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Lecture plan
� Penalties and probabilities which do not suffice for Bayesian task.
� Task formulation of prototype non-Bayesian tasks.
� Unified formalism leading to a solution—the pair of dual tasks of linear
programming.

� Solution to non-Bayesian tasks.

Courtesy: Vojtěch Franc.
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BAYESIAN TASK (rehearsal)

Bayesian task of statistical decision making seeks for

� sets X , K and D,
function pXK : X ×K → R and
function W : K ×D → R

� a Bayesian strategy Q : X → D which minimizes the Bayesian risk

R(Q) =
∑
x∈X

∑
k∈K

pXK(x, k) W (k,Q(x)) .

Typical use: minimization of the probability of a wrong classification.

http://cmp.felk.cvut.cz
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Bayesian approach, limitations

Despite the generality of Bayesian approach, there are many tasks which cannot
be expressed within Bayesian framework. Why?

� It is difficult to establish a penalty function. E.g., it does not assume values
from the totally ordered set.

� A priori probabilities pK(k), k ∈ K, are not known or cannot be known
because k is not a random event.

� Conditional probabilities p(x|k) are difficult to express.

http://cmp.felk.cvut.cz
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Non-Bayesian formulations can be natural for
practical tasks

� Even is the case in which events are random and all involved probabilities are
known, it is sometimes of advantage to approach the problem as a
non-Bayesian one.

� In a practical tasks, it can be more intuitive for a customer to express
desired classifier properties as allowed rate of false positives (false alarms)
and false negatives (overlooked danger).

Example:

In quality check of electronic components (e.g., tantalum capacitors), it is
common for the customers to express allowed number of rejects (false
negatives, overlooked danger) in pieces per million (ppm).

http://cmp.felk.cvut.cz
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Way out (only in several special cases):
Non-Bayesian formulations

Good news

� There are several practically useful non-Bayesian tasks for which a solution
similar to Bayesian tasks exist.

� These non-Bayesian tasks can be expressed in a general framework of linear
programming in which the solution is easy and intuitive.

Bad news

� The class of non-Bayesian tasks covers only a subset of possible tasks.

� Nothing can be said about the task and its solution if it does not belong
non-Bayesian tasks.

http://cmp.felk.cvut.cz
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Penalty function in Bayesian decision making

� Decision is rated by a real number which corresponds to a penalty function
value.

� The quality of the decision has to be expressed in ‘compatible units’.

� Values of a penalty function have to constitute an ordered set. The addition
and multiplication has exist for this set.

http://cmp.felk.cvut.cz
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Problems due to penalty function

‘Minimization of the mathematical expectation of the penalty’ requires that the
penalty assumes the value in the totally ordered set (by relation < or ≥) and
multiplication by a real number and addition are defined.

An example—Russian fairy tales hero

When he turns to the left, he loses his horse, when he turns to the right, he
loses his sword, and if he turns back, he loses his beloved girl.

Is the sum of p1 horses and p2 swords is less or more than p3 beloved girls?

� Often various losses cannot be measured by the same unit even in one
application.

� Penalty for false positive (false alarm) and false negative (overlooked
danger) might be incomparable.

http://cmp.felk.cvut.cz
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Example: decisions while curing a patient

x ∈ X parameters (features, observations) measured on a patient

k ∈ K = {healthy, seriously sick}

d ∈ D = {do not cure, apply a drug}

Penalty function W : K ×D → R

K \ D do not cure apply a drug
healthy correct decision small health damage

seriously sick death possible correct decision

How to assign real number to a penalty?

Note: Health insurances do not have this problem . . .

http://cmp.felk.cvut.cz
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A priori probability of situations

It can be difficult to find probabilities pK(k), k ∈ K,
which are needed for Bayesian formulation. Recall p(x, k) = p(x|k) p(k).

Reasons:
1. Hidden state is random but pK(k), k ∈ K, are unknown. An object has not

been analyzed sufficiently. Two options:

(a) Formulate the task not in the Bayesian framework but in another one
that does not require statistical properties of the object which are
unknown.

(b) She or he will start analyzing the object thoroughly and gets a priori
probabilities which are inevitable for the Bayesian solution.

2. Hidden state is not random and that is why the a priori probabilities pK(k),
k ∈ K, do not exist and thus it is impossible to discover them by an
arbitrary detailed exploration of the object. Non-Bayesian methods must be
used.

http://cmp.felk.cvut.cz
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An example—enemy or allied airplane?

� Observation x describes the observed airplane.

� Two hidden states
{
k = 1 allied airplane,
k = 2 enemy airplane.

� The conditional probability pX|K(x|k) can depend on the observation x in a
complicated manner but it exists and describes dependence of the
observation x on the situation k correctly.

� A priori probabilities pK(k) are not known and even cannot be known in
principle because it is impossible to say about any number α, 0 ≤ α ≤ 1,
that α is the probability of the occurrence of an enemy plane.

� Consequently pK(k) do not exist since the frequency of experiment result
does not converge to any number which we are allowed to call probability.
The hidden state k is not a random event.

http://cmp.felk.cvut.cz
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Beware of a pseudosolution

Refers to the airplane example.

� If a priori probabilities are unknown the situation is avoided by supposing
that a priori probabilities are the same for all possible situations, e.g., the
occurrence of an enemy plane has the same probability as the occurrence of
an allied one.

� It is clear that it does not correspond to the reality even if we assume that
an occurrence of a plane is a random event.

� Missing logical arguments are quickly substituted by a pseudo-argument by
referencing, e.g., to C. Shannon thanks to the generally known property that
an uniform probability distribution has the highest entropy.

� It happens even if this result does not concern the studied problem in any
way.

http://cmp.felk.cvut.cz
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Conditional probabilities of observations

Motivating example: Recognizing characters written by 3 persons

� Given:

• X is a set of pictures of written characters x.

• k is a name of a character (label), k ∈ K.

• z ∈ Z = {1, 2, 3} identifies the writer (this info is not known ⇒ it is
an unobservable intervention).

� Task: Recognize, which character is written in the picture x?

We can talk about the penalty function W (k, d) and a priori probabilities pK(k)
of individual characters.

We cannot talk about conditional probabilities pX|K(x | k) because the
appearance x of a character depends not only on the character label but also on
a non-random intervention (i.e., who wrote it).

http://cmp.felk.cvut.cz
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Example: Recognizing characters
written by three persons (2)

� We can speak only about conditional probabilities pX|K,Z(x | k, z),
i.e., how a character looks like if it was written by a certain person.

� If the intervention z would be random and pZ(z) would be known for
each z then it would be possible to speak also about probabilities

pX|K(x | k) =
3∑
z=1

pZ(z)pX|K,Z(x | k, z) .

� However, we do not know how often it will be necessary to recognize
pictures written by this or that person.

� Under such uncertain statistical conditions an algorithm ought to be created
that will secure the required recognition quality of pictures independently on
the fact who wrote the letter. The concept of a priori probabilities pZ(z) of
the variable z cannot be used because z is not random and a probability is
not defined for it.

http://cmp.felk.cvut.cz
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Formulations of Non-Bayesian tasks
Introduction

� Let us introduce several known non-Bayesian tasks (and several new
modifications to them).

� The whole class of non-Bayesian tasks has common features:

• There is one formalism for expressing tasks and their solution (dual
tasks of linear programming).

• Similarly as for Bayesian tasks: The strategy divides the space of
probabilities into convex cones.

http://cmp.felk.cvut.cz
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Girl detection example (1)

� A person is characterized by the:
• Observed height and weight,
x ∈ X = {small,mid, tall}︸ ︷︷ ︸

height
× {skinny, light,mid, heavy}︸ ︷︷ ︸

weight

• Class label = sex, k ∈ K = {boy, girl}.
� Apriori probabilities are unknown.
� Conditional probabilities are known:

p (x )X|K |girl p (x )X|K |boy

small small

mid mid

tall tall

skinny skinnylight lightmid midheavy heavy

http://cmp.felk.cvut.cz
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Girl detection example (2)

Goal: Find a decision strategy Q : X → K allowing to detect girls among
persons based on the observed height and weight.

The decision strategy Q splits the set X into two subsets:

Xboy = {x |Q(x) = boy}
Xgirl = {x |Q(x) = girl}

}
such that

{
Xboy ∪Xgirl = X ,

Xboy ∩Xgirl = ∅ .

Example of a strategy Q(x)→ k

small

mid

tall

skinny leight mid heavy

girl

girl girl

girl girl

boy boy boy boy

boy boy

boy

http://cmp.felk.cvut.cz


17/45
Neyman–Pearson task, two classes only (1)

� Observation x ∈ X , two states:
{
k = 1 normal,
k = 2 dangerous.

� The probability distribution of the observation x depends on the state k to
which the object belongs. pX|K(x | k), x ∈ X , k ∈ K are known.

� Given observation x, the task is to decide if the object is in the normal or
dangerous state.

� The set X is to be divided into two such subsets X1 (normal states) and
X2 (dangerous states), X = X1 ∪X2, X = X1 ∩X2 = ∅.

http://cmp.felk.cvut.cz
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Neyman–Pearson task (2)

The observation x can belong to both states ⇒ there is no faultless strategy.

The strategy is characterized by two numbers:

� Probability of the false positive (false alarm)
ω(1) =

∑
x∈X2

pX|K(x | 1).

� Probability of the false negative (overlooked danger)
ω(2) =

∑
x∈X1

pX|K(x | 2).

http://cmp.felk.cvut.cz
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Girl detection example (3)

The decision strategy Q is characterized by the probability of:

ω(girl) =
∑

x∈Xgirl
pX|K(x|boy) . . . false alarm (boy recognized as a girl).

ω(boy) =
∑

x∈Xboy
pX|K(x|girl) . . . overlooked girl (girl recognized as a boy).

�(girl) �(boy)

skinny skinnylight lightheavy heavymid mid

small small

mid mid

tall tall

http://cmp.felk.cvut.cz
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Neyman–Pearson task (3)

A strategy is sought in the Neyman–Pearson task, i.e.,
a decomposition of X into X1 ⊂ X , X1 ∪X2 = X , X2 ⊂ X , X1 ∩X2 = ∅,
such that:
1. The conditional probability of the false negative is not larger than ε ∈ (0, 1),

which is a prescribed limit on the probability of overlooked danger.∑
x∈X1

pX|K(x | 2) ≤ ε .

2. A strategy has to have minimal conditional probability of the false positive∑
x∈X2

pX|K(x | 1)

subject to the condition ∑
x∈X1

pX|K(x | 2) ≤ ε .

http://cmp.felk.cvut.cz
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Trivial example: men/women by weight only (1)

http://cmp.felk.cvut.cz
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Trivial example: men/women by weight only (2)

http://cmp.felk.cvut.cz
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Neyman–Pearson task (4)

Solution: Neyman–Pearson (1928, 1933)

The optimal strategy separates observation sets X1 and X2 according to a
likelihood ratio by a threshold value θ

Q∗ =

 k = 1 if pX|K(x | 1)
pX|K(x | 2) > θ ,

k = 2 othewise.

The rule is a special case of division of a space of probabilities into convex cones,
i.e., it corresponds to Bayesian strategy.

http://cmp.felk.cvut.cz
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Solving Non-Bayesian tasks
using linear programming

Decision strategies Q : X → K can be equivalently represented by a
function α : X ×K → {1, 0} which satisfies∑

k∈K

α(x, k) = 1 , ∀x ∈ X , α(x, k) ∈ {0, 1} , ∀x ∈ X , ∀k ∈ K .

Example for the ‘Girl detection’ problem:
�( , boy)x �( , girl)x

smallsmall

midmid

talltall

skinnyskinny leightleight midmid heavyheavy
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Neyman-Pearson’s task solved by LP

To avoid integer programming, the relaxed stochastic strategy
α : X ×K → 〈0, 1〉 is introduced, which satisfies α(x, 1) + α(x, 2) = 1,
∀x ∈ X , α(x, k) ≥ 0, ∀x ∈ X , ∀k ∈ {1, 2}.

Linear Programming relaxation Original formulation

α∗ = argmin
α

∑
x∈X

α(x, 2)pX|K(x|1) ,
Q∗ = argmin

X1,X2

∑
x∈X2

pX|K(x|1) ,

subject to subject to

∑
x∈X

α(x, 1)pX|K(x, 2) ≤ ε ,
∑
x∈X1

pX|K(x|2) ≤ ε .

α(x, 1) + α(x, 2) = 1 , ∀x ∈ X ,

α(x, 1) ≥ 0 , ∀x ∈ X ,

α(x, 2) ≥ 0 , ∀x ∈ X .

http://cmp.felk.cvut.cz
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Neyman-Pearson’s task as LP (2)

The dual formulation of the Neyman-Pearson’s task

(t(x)∗, τ∗) = argmax
t(x),τ

(∑
x∈X

t(x)− ε τ

)

subject to

t(x)− τ pX|K(x|2) ≤ 0 , x ∈ X ,

t(x)− pX|K(x|1) ≤ 0 , x ∈ X ,

τ ≥ 0 .

http://cmp.felk.cvut.cz
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Příklad J. Matase, pravďepodobnost ženy (1)

http://cmp.felk.cvut.cz
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Příklad J. Matase, pravďepodobnost ženy (2)

http://cmp.felk.cvut.cz
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Generalised Neyman-Pearson task
for two dangerous states

k = 1 corresponds to the set X1;

k = 2 or k = 3 correspond to the set X23.

Seeking a strategy with the conditional probability of the false positives
(overlooked dangerous states) both k = 2 and k = 3 is not larger than the
beforehand given value ε.

Simultaneously, the strategy minimizes the false negatives (false alarms),∑
x∈X23

pX|K(x | 1) under conditions

∑
x∈X1

pX|K(x | 2) ≤ ε ,
∑
x∈X1

pX|K(x | 3) ≤ ε , X1 ∩X23 = ∅ , X1 ∪X23 = X .

The formulated optimization task solved later in a single constructive framework.

http://cmp.felk.cvut.cz
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Minimax task, introduction

� Selects the strategy according to the worst case scenario.

� Observations X are decomposed into subsets X(k), k ∈ K, such that they
minimize the number maxk∈K ω(k).

� Consider a customer who demands that the PR algorithm will be evaluated
by two tests in advance:
Preliminary test (performed by the customer himself) checks the
probability of a wrong decision ω(k) for all states k. The customer selects
the worst state k∗ = argmaxk∈K ω(k).

Final test checks only those objects which are in the worst state. The
result of the final test will be written in the protocol and the final
evaluation depends on the protocol content. The algorithm designer aims
to achieve the best result in the final test.

� The problem has not been widely known for the more general case, i.e., for
the arbitrary number of object states.

http://cmp.felk.cvut.cz
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Minimax task (2)

� x ∈ X are observable parameters.

� k ∈ K are hidden states.

� Q : X → K is the sought strategy given by the decomposition
X = X1 ∪X2 ∪ . . . ∪X|K|

� Each strategy is characterized by |K| numbers

ω(k) =
∑

k/∈X(k)

p(x|k) ,

i.e., conditional probabilities of a wrong decision under the condition that
the correct hidden state is k.

http://cmp.felk.cvut.cz
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Minimax task (3)

Minimax task formulation

A strategy Q∗ is sought which minimizes

max
k∈K

ω(k)

� The solution decomposes the space of probabilities into convex cones.

� Notice that the case |K| = 2 is the Neyman-Pearson task in which convex
cones degenerate to 1D case – a likelihood ratio.

� Notice that the strategy belongs to the Bayesian family.

http://cmp.felk.cvut.cz
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Wald task (motivation)

� A tiny part of Wald sequential analysis (1947).

� Neyman task lacks symmetry with respect to states of the recognized object.
The conditional probability of the false negative (overlooked danger) must
be small, which is the principal requirement.

� The conditional probability of the false positive (false alarm) is a subsidiary
requirement. It can be only demanded to be as small as possible even if this
minimum can be even big.

� It would be excellent if such a strategy were found for which both
probabilities would not exceed a predefined value ε.

� These demands can be antagonistic and that is why the task could not be
accomplished by using such a formulation.

http://cmp.felk.cvut.cz
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Wald task (2)

Classification in three subsets X0, X1 and X2 with the following meaning:

� if x ∈ X1, then k = 1 is chosen;

� if x ∈ X2, then k = 2 is chosen; and finally

� if x ∈ X0 it is decided that the observation x does not provide enough
information for a safe decision about the state k.

http://cmp.felk.cvut.cz
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Wald task (3)

A strategy of this kind will be characterized by four numbers:

� ω(1) is a conditional probability of a wrong decision about the state k = 1,
ω(1) =

∑
x∈X2

pX|K(x | 1),

� ω(2) is a conditional probability of a wrong decision about the state k = 2,
ω(2) =

∑
x∈X1

pX|K(x | 2).

� χ(1) is a conditional probability of a indecisive situation under the condition
that the object is in the state k = 1, χ(1) =

∑
x∈X0

pX|K(x | 1).

� χ(2) is a conditional probability of the indecisive situation under the
condition that the object is in the state k = 2, χ(2) =

∑
x∈X0

pX|K(x | 2).

http://cmp.felk.cvut.cz
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Wald task (4)

� For such strategies, the requirements
ω(1) ≤ ε and ω(2) ≤ ε
are not contradictory for an arbitrary non-negative value ε because the
strategy X0 = X , X1 = ∅, X2 = ∅ belongs to the class of allowed
strategies too.

� Each strategy fulfilling ω(1) ≤ ε and ω(2) ≤ ε is characterized by how often
the strategy is reluctant to decide, i.e., by the number max

(
χ(1), χ(2)

)
.

� Strategy which minimizes max
(
χ(1), χ(2)

)
is sought.

http://cmp.felk.cvut.cz
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Wald task (5)

Solution (without proof) of this task for two states only is based on the
calculation of the likelihood ratio

γ(x) =
pX|K(x | 1)
pX|K(x | 2)

.

Based on comparison to 2 thresholds θ1, θ2, θ1 ≤ θ2 it is decided for class 1,
class 2 or the solution is undecided.

In the SH10 book, there the generalization for > 2 states is given.

http://cmp.felk.cvut.cz
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Wald task, example
Men, women, weight, height

http://cmp.felk.cvut.cz
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Wald task, example (2)
Men, women, weight, height

http://cmp.felk.cvut.cz
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Linnik tasks = decisions with non-random
interventions

� In previous non-Bayesian tasks, either the penalty function or a priori
probabilities of the states don’t make sense.

� In Linnik tasks, even the conditional probabilities pX|K(x | k) do not exist.

� Due to Russian mathematician J.V. Linnik from 1966.

� Random observation x depends on the object state and on an additional
unobservable parameter z. The user is not interested in z and thus it need
not be estimated. However, the parameter z must be taken into account
because conditional probabilities pX|K(x | k) are not defined.

� Conditional probabilities pX|K,Z(x | k, z) do exist.

http://cmp.felk.cvut.cz
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Linnik tasks (2)

� Other names used for Linnik tasks:

• Statistical decisions with non-random interventions.

• Evaluations of complex hypotheses.

� Let us mention two examples from many possibilities:

• Testing of complex hypotheses with random state and with non-random
intervention

• Testing of complex hypotheses with non-random state and with
non-random interventions.

http://cmp.felk.cvut.cz
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Linnik task with random state and non-random
interventions (1)

� X,K,Z are finite sets of possible observation x, state k and intervention z.

� pK(k) be the a priori probability of the state k. pX|K,Z(x | k, z) be the
conditional probability of the observation x under the condition of the state
k and intervention z.

� X(k), k ∈ K decomposes X according to some strategy determining states
k.
The probability of the incorrect decision (quality) depends on z

ω(z) =
∑
k∈K

pK(k)
∑

x/∈X(k)

pX|K,Z(x | k, z) .

http://cmp.felk.cvut.cz
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Linnik task with random state and non-random
interventions (2)

� The quality ω∗ of a strategy (X(k), k ∈ K) is defined as the probability of
the incorrect decision obtained in the case of the worst intervention z for
this strategy, that is

ω∗ = max
z∈Z

ω(z) .

� ω∗ is minimised, i.e.,(
X∗(k), k ∈ K

)
= argmin

(X(k),k∈K)

max
z∈Z

∑
k∈K

pK(k)
∑

x/∈X(k)

pX|K,Z(x | k, z) .

http://cmp.felk.cvut.cz
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Linnik task with non-random state and
non-random interventions (1)

� Neither the state k nor intervention z can be considered as a random
variable and consequently a priori probabilities pK(k) are not defined.

� Quality ω depends not only on the intervention z but also on the state k

ω(k, z) =
∑

x/∈X(k)

pX|K,Z(x | k, z) .

http://cmp.felk.cvut.cz
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Linnik task with non-random state and
non-random interventions (2)

� The quality ω∗
ω∗ = max

k∈K
max
z∈Z

ω(k, z) ,

� The task is formulated as a search for the best strategy in this sense, i.e., as
a search for decomposition(

X∗(k), k ∈ K
)

= argmin
(X(k),k∈K)

max
k∈K

max
z∈Z

∑
x/∈X(k)

pX|K,Z(x | k, z) .

http://cmp.felk.cvut.cz

	First page
	ccmp BAYESIAN TASK (rehearsal)
	ccmp Bayesian approach, limitations
	ccmp Non-Bayesian formulations can be natural for practical tasks
	ccmp Way out (only in several special cases): \ Non-Bayesian formulations
	ccmp Penalty function in Bayesian decision making
	ccmp Problems due to penalty function
	ccmp Example: decisions while curing a patient
	ccmp {it �f A priori/} probability of situations
	ccmp An example---enemy or allied airplane?
	ccmp Beware of a pseudosolution
	ccmp Conditional probabilities of observations
	ccmp Example: Recognizing characters\written by three persons (2)
	ccmp Formulations of Non-Bayesian tasks\ Introduction
	ccmp Girl detection example (1)
	ccmp Girl detection example (2)
	ccmp Neyman--Pearson task, two classes only~(1)
	ccmp Neyman--Pearson task (2)
	ccmp Girl detection example (3)
	ccmp Neyman--Pearson task (3)
	ccmp Trivial example: men/women by weight only (1)
	ccmp Trivial example: men/women by weight only (2)
	ccmp Neyman--Pearson task (4)
	ccmp Solving Non-Bayesian tasks\using linear programming
	ccmp Neyman-Pearson's task solved by LP
	ccmp Neyman-Pearson's task as LP (2)
	ccmp Pøíklad J. Matase, pravïepodobnost ženy (1)
	ccmp Pøíklad J. Matase, pravïepodobnost ženy (2)
	ccmp Generalised Neyman-Pearson task \for two dangerous states
	ccmp Minimax task, introduction
	ccmp Minimax task (2)
	ccmp Minimax task (3)
	ccmp Wald task (motivation)
	ccmp Wald task (2)
	ccmp Wald task (3)
	ccmp Wald task (4)
	ccmp Wald task (5)
	ccmp Wald task, example\ Men, women, weight, height
	ccmp Wald task, example (2)\ Men, women, weight, height
	ccmp Linnik tasks = decisions with non-random interventions
	ccmp Linnik tasks (2)
	ccmp Linnik task with random state and non-random interventions (1)
	ccmp Linnik task with random state and non-random interventions (2)
	ccmp Linnik task with non-random state and non-random interventions (1)
	ccmp Linnik task with non-random state and non-random interventions (2)
	Last page

