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Outline of the talk:
� A classifier, dichotomy, a multi-class
classifier.

� A linear discriminant function.

� Learning a linear classifier.

� Perceptron and its learning.

� ε-solution.

� Learning for infinite training sets.
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A classifier

Analyzed object is represented by

X – a space of observations, a vector space of dimension n.

Y – a set of hidden states.

The aim of the classification is to determine a relation between X and Y , i.e. to
find a discriminant function f : X → Y .

Classifier q : X → J maps observations Xn→ set of class indices J , J =
1, . . . , |Y |.

Mutual exclusion of classes is required

X = X1 ∪X2 ∪ . . . ∪X|Y |,

Xi ∩Xj = ∅, i 6= j, i, j = 1 . . . |Y |.
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Classifier, an illustration

� A classifier partitions the observation space X into class-labelled regions Xi,
i = 1, . . . , |Y |.

� Classification determines to which region Xi an observed feature vector x
belongs.

� Borders between regions are called decision boundaries.
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Several possible arrangements of classes.
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A multi-class decision strategy

� Discriminant functions fi(x) should have the property ideally:

fi(x) > fj(x) for x ∈ class i , i 6= j.

f (x)1

f (x)2

f (x)| |Y

max

x y

Strategy: j = argmax
j

fj(x)

� However, it is uneasy to find such a discriminant function. Most ‘good
classifiers’ are dichotomic (as perceptron, SVM).

� The usual solution: One-against-All classifier, One-against-One classifier.
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Linear discriminant function q(x)

� fj(x) = 〈wj, x〉+ bj, where 〈 〉 denotes a scalar product.

� A strategy j = argmax
j

fj(x) divides X into |Y | convex regions.
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Dichotomy, two classes only

|Y | = 2, i.e. two hidden states (typically also classes)

q(x) =

 y = 1 , if 〈w, x〉+ b ≥ 0 ,

y = 2 , if 〈w, x〉+ b < 0 .
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Perceptron by F. Rosenblatt 1957
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Learning linear classifiers

The aim of learning is to estimate classifier parameters wi, bi for ∀i.

The learning algorithms differ by

� The character of training set

1. Finite set consisting of individual observations and hidden states, i.e.,
{(x1, y1) . . . (xL, yL)}.

2. Infinite sets described by Gaussian distributions.

� Learning task formulations.
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Learning tasks formulations
For finite training sets

Empirical risk minimization: dummy dummy dummy dummy dummy

� True risk is approximated by Remp(q(x,Θ)) = 1
L

L∑
i=1

W (q(xi,Θ), yi),
where W is a penalty.

� Learning is based on the empirical minimization principle
Θ∗ = argmin

Θ
Remp(q(x,Θ)).

� Examples of learning algorithms: Perceptron, Back-propagation.

Structural risk minimization: dummy dummy dummy dummy dummy

� True risk is approximated by a guaranteed risk (a regularizer securing
upper bound of the risk is added to the empirical risk,
Vapnik-Chervonenkis theory of learning).

� Example: Support Vector Machine (SVM).
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Perceptron learning: Task formulation

Input: T = {(x1, y1) . . . (xL, yL)}, ki ∈ {1, 2},
i = 1, . . . , L, dim(xi) = n.

Output: a weight vector w, offset b
for ∀j ∈ {1, . . . , L} satisfying:

〈w, xj〉+ b ≥ 0 for y = 1,

〈w, xj〉+ b < 0 for y = 2.

X
n

w, x + b = 0

The task can be formally transcribed to a single
inequality 〈w′, x′j〉 ≥ 0 by embedding it into n+ 1

dimensional space, where w′ = [w b],

x′ =

{
[x 1] for y = 1 ,

−[x 1] for y = 2 .

We drop the primes and go back to w, x notation.

X
n+1

w’, x’ = 0
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Perceptron learning: the algorithm 1957

Input: T = {x1, x2, . . . , xL}.
Output: a weight vector w.

The Perceptron algorithm
(F. Rosenblatt):

1. w1 = 0.
2. A wrongly classified observation xj

is sought, i.e., 〈wt, xj〉 < 0,
j ∈ {1, . . . , L}.

3. If there is no misclassified
observation then the algorithm
terminates otherwise
wt+1 = wt + xj.

4. Goto 2.

wt

wt+1

xt
0

Perceptron update rule

w ,x = 0t
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Novikoff theorem, 1962

� Proves that the Perceptron algorithm converges in a
finite number steps if the solution exists.

� Let X denotes a convex hull of points (set of ob-
servations) X .

� Let D = max
i
|xi|, m = min

x∈X
|xi| > 0.

Novikoff theorem:
If the data are linearly separable then there exists a number
t∗ ≤ D2

m2, such that the vector wt∗ satisfies

〈wt∗, xj〉 > 0, ∀j ∈ {1, . . . , L} .

� What if the data is not separable?
� How to terminate the perceptron learning?
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Idea of the Novikoff theorem proof

Let express bounds for |wt|2 :

Upper bound:

|wt+1|2 = |wt + xt|2 = |wt|2 + 2 〈xt, wt〉︸ ︷︷ ︸
≤0

+|xt|2

≤ |wt|2 + |xt|2 ≤ |wt|2 +D2 .

|w0|2 = 0, |w1|2 ≤ D2, |w2|2 ≤ 2D2, . . .

. . . , |wt+1|2 ≤ tD2, . . .

Lower bound: is given analogically

|wt+1|2 > t2m2.

Solution: t2m2 ≤ tD2 ⇒ t ≤ D2

m2 .

|w |t
2

t
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An alternative training algorithm
Kozinec (1973)

Input: T = {x1, x2, . . . xL}.
Output: a weight vector w∗.

1. w1 = xj, i.e., any observation.
2. A wrongly classified observation xt is

sought, i.e., 〈wt, x
j〉 < b, j ∈ J .

3. If there is no wrongly classified
observation then the algorithm finishes
otherwise
wt+1 = (1− k) · wt + xt · k, k ∈ R,
where
k = argmin

k
|(1− k) · wt + xt · k|.

4. Goto 2.

wt

wt+1

b

xt

0

w ,x = 0t

Kozinec
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Perceptron learning
as an optimization problem (1)

Perceptron algorithm, batch version, handling non-separability, another
perspective:

� Input: T = {x1, x2, . . . , xL}.
� Output: a weight vector w minimsing

J(w) = |{x ∈ X : 〈wt, x〉 < 0}|
or, equivalently

J(w) =
∑

x∈X : 〈wt,x〉<0

1 .

What would the most common optimization method, the gradient descent,
perform?

wt = w − η∇J(w) .

The gradient of J(w) is either 0 or undefined. The gradient minimization cannot
proceed.

http://cmp.felk.cvut.cz


15/22

Perceptron learning
as an Optimization problem (2)

Let us redefine the cost function:

Jp(w) =
∑

x∈X : 〈w,x〉<0

〈w, x〉 .

∇Jp(w) =
∂J

∂w
=

∑
x∈X : 〈w,x〉<0

x .

� The Perceptron algorithm is a gradient descent method for Jp(w).

� Learning by the empirical risk minimization is just an instance of an
optimization problem.

� Either gradient minimization (backpropagation in neural networks) or convex
(quadratic) minimization (called convex programming in mathematical
literature) is used.

http://cmp.felk.cvut.cz


16/22
Perceptron algorithm

Classifier learning, non-separable case, batch version

Input: T = {x1, x2, . . . xL}.

Output: a weight vector w∗.
1. w1 = 0, E = |T | = L, w∗ = 0 .
2. Find all misclassified observations X− = {x ∈ X : 〈wt, x〉 < 0}.
3. if |X−| < E then E = |X−|; w∗ = wt, tlu = t.
4. if tc(w∗, t, tlu) then terminate else wt+1 = wt + ηt

∑
x∈X−

x.

5. Goto 2.

� The algorithm converges with probability 1 to the optimal solution.
� The convergence rate is not known.
� The termination condition tc(.) is a complex function of the quality of the
best solution, time since the last update t− tlu and requirements on the
solution.
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The optimal separating plane
and the closest point to the convex hull

The problem of the optimal separation by a hyperplane

w∗ = argmax
w

min
j

〈
w

|w|
, xj

〉
(1)

can be converted to a seek for the closest point to a convex hull (denoted by the
overline)

x∗ = argmin
x∈X

|x| .

It holds that x∗ solves also the problem (1).

Recall that the classifier that maximizes the separation minimizes the structural
risk Rstr.
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The convex hull, an illustration

w* = m

X

min
j

〈
w

|w|
, xj

〉
≤ m ≤ |w| , w ∈ X .

lower bound upper bound
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ε-solution

� The aim is to speed up the algorithm.

� The allowed uncertainty ε is introduced.

|wt| −min
j

〈
wt

|wt|
, xj

〉
≤ ε

origin

y
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w =(1-y)w +y xt+1 t t
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Kozinec and the ε-solution

The second step of Kozinec algorithm is modified to:

A wrongly classified observation xt is sought, i.e.,

|wt| −min
j

〈
wt

|wt|
, xt

〉
≥ ε

m

0

ε

t

|w |
t
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Learning task formulation
for infinite training sets

The generalization of the Anderson’s task by M.I. Schlesinger (1972) solves a
quadratic optimization task.

� It solves the learning problem for a linear classifier and two hidden states
only.

� It is assumed that a class-conditional distribution pX|Y (x | y) corresponding
to both hidden states are multi-dimensional Gaussian distributions.

� The mathematical expectation µy and the covariance matrix σy, y = 1, 2,
of these probability distributions are not known.

� The Generalized Anderson task (abbreviated GAndersonT) is an extension of
Anderson-Bahadur task (1962) which solved the problem when each of two
classes is modelled by a single Gaussian.

http://cmp.felk.cvut.cz
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GAndersonT illustrated in the 2D space

Illustration of the statistical model, i.e., a mixture of Gaussians.

y=1

y=2

�
2�

1

�
3

�
4

�
5

q

� The parameters of individual Gaussians µi, σi, i = 1, 2, . . . are known.

� Weights of the Gaussian components are unknown.
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