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Vision

♦ Vision - the most important and informative human sense
♦ 70% of the total information is obtained through vision
♦ Recognition is an essential part of human perception

♦ Recognition implies learning (re- cognition)
♦ Learning-representation-recognition (three inseparable parts 

of visual perception)
♦ Visual recognition seems to be an easy task for humans.

– How does human brain learn and store visual information?
– How is the recognition performed?

♦ Psychology, psychophysics, neuroscience

♦ Computer vision
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Human perception
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Human perception
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Humanoid robot
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Complexity of Recognition
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Complexity of Recognition
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Complexity of Recognition
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Complexity of Recognition
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Complexity of Recognition
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A mosaic?
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Complexity of recognition
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Complexity of Recognition
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Complexity of Recognition
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Complexity of recognition
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A duck or a rabbit?
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One or two faces?
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Clinton and Gore?
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Complexity of Recognition

20Subspace Methods for  Visual Learning and Recognition                               Ales Leonardis                    

Face recognition
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Mobile Robot
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Outline

♦ Motivation
♦ Appearance based learning and recognition
♦ Subspace methods for visual object recognition

– Principal Components Analysis (PCA)
– Linear Discriminant Analysis (LDA)
– Canonical Correlation Analysis (CCA)
– Independent Component Analysis (ICA)
– Non-negative Matrix Factorization (NMF )
– Kernel methods for non-linear subspaces

♦ Principal Components Analysis (PCA)
– Object recognition
– Robot localization
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Outline

♦ Principal Components Analysis (PCA ) – Extensions

♦ Robust recognition
– Robust PCA recognition
– Scale invariant recognition using PCA

– Illumination insensitive recognition

♦ Representations
– Representations for panoramic images
– Incremental building of eigenspaces
– Multiple eigenspaces for efficient representation
– Robust building of eigenspaces

♦ Other subspace representations (LDA, CCA, ICA, NMF, Kernel)

♦ Research issues
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The name of the game

• complex objects/scenes

• varying pose (3D rotation, scale)

• cluttered background/foreground

• occlusions (noise)

• varying illumination
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Recognition

♦ What objects are we looking at?
– Model search needed, image region search needed

♦ Is this part of the image an instance of X?
– Given model, given image region

♦ What is this part of the image?
– Model search needed, given image region

♦ Are there any instances of X in the image?
– Given model, image region search needed
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Problems

Segmentation:

Pose/Shape:
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Illumination 
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Example 
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Learning and recognition

scene training
images

input 
image

3D 
reconstruction

learning

matching

matching
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Recognition

♦ Interpretation trees
– Given 

• The list of feature descriptors from a given object model
• The list of feature descriptors detected in the image
• A list of (geometric) constraints that model features must satisfy

– Find a mapping between model features and image features such that 
the constraints satisfied by the model features are satisfied by the 
corresponding image features.
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Recognition

♦ Interpretation trees
♦ Invariants

– Properties of geometric configurations which do not change under a 
certain class of transformations (projective invariants)

♦ Appearance-based recognition
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Appearance-based approaches

Attention in the appearance- based approaches

Encompass combined effects of:

• shape,

• reflectance properties,

• pose in the scene,

• illumination conditions.

Acquired through an automatic learning phase.
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Appearance-based approaches

Objects are represented by a large number of views:

34Subspace Methods for  Visual Learning and Recognition                               Ales Leonardis                    

Appearance-based approaches
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Localisation
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Panoramic image
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Subspace Methods

• Images are represented as points in the high-dimensional vector space
• Set of images populate only a small fraction of the space
• Characterize subspace spanned by images 

… …

…

Image set Basis images Representation

≈
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Subspace Methods

Properties of the representation:

• Optimal Reconstruction ⇒ PCA

• Optimal Separation ⇒ LDA

• Optimal Correlation ⇒ CCA

• Independent Factors ⇒ ICA

• Non-negative Factors ⇒ NMF

• Non-linear Extension ⇒ Kernel Methods
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Image Matching

Θ>=
||y||||x||

yxT

ρ

Normalized images Ψ<− 2|||| yx

⇒ Compress images
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Eigenspace representation

♦ Image set (normalised, zero - mean)

♦ We are looking for orthonormal basis functions:

♦ Individual image is a linear combination of basis functions
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Best basis functions υ?

♦ Optimisation problem

♦ Taking the k eigenvectors with the largest eigenvalues of

♦ PCA or Karhunen -Loéve Transform (KLT)
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Efficient eigenspace computation

♦ n << m
♦ Compute the eigenvectors u' i, i = 0,...,n-1, of the inner product 

matrix

♦ The eigenvectors of XXT can be obtained by using 
XXTXvi'=λ 'iXvi':
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Principal Component Analysis
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Principal Component Analysis

= + a1 + a2 + a3
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Principal Component Analysis

= q1⋅ + q2⋅ + q3⋅ + ...
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Image presentation with PCA
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Image presentation with PCA
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Image representation with PCA

u1

u2

u3
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Properties PCA

♦ It can be shown that the mean square error between xi and its 
reconstruction using only m principle eigenvectors is given by 
the expression :

♦ PCA minimizes reconstruction error

♦ PCA maximizes variance of projection

♦ Finds a more “natural” coordinate system for the sample data.
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PCA for visual recognition and pose estimation

Objects are represented as coordinates in an n-dimensional eigenspace.

An example:

3-D space with points representing individual objects or a manifold 
representing parametric eigenspace (e.g., orientation, pose, 
illumination).

u0 u2

u1
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Parametric eigenspace

52Subspace Methods for  Visual Learning and Recognition                               Ales Leonardis                    

Calculation of coefficients

To recover ai the image is projected onto the eigenspace

• Complete image x is required to calculate ai.

• Corresponds to Least-Squares Solution
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PCA for visual recognition and pose estimation

♦ Calculate coefficients
♦ Search for the nearest point (individual or on the curve)
♦ Point determines object and/or pose
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View space and Shape space
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Principal Component Analysis (PCA)

♦ PCA is a linear transformation from a high-dimensional input 
space to a low-dimensional feature space, which

– maximizes variance of projected input vectors
– minimizes reconstruction error
– decorrelates input vectors.

♦ PCA finds in a data-driven way a more “natural” coordinate 
frame for representing given data.
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Principle of PCA

Rotate Rotate coordinate framecoordinate frame in order to:in order to:

•• Maximize Maximize 
variance variance of of 
projectionsprojections..

•• Minimize Minimize 
reconstruction reconstruction 
errorerror..
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Appearance-based approaches

A variety of successful applications:

• Human face recognition e.g. [Beymer & Poggio, Turk & Pentland]

• Visual inspection e.g. [Yoshimura & Kanade]

• Visual positioning and tracking of robot manipulators, e.g. [Nayar & 
Murase] 

• Tracking e.g., [Black & Jepson]

• Illumination planning e.g., [Murase & Nayar]

• Image spotting e.g., [Murase & Nayar ]

• Mobile robot localization e.g., [Jogan & Leonardis]

• Background modeling e.g., [Oliver, Rosario & Pentland]
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Temporal inspection
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Temporal inspection

63Subspace Methods for  Visual Learning and Recognition                               Ales Leonardis                    

Temporal inspection
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Temporal inspection
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Mobile Robot
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Panoramic image
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Environment map

♦environments are represented by a large number of views

♦localisation = recognition
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Compression with PCA
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Image representation with PCA
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Localisation
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Distance vs. similarity
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Robot localisation

♦ Interpolated hyper-surface represents the memorized 
environment.

♦ The parameters to be retrieved are related to position and 
orientation.

♦ Parameters of an input imageare obtained by scalar product.
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Localisation
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Outline

♦ Principal Components Analysis (PCA ) – Extensions

♦ Robust recognition
– Robust PCA recognition
– Scale invariant recognition using PCA

– Illumination insensitive recognition

♦ Representations
– Representations for panoramic images
– Incremental building of eigenspaces
– Multiple eigenspaces for efficient representation
– Robust building of eigenspaces

♦ Other subspace representations (LDA, CCA, ICA, NMF, Kernel)

♦ Research issues
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Enhancing recognition and representations

♦ Occlusions, varying background, outliers 
– Robust recognition using PCA

♦ Scale variance
– Multiresolution coefficient estimation

– Scale invariant recognition using PCA

♦ Illumination variations
– Illumination insensitive recognition

♦ Rotated panoramic images
– Spinning eigenimages

♦ Incremental building of eigenspaces

♦ Multiple eigenspaces for efficient representations
♦ Robust building of eigenspaces
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Occlusions
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Calculation of coefficients

To recover q i the image is projected onto the eigenspace

• Complete image x is required to calculate q i.

• Corresponds to Least-Squares Solution
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Non-robustness
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Robust method
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Robust algorithm
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Selection
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Robust recovery of coefficients
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Robustness – Experimental results
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Recognition and pose estimation
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Robust localisation under occlusions
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Robust localisation at 60% occlusion

Standard approach Robust approach
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Mean error of localisation

♦ Mean error of localisation with respect to % of occlusion
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Multiresolution coefficient estimation

♦ Multiresolution 
– a well-known technique to reduce computational complexity
– a search for the solution at the coarsest level and then a refinement through 

finer scales

♦ Standard eigenspace method cannot be applied in an ordinary mul-
tiresolution way — it relies on the orthogonality of eigenimages.
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Standard multiresolution coefficient estimation

♦ Eigenimages in each resolution layer are computed from a set of
templates in that layer

♦ Computationally costly and requires additional storage space
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Robust multiresolution coefficient estimation

♦ Robust method requires only a single set of eigenimages obtained on 
the finest resolution.

♦ Linear system of equations: does not require orthogonality.



16

91Subspace Methods for  Visual Learning and Recognition                               Ales Leonardis                    

Multiresolution coefficient estimation
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Multiresolution approach

♦ Estimate scale & coefficients simultaneously in the pyramid
♦ Efficient search structure
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Experimental results – test image
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Experimental results
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Illumination insensitive recognition

• Recognition of objects  under 

varying illumination 

• global illumination changes

• highlights

• shadows

• Dramatic effects of illumination on 

objects appearance

• Training set under a single

ambient illumination
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Illumination insensitive recognition

Our Approach

• Global eigenspace representation

• Local gradient based filters

• Efficient combination of global and local representations

• Robust coefficient recovery in eigenspaces
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Eigenspaces and filtering
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Filtered eigenspaces
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Gradient-based filters

Global illuminationGlobal illumination

Gradient-based  filtersGradient-based  filters

Steerable filters [Simoncelli]
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Robustcoefficient recovery

Highlights and shadowsHighlights and shadows

Robust coefficient recoveryRobust coefficient recovery
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Experimental results

Test images Standard methodOur approach

à Demo
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Experimental results

obj. 1 2 3 4 5        % ang.
1 360 0 0 0 0 100.0 5.25
2 0 308 16 0 0 95.1 10.55
3 0 0 504 0 0 100.0 1.05
4 19 4 3 332 2 92.2 3.37
5 15 2 17 0 578 94.4 3.34
avg. 96.4 4.19

Robust filtered method - all eigenvectors used

Standard method - all eigenvectors used
obj. 1 2 3 4 5        % ang.
1 141 0 14 26 179 39.2 10.50
2 0 254 62 5 3 78.4 18.90
3 0 4 317 0 183 62.9 3.47
4 23 6 38 249 44 69.2 7.11
5 3 1 51 0 557 91.0 6.82
avg. 70.3 8.53
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Illumination invariant localisation

♦ Illumination variations and occlusions
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Experimental results

♦ Training set: straight path, uniform illumination
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Filtered eigenvectors
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Experimental results

Test sets T/1/2/3

without occlusion

Test sets 4/5/6/7
with occlusion
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Experimental results

♦ Comparison with standard method
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Experimental results

♦ Comparison with standard method
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Experimental results

♦ Average localisation error (in cm).
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Building eigenspace representations

♦ Rotated panoramic images
– Spinning eigenimages

♦ Multiple eigenspaces

♦ Incremental building of eigenspaces
♦ Robust building of eigenspaces
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Multiple Eigenspaces - Motivation

♦ A single eigenspace
– high dimensionality
– low-dimensional structure of data is ignored

– poor generalisation

♦ Ad-hoc partitioning of the image set is not efficient
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Multiple eigenspaces – our goal

♦ Systematically construct multiple low -dimensional eigenspaces from 
a set of training images

♦ Each image is described as a linear combination

♦ Design a numerically feasible and robust procedure
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Eigenspace growing and selection

♦ A redundant set of eigenspaces by eigenspace-growing
– Balancing the number of images encompassed by an eigenspace
– The dimension of the eigenspace

– Its corresponding residual error

♦ Eigenspace selection (MDL)
♦ Iterative combination of

– Eigenspace growing
– Eigenspace selection
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Eigenspace growing and selection
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Eigenspace initialization
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Eigenspace growing
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Redundant set of eigenspaces

118Subspace Methods for  Visual Learning and Recognition                               Ales Leonardis                    

Eigenspace selection
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Eigenspace selection
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Multiple eigenspaces - experiments
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Eigenspace growing and selection
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Multiple eigenspaces
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Eigenimages of individual eigenspaces
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Mean images of individual eigenspaces
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"Box" images in four eigenspaces
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"Block" images in five eigenspaces
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Interpolated eigenspace
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Interpolated eigenspace
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Multiple eigenspaces
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Batch computation of PCA

¸

i i + 1

k l
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k + 1
k

Incremental computation of PCA

¸

i i + 1
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Batch method for PCA

♦ All input images are processed simultaneously.
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Batch method – pros and cons

♦ all training images processed simultaneously
+ simple
+ optimal (in the sense of MSRE)

+ easy to choose subspace dimension
– all training images have to be given in advance

– computationally unfeasible for large sets of training images
– model built once forever

134Subspace Methods for  Visual Learning and Recognition                               Ales Leonardis                    

Incremental approach

♦ Input images are being processed sequentialy.

135Subspace Methods for  Visual Learning and Recognition                               Ales Leonardis                    

Localization with incremental method
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Incremental method - Conclusions

♦ Incremental method does not significantly degrade the results 
of the batch method.

♦ If the training images are discarded after the update, the 
results are degraded, but still good.

♦ Better results are achieved, if heterogenuous images are 
present in the beggining of the training sequence.

♦ Discarding criterion can significantly influence the results.
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Weighted influence

♦ Input images are treated selectively.

•• Pixels within an image are treated selectively.Pixels within an image are treated selectively.

temporal weightstemporal weights spatial weightsspatial weights
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Weighted PCA

♦ Weighted influence of pixels

Þ Minimizing weighted squared reconstruction error:

•• Weighted mean:Weighted mean:
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Temporal weights

♦ Row vector     contains weights for all images. 
♦ All the pixels in an image are equally treated
Þ

♦ Weighted squared reconstruction error:

♦ Weighted mean:

Þ Maximize weighted variance of projections.
Þ SVD of weighted covariance matrix.
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Algorithm for TWPCA

InputInput: data matrix    , temporal weights     .: data matrix    , temporal weights     .
OutputOutput: mean value    , eigenvectors    , eigenvalues    .: mean value    , eigenvectors    , eigenvalues    .
1.1. Estimate the weighted mean vector:                        .Estimate the weighted mean vector:                        .
2.2. Scale the inputa data centered around the weighted mean:Scale the inputa data centered around the weighted mean:

3.3. ifif MM << NN thenthen
4.4. Estimate the weighted covariance matrix:                     Estimate the weighted covariance matrix:                     ..

5.5. Perform SVD on    . Obtain eigenvectors     and eigenvalues  Perform SVD on    . Obtain eigenvectors     and eigenvalues  ..
6.6. elseelse
7.7. Estimate weighted inner product matrix:                      Estimate weighted inner product matrix:                      . . 

8.8. Perform SVD on    . Obtain eigenvectors     and eigenvalues  Perform SVD on    . Obtain eigenvectors     and eigenvalues  ..
9.9. Determine eigenvectors    :                                  Determine eigenvectors    :                                  ..

10.10. Determine eigenvalues           .Determine eigenvalues           .
11.11. end ifend if
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EM algorithm for PCA

♦ Minimizing squared reconstruction error.

•• EM algorithm for estimating principal subspace:EM algorithm for estimating principal subspace:

EE--step:step:

MM--step:step:
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Introducing general weights

♦ Minimizing squared reconstruction error.

•• EM algorithm for estimating principal subspace:EM algorithm for estimating principal subspace:

EE--step:step:

MM--step:step:

•• Weighted mean:Weighted mean:

•• Minimizing Minimizing weightedweighted squared reconstruction error.squared reconstruction error.
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Simple example – temporal weights

•• Temporal weights           .Temporal weights           .

0.971.78WSRE

weightedstandard
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Introducing temporal weights in IPCA

temporal weightstemporal weights
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Simple example – temporal weights

nonnon--weightedweighted weightedweighted

•• Temporal weights           .Temporal weights           .
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Experimental results - WPCA

training training 
imagesimages

nonnon--
weightedweighted

PCAPCA

weightedweighted
PCAPCA

weightsweights
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Experimental results - WPCA
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Experimental results - WIPCA

•• Training images: 720 images of 20 objects Training images: 720 images of 20 objects 
from COIL20 database.from COIL20 database.

•• Temporal weights proportional to the second Temporal weights proportional to the second 
power of the image index.power of the image index.

•• Comparing weighted squared reconstruction Comparing weighted squared reconstruction 
error.error.
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Experimental results - WIPCA
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Experimental results – mobile robot

♦ Navigation of a mobile robot

•• Problem: selfProblem: self--occlusionsocclusions
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Experimental results – mobile robot

♦ Spinning images

•• WeightsWeights
nonnon--weightedweighted

weightedweighted
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Robust learning method for PCA

♦ If the training images are occluded…

… the occlusions are incorporated in the  … the occlusions are incorporated in the  
representation:representation:

ÞÞRobust learning algorithm: detect outliers and  Robust learning algorithm: detect outliers and  
build the representation from inliers only         build the representation from inliers only         
(set weights of outliers to 0).(set weights of outliers to 0).
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Simple example – RIPCA

♦ Simple 2D example

non robustnon robust robustrobust
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Experimental results Experimental results -- RIPCARIPCA

•• 40 non40 non--occluded training imagesoccluded training images

•• 360 occluded training images360 occluded training images

. . .. . .

•• ORL face database: 40 persons, 10 images ORL face database: 40 persons, 10 images 
per person.per person.
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Experimental results Experimental results -- RIPCARIPCA

training training 
imagesimages

nonnon--robustrobust

robustrobust

optimaloptimal

MSRE to MSRE to 
ground thruthground thruth

915915

710710

594594
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Experimental results - RIPCA

♦ Robust background modeling
– model illumination variation
– discard outliers

training training 
imagesimages

reconstructed reconstructed 
imagesimages
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Experimental results – synthetic data

ground truth added outliers

standard 
PCA  2PC

standard 
PCA  8PC

robust 
PCA  8PC
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Experimental results - RIPCA

training im.training im. batchOnGTbatchOnGT batchStdbatchStd batchRobbatchRob

incKnownOLincKnownOL incPoorSeedincPoorSeed incNonDispSeedincNonDispSeed incGoodSeedincGoodSeed

♦ Robust background modeling
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Robust Subspace Learning

♦ Subspace learning from data containing outliers:
– Detect outliers
– Learn using only inliers.

[D. Skocaj, A. Leonardis, H. Bischof: A robust PCA 
algorithm for building representations from 
panoramic images, ECCV 2002]
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Experimental results – real data

input standard PCA

robust PCA outliers
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Research issues

♦ Comparative studies (e.g., LDA versus PCA, PCA versus ICA)
♦ Robust learning of other representations (e.g. LDA, CCA)
♦ Integration of robust learning with modular eigenspaces

♦ Local versus Global subspace represenations
♦ Combination of subspace representations in a hierarchical 

framework 
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Further readings 

♦ Recognizing objects by their appearance using eigenimages 
(SOFSEM 2000, LNCS 1963)

♦ Robust recognition using eigenimages (CVIU 2000, Special Issue on 
Robust Methods in CV)

♦ Illumination insensitive eigenspaces (ICCV 2001)

♦ Mobile robot localization under varying illumination (ICPR 2002)

♦ Eigenspace of spinning images (OMNI 2000, ICPR 2000, ICAR 2001)

♦ Incremental building of eigenspaces (ICRA 2002, ICPR 2002)

♦ Multiple eigenspaces (Pattern Recognition, 2002)

♦ Robust building of eigenspaces (ECCV 2002)

♦ PhD Thesis, Danijel Skocaj (February, 2003)


