenvectors of XX can be obtained by using
XXTXv=l "XV
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Principal Component Analysis

g and Recagnition

Principal Component Analysis

Image presentation with PCA

Visual Learning and Recognition  Ales Leanardis

Principal Component Analysis

Visual Learning and

Image presentation with PCA

Visual Learning and Recognition  Ales Leonardis

Image representation with PCA

Us

Ales Leonardis
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Properties PCA PCA for visual recognition and pose estimation
“ It can be shown that the mean square error between x, and its Objects are represented as coordinates in an n-dimensional eigenspace.
An example:
3-D space with points representing individual objects or a manifold
representing parametric eigenspace (e.g., orientation, pose,

reconstruction using only m principle eigenvectors is given by

the expression :
4 | & |, = A |
alj-alj=al; illumination).
j=1 j=1 j=mtl
PCA minimizes reconstruction error il L e
| -
AT
PCA maximizes variance of projection % _-r |
FLY A, X .
‘.
. , ]
_ ‘\.__I.- = —_—
— My AL,

Finds a more “natural” coordinate system for the sample data

Parametric eigenspace Calculation of coefficients
To recover a; the image is projected onto the eigenspace
"61
g () =<xu; >=a xu; 1£i£k

L- o
_|l & - FE1 8 = o8 ﬁ> + o, &> +
' F18 - o 1> + o+

L
« Complete image x is required to calculate a;.

=0,
07

« Corresponds to Least-Squares Solution

PCA for visual recognition and pose estimation

Calculate coefficients
Search for the nearest point (individual or on the curve)

Point determines object and/or pose

dddddddsd
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View space and Shape space

W low space and Shape opce
>
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Principle of PCA

Rotate coordinate frame in order to:

* Maximize

variance of | »

projections. | . '\/
« Minimize i ™ »

reconstruction |

error.
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pace Method

Principal Component Analysis (PCA)

PCA is alinear transformation from a high-dimensional input
space to alowdimensional feature space, which

— maximizes variance of projected input vectors

— minimizes reconstruction error

— decorrelates input vectors.

PCA finds in a data-driven way a more “natural” coordinate
frame for representing given data.

Appe ce-based approaches

A variety of successful applications:

« Human face recognition e.g. [Beymer & Poggio, Turk & Pentland]
« Visual inspection e.g. [Yoshimura & Kanade]

« Visual positioning and tracking of robot manipulators, e.g. [Nayar &
Murase]

« Tracking e.g., [Black & Jepson]

« lllumination planning e.g., [Murase & Nayar]

« Image spotting e.g., [Murase & Nayar]

« Mobile robot localization e.g., [Jogan & Leonardis]

« Background modeling e.g., [Oliver, Rosario & Pentland]

space Methods

Learning and Recognition
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Temporal inspection Temporal inspection

Temporal inspection Temporal inspection
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Environment map

" environments are represented by a large number of views

" localisation = recognition

Image representation with PCA

an an
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pace Method earning and Recognition

Compression with PCA

ocalisation

Distance vs. similarity Robot localisation

Interpolated hyper-surface represents the memorized
environment.

The parameters to be retrieved are related to position and
orientation.

Parameter s of an input imageare obtained by scalar product.

jtion  Ales Leonardis
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Localisation

ing and R

gnition

Enhancing recogniti

d representations

Occlusions, varying background, outliers
— Robust recognition using PCA

Scale variance
— Multiresolution coefficient estimation
— Scale invariant recognition using PCA

lllumination variations

— lllumination insensitive recognition

Rotated panoramic images

— Spinning eigenimages

Incremental building of eigenspaces

Multiple eigenspaces for efficient representations
Robust building of eigenspaces

Learning

Calculation of coefficients

To recover g; the image is projected onto the eigenspace

1
400 =<xu>=Axy,  1EiEk

ﬂﬂ> Q1<m ﬁ:; + %éﬁ m> .=,
ﬁ!ﬂ> qfﬁ m> + %Eﬂ m> t.. =0,

» Complete image x is required to calculate q;.

« Corresponds to Least-Squares Solution

Learning and R

Principal Components Analysis (PCA) — Extensions
Robust recognition

— Robust PCA recognition

— Scale invariant recognition using PCA

— lllumination insensitive recognition

Representations

- Representations for panoramic images

— Incremental building of eigenspaces

— Multiple eigenspaces for efficient representation

— Robust building of eigenspaces
Other subspace representations (LDA, CCA, ICA, NMF, Kernel)
Research issues

Occlusions

earning and Recognition

Non-robustness

F A cauged by
= ooclusions ]
= clutbered backpromnd

Criginal Uhceluded Heconsriction
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Robust method
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Robust localisation under occlusions

Mean error of localisation

Mean error of localisation with respect to % of occlusion

Standard multiresolution coefficient estimation

Eigenimagesin layer are computed from a set of
templatesin that layer

Computationally costly and requires additional storage space

o—-H W

pace Method

Robust localisation at 60% occlusion
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Robust approach

Multiresolution coefficient estimation

Multiresolution
— awell-known technique to reduce computational complexity
— asearch for the solution at the coarsest level and then a refinement through
finer scales
Standard eigenspace method be applied in an ordinary mul-
tiresolution way — it relies on the orthogonality of eigenimages

38 R
R

Robust multiresolution coefficient estimation

Robust method requiresonly a set of eigenimagesobtained on

thefinest resolution.

Linear system of equations: require orthogonality.

Ales Leonardis
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Multiresolution coefficient estimation

Linear System of Egustbss:
T e

Cunvaolalien:
Sub-sampling;

Copvaolubien & Sub-sampling:

[ wZ)ir;) Z-u'."u r

@ convalved and sub-sa

Bamc el

lllumination insensitive recognition

« Recognition of objects under
varying illumination
¢ global illumination changes

< Dramatic effects of illumination on
objects appearance
« Training set under a single

ambient illumination

earning and Recognition

Multiresolution approach

Estimate scale & coefficients smultaneously in the pyramid
Efficient search structure

Experimental results

L
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dis

lllumination insensitive recognition

Our Approach

Global eigenspace representation
Local gradient based filters

Efficient combination of global and local representations

Robust coefficient recovery in eigenspaces

Learing and Recognition  Ales Leonardis
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Eigenspaces and filtering

L]

P&

|'\‘..I|_| Lrl

Gradient-based filters

Global illumination

Gradient-based filters

Steerable filters [ Simoncelli]
REEEEE
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Experimental results

Testimages Our approach Standard method

I Learning and

Filtered eigenspaces

Robust coefficient recovery

Robust coefficient recovery

Robust solution of linear equations

Hypothesize
&
Select

al Learing and Recognition

Experimental results

Robust filtered method - all eigenvectors used

obj. 1 2 3 4 5 %] ang.|
1 360 0 0 0 0| 100.0f 5.25]
2 0 308 16 0 0| 95.1| 10.55]
3 0 0 504 0 0| 100.0f 1.05f
4 19 4 3 332 2| 92.2| 3.37
5 15 2 17 0 578| 94.4| 3.34
avg. 96.4] 4.19

Standard method - all eigenvectors used

obj. 1 2 3 4 5 %]| ang.
1 141 0 14 26 179| 39.2| 10.50
2 0 254 62 5 3| 78.4| 18.90
3 0 4 317 0 183| 62.9| 3.47
4 23 6 38 249 44| 69.2( 7.11
5 3 1 51 0 557] 91.0] 6.82
[ava. 703[ 853

Ales Leonardis
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Experimental results

Training set: straight path, uniform illumination

ing and Recagnition

Experimental results

Test sets T/1/2/3
without occlusion

Filtered eigenvectors

Test sets 4/5/6/7
with occlusion

Experimental results Experimental results

Comparison with standard method " Comparison with standard method

Tl ser 2 Test st fi Test sct 3 Test 2ot 7
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Experimental results

Average localisation error (in cm).

el [ : 3] 4 5 @ 7]
Standard T 487 T3E[25 135 3578 18O
Nurm 1.5 33 650 |08 33 150 653
Filtere:d 0 1.3 40 )05 1 23 140

Multiple Eigenspaces - Motivation

A single eigenspace
— high dimensionality
— low-dimensional structure of data is ignored

— poor generalisation
Ad-hoc partitioning of the image set is not efficient

ds for Visual Learing a

Eigenspace growing and selection

A redundant set of eigenspaces by eigenspace-growing
— Balancing the number of images encompassed by an eigenspace
— The dimension of the eigenspace
— lts corresponding residual error
Eigenspace selection (MDL)
Iterative combination of
— Eigenspace growing
— Eigenspace selection

ual Learning and

Building eigenspace representatio

Rotated panoramic images

— Spinning eigenimages

Multiple eigenspaces

Incremental building of eigenspaces
Robust building of eigenspaces

Multiple eigenspaces — our goal

Systematically construct multiple low -dimensional eigenspaces from
a set of training images

X ={x, . .. .xpfx; € RY}

Each image is described as a linear combination

Design a numerically feasible and robust procedure

ial Learning and Recognition  Ales Leonardis

Eigenspace growing and selection

T + Initinl Mumbaer of Ligerapace
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EIGEMSFACE
SELELCTHIN
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Eigenspace initialization
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— wigenimages of the i-th gigenspace

= W&| . .. mumber of imiges in the i<h sigenspaoe

— coefficients af the images in the i-th cigenspace.
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Eigenspace growing and selection

Recognition

Eigenimages of individual eigenspaces

"Box" images in four eigenspaces

al Learning and Recognition  Ale

Multiple eigenspaces

Exgens D | & ool o | & v | D | of ims | Mesdioeim
Single 15 | 11 Iz T il TLNENT
il £ TUHEE
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] 17| G
1 11 CLIMER
% I TLIWEHT
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A LR |

Learing and Recognition

Mean images of individual eigenspaces

isual Learning and Recognition  Ales Leonardis

"Block" images in five eigenspaces

isual Learning and Recognition  Ales Leonardis
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Interpolated eigenspace

ing and Recognition A

Multiple eigenspaces

Incremental computation of PCA

S =
W T
@ .

al Learning and Recognition  Ales Leonardis

Interpolated eigenspace

Batch computation of PCA

Batch method for PCA

All input images are processed simultaneously.

we=Yx

X=X-pl

C L a
SO — U, A .
ATUTH

Learing and Recognition  Ales Leonardis
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Batch method — pros and cons

all training images processed simultaneously
+ simple
+ optimal (in the sense of MSRE)
+ easy to choose subsp ace dimension
—all training images have to be given in advance

— computationally unfeasible for large sets of training images
— model built once forever

Localization with incremental method

“I $odOb 9D bp Orwp ol
+ 113 T 8
b e |
i 3 Fowda
<
E ¢
5 ,& &
> "o ] 4
T s4'rogrd § o
1 2 ¥
Cation o7 & waning mage | P
osfF caion of a testimage
© a5 5 55 5 es 7 75 5 85

x coordinate [m]

Weighted influence

Input images are treated selectively.

* Pixels within an image are treated selectively.

temporal weights "w

earning and Recognition

spatial weights “w

“ LR B ]
'EEEEE

2w Fda o

a DR

=] g io?g?q

a =@ @aa

a 3w aa a
@ L L AR

a '‘EEEER

Incremental approach

Input images are being processed sequentialy.

Incremental method - Conclusions

Incremental method does not significantly degrade the results
of the batch method.

If the training images are discarded after the update, the
results are degraded, but still good.

Better results are achieved, if heterogenuous images are
present in the beggining of the training sequence.

Discarding criterion can significantly influence the results.

Weighted PCA

Weighted influence of pixels
O Minimizing weighted squared reconstruction error:

WoON ! [ s
E=p 0 my % iy |
@ L LY .‘I
T L
e Weighted mean: _x — =l M

space Methods Learning and Recognition
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Temporal weights

Row vector "w:ontains weights for all images.
All the pixels in an image are equally treated

O W = Lara'w
Weighted squared reconstruction error:

Tt b
Weighted mean:

P . .. vy

O Maximize weighted variance of projections.
O SVD of weighted covariance matrix.

EM algorithm for PCA

Minimizing squared reconstruction error.
MWoON [ y #
gy [, N iy |
* EM algorithm for estimating principal subspace:

\---,,-n_,l i 1...0f

E-step: ¥i: @y

M-step: Wi: =% ey - =1, M

Simple example — temporal weights

* Temporal weights %, = .

varr

ATt weTgttett

WSRE .78 0.97

earning and Recognition

Algorithm for TWPCA

Input: data matrix * temporal weights "w .

Output: mean value p, eigenvectors LI, eigenvalues 4, .
Estimate the weighted mean vector: i = g=— 1, i
Scale the inputa data centered around the weighted mean:

if M < N then L .
Estimate the weighted covariance matrix: £ = — MR

% wl, i=1 §

else

Estimate weighted inner product matrix: £ = " | L

Perform SVD on ¥'. Obtain eigenvectors L' and -eigenvaluesl X
Determine eigenvectors [] u _"': 1 i=1
10. Determine eigenvalues A& — A'. V= b

1
2
3
4
5. Perform SVD on 1. Obtain eigenvectors L' and eigenvalues A .
6
7
8.
9

11. endif

Introducing general weights

* Minimizing weighted squared reconstruction error.
WoN ! k W
T ETE T
=1 1=t \ ot !

* EM algorithm for estimating principal subspace:

E-step: v

M-Step: ®i: oE iy = B0 Mg 3= 1. N

Ve VL

e Weighted mean: ¢

Introducing temporal weights in IPCA

i Y
A
n | 2@
WA A W (TRl |
@
1 i 1K ]
a
i U (A —
f T temporal weights fw
i T [Tl
A ] x

space Methods Learning and Recognition
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Simple example — temporal weights

* Temporal weights &, = ;.

non-weighted

weighted

ing and Recognition

Experimental results - WPCA

10 2 0 a0 0 7
tandard eighted
\WSRE 660 605.

Visual Learning and Recognition  Ales Leonardis

Experimental results - WIPCA

1000 «

batch TCA e, Whatch WincA Winc.

WSRE 617 658 648 554 583 565

Experimental results - WPCA
training

Hbliddsss
B perrEe
= B e
- =111

Learing and Recognition

weights

Experimental results - WIPCA

e Training images: 720 images of 20 objects
from COIL20 database.

* Temporal weights proportional to the second
power of the image index.

e Comparing weighted squared reconstruction
error.

isual Learning and Recognition  Ales Leonardis

Experimental results — mobile robot

Navigation of a mobile robot

e Problem: self-occlusions

; .

isual Learning and Recognition  Ales Leonardis
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Experimental results — mobile robot Robust learning method for PCA

Spinning images " If the training images are occluded...

AR . R
i g o FE
E!“ ... the occlusions are incorporated in the

e representation:
non-weighted

e PSR
| 1 ORobust learning algorithm: detect outliers and

build the representation from inliers only
weighted (set weights of outliers to 0).

earning and Recognition  Ales Leonardis. sual Leaming

Simple example — RIPCA Experimental results - RIPCA

Simple 2D example

e ORL face database: 40 persons, 10 images
per person.

. [ . . . e 40 non-occluded training images

non robust robust

Experimental results - RIPCA Experimental results - RIPCA

Robust background modeling
— model illumination variation
— discard outliers

training n = = MSRE to
images [ | [ i ground thruth
non-robust HHH — E 3 915
~ b 1 i]
robust qnml ’i oo ; I 710
el training reconstructed
optima 594 images images




Experimental results — synthetic data

ground truth added outliers

standard
PCA 2PC

standard robust
PCA 8PC PCA 8PC

Robust Subspace Learning

Subspace learning from data containing outliers:
- Detect outliers
— Learn using only inliers.

ds for Visual Learing a

Research issues

Comparative studies (e.g., LDA versus PCA, PCA versus ICA)
Robust learning of other representations (e.g. LDA, CCA)
Integration of robust learning with modular eigenspaces

Local versus Global subspace represenations

Combination of subspace representations in a hierarchical
framework

ual Learning and

Experimental results - RIPCA

Robust background modeling

training im. batchOnGT batchStd batchRob

incKknownOL incPoorSeed  incNonDispSeed  incGoodSeed

Experimental results — real data

input standard PCA

robust PCA outliers

ial Learning and Recognition  Ales Leonardis

Further readings

Robust recognition using eigenimages (CVIU 2000, Special Issue on
Robust Methods in CV)

Illlumination insensitive eigenspaces (ICCV 2001)

Mobile robot localization under varying illumination (ICPR 2002)
Eigenspace of spinning images (OMNI 2000, ICPR 2000, ICAR 2001)
Incremental building of eigenspaces (ICRA 2002, ICPR 2002)
Multiple eigenspaces (Pattern Recognition, 2002)

Robust building of eigenspaces (ECCV 2002)

PhD Thesis, Danijel Skocaj (February, 2003)
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