
Linear classifiers, a perceptron family
Václav Hlaváč

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Center for Machine Perception
http://cmp.felk.cvut.cz/˜hlavac, hlavac@fel.cvut.cz

Courtesy: M.I. Schlesinger, V. Franc.

Outline of the talk:
� A classifier, dichotomy, a multi-class
classifier.

� A linear discriminant function.

� Learning a linear classifier.

� Perceptron and its learning.

� ε-solution.

� Learning for infinite training sets.



2/22
A classifier

Analyzed object is represented by

X – a space of observations, a vector space of dimension n.

Y – a set of hidden states.

The aim of the classification is to determine a relation between X and Y , i.e. to
find a discriminant function f : X → Y .

Classifier q : X → J maps observations Xn→ set of class indices J , J =
1, . . . , |Y |.

Mutual exclusion of classes is required

X = X1 ∪X2 ∪ . . . ∪X|Y |,

Xi ∩Xj = ∅, i 6= j, i, j = 1 . . . |Y |.

http://cmp.felk.cvut.cz


3/22
Classifier, an illustration

� A classifier partitions the observation space X into class-labelled regions Xi,
i = 1, . . . , |Y |.

� Classification determines to which region Xi an observed feature vector x
belongs.

� Borders between regions are called decision boundaries.

X
1

X
2

X
3

X
4

X1

X2

X3

X   - background4

X
1

X
2

X
3

X
4

Several possible arrangements of classes.

http://cmp.felk.cvut.cz


4/22
A multi-class decision strategy

� Discriminant functions fi(x) should have the property ideally:

fi(x) > fj(x) for x ∈ class i , i 6= j.

f (x)1

f (x)2

f (x)| |Y

max

x y

Strategy: j = argmax
j

fj(x)

� However, it is uneasy to find such a discriminant function. Most ‘good
classifiers’ are dichotomic (as perceptron, SVM).

� The usual solution: One-against-All classifier, One-against-One classifier.

http://cmp.felk.cvut.cz


5/22
Linear discriminant function q(x)

� fj(x) = 〈wj, x〉+ bj, where 〈 〉 denotes a scalar product.

� A strategy j = argmax
j

fj(x) divides X into |Y | convex regions.

y=1 y=2

y=3
y=4

y=5
y=6

http://cmp.felk.cvut.cz


6/22
Dichotomy, two classes only

|Y | = 2, i.e. two hidden states (typically also classes)

q(x) =

 y = 1 , if 〈w, x〉+ b ≥ 0 ,

y = 2 , if 〈w, x〉+ b < 0 .

x
1

x
2

�

w1x1

b

w2x2

w3x3

wnxn

y

1 activation
function

threshold

weights

Perceptron by F. Rosenblatt 1957

http://cmp.felk.cvut.cz


7/22
Learning linear classifiers

The aim of learning is to estimate classifier parameters wi, bi for ∀i.

The learning algorithms differ by

� The character of training set

1. Finite set consisting of individual observations and hidden states, i.e.,
{(x1, y1) . . . (xL, yL)}.

2. Infinite sets described by Gaussian distributions.

� Learning task formulations.

http://cmp.felk.cvut.cz


8/22

Learning tasks formulations
For finite training sets

Empirical risk minimization: dummy dummy dummy dummy dummy

� True risk is approximated by Remp(q(x,Θ)) = 1
L

L∑
i=1

W (q(xi,Θ), yi),
where W is a penalty.

� Learning is based on the empirical minimization principle
Θ∗ = argmin

Θ
Remp(q(x,Θ)).

� Examples of learning algorithms: Perceptron, Back-propagation.

Structural risk minimization: dummy dummy dummy dummy dummy

� True risk is approximated by a guaranteed risk (a regularizer securing
upper bound of the risk is added to the empirical risk,
Vapnik-Chervonenkis theory of learning).

� Example: Support Vector Machine (SVM).

http://cmp.felk.cvut.cz


9/22
Perceptron learning: Task formulation

Input: T = {(x1, y1) . . . (xL, yL)}, ki ∈ {1, 2},
i = 1, . . . , L, dim(xi) = n.

Output: a weight vector w, offset b
for ∀j ∈ {1, . . . , L} satisfying:

〈w, xj〉+ b ≥ 0 for y = 1,

〈w, xj〉+ b < 0 for y = 2.

X
n

w, x + b = 0

The task can be formally transcribed to a single
inequality 〈w′, x′j〉 ≥ 0 by embedding it into n+ 1

dimensional space, where w′ = [w b],

x′ =

{
[x 1] for y = 1 ,

−[x 1] for y = 2 .

We drop the primes and go back to w, x notation.

X
n+1

w’, x’ = 0

http://cmp.felk.cvut.cz


10/22
Perceptron learning: the algorithm 1957

Input: T = {x1, x2, . . . , xL}.
Output: a weight vector w.

The Perceptron algorithm
(F. Rosenblatt):

1. w1 = 0.
2. A wrongly classified observation xj

is sought, i.e., 〈wt, xj〉 < 0,
j ∈ {1, . . . , L}.

3. If there is no misclassified
observation then the algorithm
terminates otherwise
wt+1 = wt + xj.

4. Goto 2.

wt

wt+1

xt
0

Perceptron update rule

w ,x = 0t

http://cmp.felk.cvut.cz


11/22
Novikoff theorem, 1962

� Proves that the Perceptron algorithm converges in a
finite number steps if the solution exists.

� Let X denotes a convex hull of points (set of ob-
servations) X .

� Let D = max
i
|xi|, m = min

x∈X
|xi| > 0.

Novikoff theorem:
If the data are linearly separable then there exists a number
t∗ ≤ D2

m2, such that the vector wt∗ satisfies

〈wt∗, xj〉 > 0, ∀j ∈ {1, . . . , L} .

� What if the data is not separable?
� How to terminate the perceptron learning?

D

m

origin

convex hull

http://cmp.felk.cvut.cz


12/22
Idea of the Novikoff theorem proof

Let express bounds for |wt|2 :

Upper bound:

|wt+1|2 = |wt + xt|2 = |wt|2 + 2 〈xt, wt〉︸ ︷︷ ︸
≤0

+|xt|2

≤ |wt|2 + |xt|2 ≤ |wt|2 +D2 .

|w0|2 = 0, |w1|2 ≤ D2, |w2|2 ≤ 2D2, . . .

. . . , |wt+1|2 ≤ tD2, . . .

Lower bound: is given analogically

|wt+1|2 > t2m2.

Solution: t2m2 ≤ tD2 ⇒ t ≤ D2

m2 .

|w |t
2

t

http://cmp.felk.cvut.cz


13/22

An alternative training algorithm
Kozinec (1973)

Input: T = {x1, x2, . . . xL}.
Output: a weight vector w∗.

1. w1 = xj, i.e., any observation.
2. A wrongly classified observation xt is

sought, i.e., 〈wt, x
j〉 < b, j ∈ J .

3. If there is no wrongly classified
observation then the algorithm finishes
otherwise
wt+1 = (1− k) · wt + xt · k, k ∈ R,
where
k = argmin

k
|(1− k) · wt + xt · k|.

4. Goto 2.

wt

wt+1

b

xt

0

w ,x = 0t

Kozinec

http://cmp.felk.cvut.cz


14/22

Perceptron learning
as an optimization problem (1)

Perceptron algorithm, batch version, handling non-separability, another
perspective:

� Input: T = {x1, x2, . . . , xL}.
� Output: a weight vector w minimsing

J(w) = |{x ∈ X : 〈wt, x〉 < 0}|
or, equivalently

J(w) =
∑

x∈X : 〈wt,x〉<0

1 .

What would the most common optimization method, the gradient descent,
perform?

wt = w − η∇J(w) .

The gradient of J(w) is either 0 or undefined. The gradient minimization cannot
proceed.

http://cmp.felk.cvut.cz


15/22

Perceptron learning
as an Optimization problem (2)

Let us redefine the cost function:

Jp(w) =
∑

x∈X : 〈w,x〉<0

〈w, x〉 .

∇Jp(w) =
∂J

∂w
=

∑
x∈X : 〈w,x〉<0

x .

� The Perceptron algorithm is a gradient descent method for Jp(w).

� Learning by the empirical risk minimization is just an instance of an
optimization problem.

� Either gradient minimization (backpropagation in neural networks) or convex
(quadratic) minimization (called convex programming in mathematical
literature) is used.

http://cmp.felk.cvut.cz


16/22
Perceptron algorithm

Classifier learning, non-separable case, batch version

Input: T = {x1, x2, . . . xL}.

Output: a weight vector w∗.
1. w1 = 0, E = |T | = L, w∗ = 0 .
2. Find all misclassified observations X− = {x ∈ X : 〈wt, x〉 < 0}.
3. if |X−| < E then E = |X−|; w∗ = wt, tlu = t.
4. if tc(w∗, t, tlu) then terminate else wt+1 = wt + ηt

∑
x∈X−

x.

5. Goto 2.

� The algorithm converges with probability 1 to the optimal solution.
� The convergence rate is not known.
� The termination condition tc(.) is a complex function of the quality of the
best solution, time since the last update t− tlu and requirements on the
solution.

http://cmp.felk.cvut.cz


17/22

The optimal separating plane
and the closest point to the convex hull

The problem of the optimal separation by a hyperplane

w∗ = argmax
w

min
j

〈
w

|w|
, xj

〉
(1)

can be converted to a seek for the closest point to a convex hull (denoted by the
overline)

x∗ = argmin
x∈X

|x| .

It holds that x∗ solves also the problem (1).

Recall that the classifier that maximizes the separation minimizes the structural
risk Rstr.

http://cmp.felk.cvut.cz


18/22
The convex hull, an illustration

w* = m

X

min
j

〈
w

|w|
, xj

〉
≤ m ≤ |w| , w ∈ X .

lower bound upper bound

http://cmp.felk.cvut.cz


19/22
ε-solution

� The aim is to speed up the algorithm.

� The allowed uncertainty ε is introduced.

|wt| −min
j

〈
wt

|wt|
, xj

〉
≤ ε

origin

y

wt

wt+1
w =(1-y)w +y xt+1 t t

http://cmp.felk.cvut.cz


20/22
Kozinec and the ε-solution

The second step of Kozinec algorithm is modified to:

A wrongly classified observation xt is sought, i.e.,

|wt| −min
j

〈
wt

|wt|
, xt

〉
≥ ε

m

0

ε

t

|w |
t

http://cmp.felk.cvut.cz


21/22

Learning task formulation
for infinite training sets

The generalization of the Anderson’s task by M.I. Schlesinger (1972) solves a
quadratic optimization task.

� It solves the learning problem for a linear classifier and two hidden states
only.

� It is assumed that a class-conditional distribution pX|Y (x | y) corresponding
to both hidden states are multi-dimensional Gaussian distributions.

� The mathematical expectation µy and the covariance matrix σy, y = 1, 2,
of these probability distributions are not known.

� The Generalized Anderson task (abbreviated GAndersonT) is an extension of
Anderson-Bahadur task (1962) which solved the problem when each of two
classes is modelled by a single Gaussian.

http://cmp.felk.cvut.cz


22/22
GAndersonT illustrated in the 2D space

Illustration of the statistical model, i.e., a mixture of Gaussians.

y=1

y=2

�
2�

1

�
3

�
4

�
5

q

� The parameters of individual Gaussians µi, σi, i = 1, 2, . . . are known.

� Weights of the Gaussian components are unknown.

http://cmp.felk.cvut.cz

	First page
	ccmp A classifier
	ccmp Classifier, an illustration
	ccmp A multi-class decision strategy
	ccmp Linear discriminant function $q(x)$
	ccmp Dichotomy, two classes only
	ccmp Learning linear classifiers
	ccmp Learning tasks formulations\ For finite training sets
	ccmp Perceptron learning: Task formulation
	ccmp Perceptron learning: the algorithm 1957
	ccmp Novikoff theorem, 1962
	ccmp Idea of the Novikoff theorem proof
	ccmp An alternative training algorithm\ Kozinec (1973)
	ccmp Perceptron learning \as an optimization problem (1)
	ccmp Perceptron learning\ as an Optimization problem (2)
	ccmp Perceptron algorithm
	ccmp The optimal separating plane\and the closest point to the convex hull
	ccmp The convex hull, an illustration
	ccmp $varepsilon $-solution
	ccmp Kozinec and the $varepsilon $-solution
	ccmp Learning task formulation\ for infinite training sets
	ccmp GAndersonT illustrated in the 2D space
	Last page

