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LECTURE PLAN

� Classifier performance as statistical
hypothesis testing.

� Criterion functions.
� Confusion matrix, characteristics.
� Receiver operation curve (ROC).

APPLICATION DOMAINS

� Classifiers (our main concern in this
lecture), 1940s – radars, 1970s – medical
diagnostics, 1990s – data mining.

� Regression.
� Estimation of probability densities.
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Classifier evaluation

How much should we believe in what was learned?

� Classifiers (both supervised and unsupervised) are learned on a finite training
set.

� A classifier learns on the training set and has to be tested experimentally on
a different test set.

� The classifier performs on different data in the run mode that on which it
has learned.

� Experimental performance on test data is a proxy for performance on unseed
data (to test the ability to generalize).

� The criterion function for assessing classifier performance is needed, e.g.,
accuracy, expected Bayesian risk (to be discussed later).

http://cmp.felk.cvut.cz
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Evaluation is an instance of hypothesis testing

� Evaluation has to be treated as hypothesis testing in statistics.

� The value of the population parameter has to be statistically inferred based
on the sample statistics (i.e., training set in pattern recognition).

population

statistical
sampling

sample

statistic
accuracy = 97%

parameter
accuracy = 95%

statistical inference
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Danger of overfitting

� Learning the training data too precisely usually leads to poor classification
results on new data.

� Classifier has to have the ability to generalize.

underfit fit overfit

http://cmp.felk.cvut.cz
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Training vs. test data

Problem: Finite data are available only and have to be used both for training and
testing.

� More training data gives better generalization.
� More test data gives better estimate for classification error probability.
� Never evaluate performance on training data. The conclusion would be
optimistically biased.

Partitioning of available finite set of data to training / test sets.
� Hold out.
� Cross validation.
� Bootstrap.

Once evaluation is finished, all the available data can be used to train the final
classifier.

http://cmp.felk.cvut.cz
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Hold out method

� Given data is randomly partitioned into two independent sets.

• Training multi-set (e.g., 2/3 of data) for statistical model construction.

• Test set (e.g., 1/3) for accuracy estimation.

� Random sampling: a variation of holdout
Repeat holdout k times, accuracy = average of the accuracies obtained.

http://cmp.felk.cvut.cz
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Criterion function to assess classifier performance

� Accuracy, error rate.

• Accuracy is the percent of correct classifications.

• Error rate = is the percent of incorrect classifications.

• Accuracy = 1 - Error rate.

• Problems with accuracy:
Assumes equal costs for misclassification.
Assumes relatively uniform class distribution (cf. 0.5% patients of
certain disease in the population).

� Other characteristics derived from the confusion matrix (to be explained
later).

� Expected Bayesian risk (to be explained later).

http://cmp.felk.cvut.cz
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Confusion matrix, two classes only

a
TN - True Negative
correct rejections

c
FN - False Negative
misses, type II error
overlooked danger

d
TP - True Positive

hits

b
FP - False Positive

false alarms
type I error

predicted
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R. Kohavi, F. Provost: Glossary of
terms, Machine Learning, Vol. 30,
No. 2/3, 1998, pp. 271-274.

Performance measures calculated from the
confusion matrix entries:

� Accuracy = (a+ d)/(a+ b+ c+ d)

= (TN + TP)/total
� True positive rate, recall,
sensitivity = d/(c+ d) =
TP/actual positive

� Specificity, true negative rate =
a/(a+ b) = TN/actual negative

� Precision, predicted positive value =
d/(b+ d) = TP/predicted positive

� False positive rate = b/(a+ b) =
FP/actual negative = 1 - specificity

� False negative rate = c/(c+ d) =
FN/actual positive

http://cmp.felk.cvut.cz
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Confusion matrix, # of classes > 2

� The toy example (courtesy Stockman) shows predicted and true class labels
of optical character recognition for numerals 0-9. Empirical performance is
given in percents.

� The classifier allows the reject option, class label R.
� Notice, e.g., unavoidable confusion between 4 and 9.

class j predicted by a classifier
true class i ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ ‘R’

‘0’ 97 0 0 0 0 0 1 0 0 1 1
‘1’ 0 98 0 0 1 0 0 1 0 0 0
‘2’ 0 0 96 1 0 1 0 1 0 0 1
‘3’ 0 0 2 95 0 1 0 0 1 0 1
‘4’ 0 0 0 0 98 0 0 0 0 2 0
‘5’ 0 0 0 1 0 97 0 0 0 0 2
‘6’ 1 0 0 0 0 1 98 0 0 0 0
‘7’ 0 0 1 0 0 0 0 98 0 0 1
‘8’ 0 0 0 1 0 0 1 0 96 1 1
‘9’ 1 0 0 0 3 1 0 0 0 95 0

http://cmp.felk.cvut.cz
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Unequal costs of decisions

� Examples:
Medical diagnosis: The cost of falsely indicated breast cancer in population
screening is smaller than the cost of missing a true disease.

Defense against ballistic missiles: The cost of missing a real attack is much
higher than the cost of false alarm.

� Bayesian risk is able to represent unequal costs of decisions.

� We will show that there is a tradeoff between apriori probability of the class
and the induced cost.

http://cmp.felk.cvut.cz
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Criterion, Bayesian risk

For set of observations X , set of hidden states K and decisions D, statistical
model given by the joint probability pXK:X ×K → R and the penalty function
W :K ×D → R and a decision strategy Q:X → D the Bayesian risk is given as

R(Q) =
∑
x∈X

∑
k∈K

pXK(x, k) W (k,Q(x)) .

� It is difficult to fulfil the assumption that a statistical model pXK is known
in many practical tasks.

� If the Bayesian risk would be calculated on the finite (training) set then it
would be too optimistic.

� Two substitutions for Baysesian risk are used in practical tasks:

• Expected risk.

• Structural risk.

http://cmp.felk.cvut.cz
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Two paradigms for learning classifiers

� Choose a class Q of decision functions (classifiers) q:X → K.
� Find q∗ ∈ Q by minimizing some criterion function on the training set that
approximates the risk R(q) (which cannot be computed).

� Learning paradigm is defined by the criterion function:
1. Expected risk minimization in which the true risk is approximated by

the error rate on the training set,

Remp(q(x,Θ)) =
1

L

L∑
i=1

W (ki, q(xi,Θ)) ,

Θ∗ = argmin
Θ

Remp(q(x,Θ)) .

Examples: Perceptron, Neural nets (Back-propagation), etc.
2. Structural risk minimization which introduces the guaranteed

risk J(Q), R(Q) < J(Q).
Example: SVM (Support Vector Machines).

http://cmp.felk.cvut.cz
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Problem of unknown class distribution and costs

We already know: The class distribution and the costs of each error determine
the goodness of classifiers.

Additional problem:

� In many circumstances, until the application time, we do not know the
class distribution and/or it is difficult to estimate the cost matrix. E.g., an
email spam filter.

� Statistical models have to be learned before.

Possible solution: Incremental learning.

http://cmp.felk.cvut.cz
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Unbalanced problems and data

� Classes have often unequal frequency.

• Medical diagnosis: 95 % healthy, 5% disease.

• e-Commerce: 99 % do not buy, 1 % buy.

• Security: 99.999 % of citizens are not terrorists.

� Similar situation for multiclass classifiers.

� Majority class classifier can be 99 % correct but useless.
Example: OCR, 99 % correct, error at the every second line. This is why
OCR is not widely used.

� How should we train classifiers and evaluated them for unbalanced problems?

http://cmp.felk.cvut.cz
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Balancing unbalanced data

Two class problems:

� Build a balanced training set, use it for classifier training.

• Randomly select desired number of minority class instances.

• Add equal number of randomly selected majority class instances.

� Build a balanced test set (different from training set, of course) and
test the classifier using it.

Multiclass problems:

� Generalize ‘balancing’ to multiple classes.

� Ensure that each class is represented with approximately equal
proportions in training and test datasets.

http://cmp.felk.cvut.cz
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Thoughts about balancing

Natural hesitation: Balancing the training set changes the underlying statistical
problem. Can we change it?

Hesitation is justified. The statistical problem is indeed changed.
Good news:

� Balancing can be seen as the change of the penalty function. In the
balanced training set, the majority class patterns occur less often which
means that the penalty assigned to them is lowered proportionally to their
relative frequency.

R(q∗) = min
q∈D

∑
x∈X

∑
k∈K

pXK(x, k)W (k, q(x))

R(q∗) = min
q(x)∈D

∑
x∈X

∑
k∈K

p(x) pK|X(k|x)W (k, q(x))

� This modified problem is what the end user usually wants as she/he is
interested in a good performance for the minority class.

http://cmp.felk.cvut.cz
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Scalar characteristics are not good
for evaluating performance

� Scalar characteristics as the accuracy, expected cost, area under ROC curve
(AUC, to be explained soon) do not provide enough information.

� We are interested in:

• How are errors distributed across the classes ?

• How will each classifier perform in different testing conditions (costs or
class ratios other than those measured in the experiment)?

� Two numbers – true positive rate and false positive rate – are much more
informative than the single number.

� These two numbers are better visualized by a curve, e.g., by a Receiver
Operating Characteristic (ROC), which informs about:

• Performance for all possible misclassification costs.

• Performance for all possible class ratios.

• Under what conditions the classifier c1 outperforms the classifier c2?

http://cmp.felk.cvut.cz
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ROC – Receiver Operating Characteristic

� Called also often ROC curve.

� Originates in WWII processing of radar
signals.

� Useful for the evaluation of dichotomic
classifiers performance.

� Characterizes degree of overlap of classes
for a single feature.

� Decision is based on a single threshold Θ
(called also operating point).

� Generally, false alarms go up with attempts
to detect higher percentages of true
objects.

� A graphical plot showing (hit rate, false
alarm rate) pairs.

� Different ROC curves correspond to
different classifiers. The single curve is the
result of changing threshold Θ.
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A model problem
Receiver of weak radar signals

� Suppose a receiver detecting a single weak pulse (e.g., a radar reflection
from a plane, a dim flash of light).

� A dichotomic decision, two hidden states k1, k2:

• k1 – a plane is not present (true negative) or

• k2 – a plane is present (true positive).

� Assume a simple statistical model – two Gaussians.

� Internal signal of the receiver, voltage x with the mean
µ1 when the plane (external signal) is not present and
µ2 when the plane is present.

� Random variables due to random noise in the receiver and outside of it.
p(x|ki) = N(µi, σ

2
i ), i = 1, 2.

http://cmp.felk.cvut.cz
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Four probabilities involved

� Let suppose that the involved probability distributions are Gaussians and the
correct decision of the receiver are known.

� The mean values µ1, µ2, standard deviations σ1, σ1, and the threshold Θ

are not known too.

� There are four conditional probabilities involved:

• Hit (true positive) p(x > Θ | x ∈ k2).

• False alarm, type I error (false positive) p(x > Θ | x ∈ k1).

• Miss, overlooked danger, type II error (false negative)
p(x < Θ | x ∈ k2).

• Correct rejection (true negative) p(x < Θ | x ∈ k1).

http://cmp.felk.cvut.cz
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Radar receiver example, graphically

p(x|k ), i=1,2i

p(x|k )1

p(x|k )2

x

threshold Q

hits, true
positives

false alarms
false positives

Any decision threshold Θ on the voltage x, x > Θ, determines:

Hits – their probability is the red filled area under the curve p(x|k2).

False alarms – their probability is the hatched area under the curve p(x|k1).

Courtesy to Silvio Maffei for pointing to the mistake in the picture.

http://cmp.felk.cvut.cz
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ROC – Example A
Two Gaussians with equal variances

� Two Gaussians, µ1 = 4.0, µ2 = 6.0, σ1 = σ2 = 1.0

� Less overlap, better discriminability.
� In this special case, ROC is convex.
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ROC – Example B
Two gaussians with equal variances

� Two Gaussians, µ1 = 4.0, µ2 = 5.0, σ1 = σ2 = 1.0

� More overlap, worse discriminability.
� In this special case, ROC is convex.
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ROC – Example C
Two gaussians with equal variances

� Two Gaussians, µ1 = 4.0, µ2 = 4.1, σ1 = σ2 = 1.0

� Almost total overlap, almost no discriminability.
� In this special case, ROC is convex.

http://cmp.felk.cvut.cz
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ROC and the likelihood ratio

� Under the assumption of the Gaussian signal corrupted by the Gaussian
noise, the slope of the ROC curve equals to the likelihood ratio

L(x) =
p(x|noise)

p(x|signal)
.

� In the even more special case, when standard deviations σ1 = σ2 then

• L(x) increases monotonically with x. Consequently, ROC becomes a
convex curve.

• The optimal threshold Θ becomes

Θ =
p(noise)

p(signal)
.

http://cmp.felk.cvut.cz
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ROC – Example D
Two gaussians with different variances

� Two Gaussians, µ1 = 4.0, µ2 = 6.0, σ1 = 1.0, σ2 = 2.0

� Less overlap, better discriminability.
� In general, ROC is not convex.
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ROC – Example E
Two gaussians with different variances

� Two Gaussians, µ1 = 4.0, µ2 = 4.5, σ1 = 1.0, σ2 = 2.0

� More overlap, worse discriminability.
� In general, ROC is not convex.
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ROC – Example F
Two gaussians with different variances

� Two Gaussians, µ1 = 4.0, µ2 = 4.0, σ1 = 1.0, σ2 = 2.0

� Maximal overlap, the worst discriminability.
� In general, ROC is not convex.

http://cmp.felk.cvut.cz
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Properties of the ROC space

the random
classifier, p=0.5

the ideal case

the worst casealways negative

always positive

better than the
random classifier

worse than random;
can be improved
by inverting its
predictions
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‘Continuity’ of the ROC

Given two classifiers c1 and c2.

� Classifiers c1 and c2 can be
linearly weighted to create
‘intermediate’ classifiers and

� In such a way, a continuum of
classifiers can be imagined
which is denoted by a red line
in the figure.
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More classifiers, ROC construction

� The convex hull covering
classifiers in the ROC space is
constructed.

� Classifiers on the convex hull
achieve always the best
performance for some class
probability distributions (i.e.,
the ratio of positive and
negative examples).

� Classifiers inside the convex hull
perform worse and can be
discarded.

� No penalties have been
involved so far. To come . . .
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ROC convex hull and iso-accuracy

� Each line segment on the convex hull is an iso-accuracy line for a particular
class distribution.

• Under that distribution, the two classifiers on the end-points achieve
the same accuracy.

• For distributions skewed towards negatives (steeper slope than 45o),
the left classifier is better.

• For distributions skewed towards positives (flatter slope than 45o), the
right classifier is better.

� Each classifier on convex hull is optimal for a specific range of class
distributions.

http://cmp.felk.cvut.cz
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Accuracy expressed in the ROC space

Accuracy a
a = pos · TPR + neg · (1− FPR).

Express the accuracy in the ROC space
as TPR = f(FPR).

TPR =
a−neg
pos +

neg
pos · FPR .

Iso-accuracy are given by straight lines
with the slope neg/pos, i.e., by a
degree of balance in the test set. The
balanced set ⇔ 45o.

The diagonal ∼ TPR = FPR = a.

A blue line is a iso-accuracy line for a
general classifier c2.
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Selecting the optimal classifier (1)

false positive rate
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For a balanced training set (i.e., as many +ves as -ves), see solid blue line.

Classifier c1 achieves ≈ 78 % true positive rate.
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Selecting the optimal classifier (2)

false positive rate
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For a training set with half +ves than -ves), see solid blue line.

Classifier c1 achieves ≈ 82 % true positive rate.
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Selecting the optimal classifier (3)

false positive rate
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For less than 11 % +ves, the always negative is the best.

http://cmp.felk.cvut.cz


37/40
Selecting the optimal classifier (4)

false positive rate
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For more than 80 % +ves, the always positive is the best.
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Benefit of the ROC approach

� It is possible to distinguish operationally between
Discriminability – inherent property of the detection system.
Decision bias – implied by the loss function changable by the user.

� The discriminability can be determined from ROC curve.

� If the Gaussian assumption holds then the Bayesian error rate can be
calculated.

http://cmp.felk.cvut.cz
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ROC – generalization to arbitrary
multidimensional distribution

� The approach can be used for any two multidimensional distributions
p(x|k1), p(x|k2) provided they overlap and thus have nonzero Bayes
classification error.

� Unlike in one-dimensional case, there may be many decision boundaries
corresponding to particular true positive rate, each with different false
positive rate.

� Consequently, we cannot determine discriminability from true positive and
false positive rate without knowing more about underlying decision rule.

http://cmp.felk.cvut.cz
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Optimal true/false positive rates?
Unfortunately not

� This is a rarely attainable ideal for a multidimensional case.

� We should have found the decision rule of all the decision rules giving the
measured true positive rate, the rule which has the minimum false negative
rate.

� This would need huge computational resources (like Monte Carlo).

� In practice, we forgo optimality.

http://cmp.felk.cvut.cz
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