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Outline of the talk:
� Generative vs. discriminative classifier.
Maximal margin classifier.

� Minimization of the structural risk.

� SVM, task formulation, solution:
quadratic programming.

� Linearly separable case.

� Linearly non-separable case.

� Kernels.
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Introduction

� There are two principal approaches to the classifier design:

• Generative. The statistical model describes the joint distribution
p(x, y). To learn it, all combinations of x, y have to be observed, which
can be untractable.

• Discriminative (also conditional). The conditional probability p(y|x) or
(in SVMs) log p(y=+1|x)

p(y=+1|x) ≶ Θ is learned.

� So far, the generative approach was used. A known statistical model was
assumed ⇒ decision rule.

� Now, we will consider discriminative approach. We will assume that the class
of decision rules is known and we have to choose (discriminate) one of them.
V. Vapnik: “Learning is the selection of one decision rule from the class of
rules”.

http://cmp.felk.cvut.cz


3/35
Maximal margin classifier

� Maximizes margin between classes which increases generalization ability.

� The Vapnik’s Support Vector Machine is based on the same idea.
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Support vector machines, the task

� Two hidden states (classes) only, y1, y2.

� A separable hyperplane is sought which maximizes a distance (margin)
between classes.

� The task is converted into a quadratic programming task

(w∗, b∗) = argmin
w,b

1

2
‖w‖2

under constraints

〈w, xj〉+ b ≥ 1 for yj = 1

〈w, xj〉+ b ≤ −1 for yj = −1

http://cmp.felk.cvut.cz
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Support vector machines, a road map

Minimization of the structural risk
Theory how to learn classifier

Linear classifier, a maximal margin classifier
Seek for a maximal margin, respectively. a soft
margin for nonseparable data

Learning expressed as quadratic optimization
Primal task

Transformation of the primal task to the dual task
In dual task, data is expressed as scalar products

Support Vector Machines

Extension

Straightening of the feature space by
embedding into higher-dim linear space,
typically by use of kernel functions

http://cmp.felk.cvut.cz
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Minimization of the structural risk (1)

Introduction

� The classifier is learnt from a finite training set.

� The statistical model p(x, y) is unknown. Chervonenkis and Vapnik derived
an upper bound on ∑

x

∑
y

p(x, y)(y 6= Q(x)) .

which does not involve p(x, y).

� The upper bound is provided which sums errors on the training set and the
generalization error. When learning is performed it should minimize training
error and also the complexity of the classifier has to be controlled.

http://cmp.felk.cvut.cz
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Minimization of the structural risk (2)

Assumptions

� x ∈ Rn . . . observation of the object (a vector of measurements).

� y ∈ {−1, 1} . . . hidden states. This notation leads to more compact
derivations and formulas.

� There is a training set available
{(x1, y1), (x2, y2), . . . , (xL, yL)},
which is drawn randomly and generated by an unknown probability
distribution p(x, y).

http://cmp.felk.cvut.cz
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Minimization of the structural risk (3)

The aim is to find a classifier (decision strategy) q(x,Θ),

where Θ is a parameter (usually vector of parameters) with the minimal expected
classification error

Rexp(q(x,Θ)) =

∫
1

2
|y − q(x,Θ)| d p(x, y)

The simple approximation of Rexp is the empirical risk Remp,

Remp(q(x,Θ)) =
1

L

L∑
i=1

1

2
|yi − q(xi,Θ)| .

Note: a 1/0 loss (penalty) function is used, i.e.,

1

2
|y − q(x,Θ)| =

{
0 if y = q(x,Θ) ,

1 if y 6= q(x,Θ) .
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Minimization of the structural risk (4)

Complications

The expected risk Rexp(q(x,Θ)) cannot be calculated because the joint
probability distribution p(x, y) is unknown.

Solution

Use the upper bound called guaranteed or structural risk J(Θ) as proposed by
Vapnik-Chervonenkis.

R(Θ) ≤ J(Θ) = Remp(Θ) +

√
h
(
log
(
2L
h

)
+ 1
)
− log

(
η
4

)
L

.
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Minimization of the structural risk (5)

� Remp = 1
L

∑L
i=1

1
2|yi − f(xi,Θ)| is the empirical risk.

� h is a VC dimension characterizing the class of decision functions
q(x,Θ) ∈ Q.

� L is the length of the training multi-set.

� η is the degree of belief into the bound R(q(x,Θ)), i.e., 0 ≤ η ≤ 1.

� Structural risk minimization principle means a selection of a classifier based
on a minimization of the guaranteed risk J(Θ).

� Support Vector Machines implement an instance of the structural risk
minimization principle.

http://cmp.felk.cvut.cz
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Linearly separable SVM (1)

The aim is to find a linear discriminant function

q(x,w, b) = sign(〈w, x〉+ b) = sign
(
wTx+ b

)

R

m

� VC dimension (capacity) depends on the
margin m

h ≤ R2

m2
+ 1

� R is given by the data itself.

� Margin m can be optimized in the clas-
sifier design.

Conclusion: separation hyperplanes with larger margin have lower VC dimension
⇔ lower value of the upper bound.

http://cmp.felk.cvut.cz
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Linearly separable SVM (2)

The separating hyperplane is sought which maximizes distance to data (margin).
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Linearly separable SVM (3)

w

x

d

�

Derivation of the distance d between the observation xi and the separating
hyperplane wTxi + b = 0

cosα =
wTxi
‖w‖‖xi‖

, cosα =
d

‖xi‖
⇒ d =

wTxi + b

‖w‖

The parameter b gives the distance from the origin of coordinates.

http://cmp.felk.cvut.cz
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Linearly separable SVM, a primal task

The optimization task

(w∗, b∗) = argmax
w,b

min
i=1,...,L

wTxi + b

‖w‖
yi

can be converted in to a standard quadratic programming problem (primal task)

(w∗, b∗) = argmin
1

2
‖w‖2

wTxi + b ≥ +1 , yi = +1

wTxi + b ≤ −1 , yi = −1

http://cmp.felk.cvut.cz
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Towards the dual task

� The aim is to convert the problem into a dual formulation which allows to
use kernel functions.

� Lagrange function L is introduced, αi are Lagrange multipliers,

L(w, b, αi) =
1

2
‖w‖2 −

L∑
i=1

αi
(
wTxi + b

)
yi +

L∑
i=1

αi . (Eq. 1)

� Now we have formulated the dual task,

(w∗, b∗, α∗) = argmin
w,b

max
α≥0

L(w, b, α) Primal task.

(w∗, b∗, α∗) = argmax
α≥0

min
w,b

L(w, b, α) Dual task.

� For convex problems, both formulations lead to the same optimum.

http://cmp.felk.cvut.cz
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The solution to the dual task

min
w,b

max
αi>0

L(w, b, αi) = max
αi>0

min
w,b

L(w, b, αi)

Seek optimum, i.e., 1st partial derivatives = 0,

∂L

∂w
= 0 ⇒ w =

L∑
i=1

αiyixi ,
∂L

∂b
= 0 ⇒

L∑
i=1

αiyi = 0 .

Substitute to (Eq. 1), get rid off w, b and get

αi = argmax
αi

L∑
i=1

αi −
1

2

L∑
i=1

L∑
j=1

αiαjyiyjx
T
i xj ,

αi ≥ 0 ,

L∑
i=1

αiyi = 0 .

http://cmp.felk.cvut.cz
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SVM decision strategy

w =

L∑
i=1

αi yi xi .

q(x) = w>x+ b =

L∑
i=0

αi x
>
i x+ b .

http://cmp.felk.cvut.cz
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SVM – the primal and the dual tasks

Primal task Here is a dummy long sentence.

� Optimized according to vector w ∈ Rn and b ∈ R.

� Number of variables is L+ 1.

� Number of linear constraints is 2L.

Dual task Here is a dummy long sentence.

� Optimized according to α1, α2, . . . , αL, αi ∈ R.

� Number of variables is L.

� Number of linear constraints is L+ 1.

� Data appear as scalar products only, i.e., xTi xj.

http://cmp.felk.cvut.cz
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The dual task properties, cont.

� The solution is sparse. Many αi equal to 0.
αi = 0 ⇒ yi(w

Txi + b) ≥ 1.
αi > 0 ⇒ yi(w

Txi + b) = 1.

� Data xi for which αi > 0 are called Support Vectors.

α > 0

α > 0

α > 0

α = 0

α = 0

α = 0
α = 0

α = 0

α = 0
f(x) = -1f(x) = +1

w =

L∑
i=1

αiyixi =
∑
i∈SV

αiyixi

Calculation of b for i ∈ SV:

yi(w
Txi+b) = 1⇒ b =

1− yiwTxi
yi

= yi〈w, x〉

One support vector should be enough.
Practically, many many support vectors, mean
of b.

http://cmp.felk.cvut.cz
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SVM linearly non-separable

Nonseparable data. ⇔ It is not possible to find separable hyperplane without
errors.

ξ = 0

ξ = 0

f(x) = -1f(x) = +1

||w||

ξi

||w||

ξi

Solution: Regularization, i.e., introduction of slack variables ξ ≥ 0 ⇒ Soft
Margin SVM.

http://cmp.felk.cvut.cz
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A soft margin SVM

(w∗, b∗, ξ∗) = argmin
w,b,xii

1

2
‖w‖2 + C

L∑
i=1

ξyi , where

C is a regularization constant. C =∞ represents the separable case.

wTxi + b ≥ +1− ξi , yi = +1

wTxi + b ≤ −1 + ξi , yi = −1

Optimization criterion, marginal behavior

� min ‖w‖2 – maximization of the margin.

�
∑L
i=1 ξ

y
i – number misclassified training points (upper bound on the

empirical error).

Quadratic programming for the dichotomic task, i.e., y = 1, 2 or |Y| = 2.

http://cmp.felk.cvut.cz
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SVM linearly non-separable, cont.

� Transform to the dual task, analogically to the separable case.

αi = argmax
αi

L∑
i=1

αi −
1

2

L∑
i=1

L∑
j=1

αiαjyiyjx
>
i xj ,

0 ≤ αi ≤ C ,

L∑
i=1

αiyi = 0 .

Note: ≤ C above is the only difference when comparing to the linearly
separable case.

� The decision strategy is

q(x) = w>x+ b =

L∑
i=0

αi x
>
i x+ b .

http://cmp.felk.cvut.cz
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Soft margin SVM, the theoretic backing

Risk =
C

L

R2 +
(∑L

i=1 ξi

)
log
(
1
L

)
m2

log2L+ log

(
1

η

)
is minimized when

‖w‖2R+

(
L∑
i=1

ξi

)
log

(
1√

(‖w‖)

)

will be minimal.

This matches to Soft Margin SVM criterion with exception to the last term on
the right side.

http://cmp.felk.cvut.cz
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Interpretation of the constant C

� Parameter C represents a trade-off between misclassification and classifier
complexity (given by the VC-dimension).

• Large values of C favor solutions with few misclassifications.

• Small values of C express a preference towards low-complexity solutions.

� Parameter C can be viewed as a regularization parameter.

� A suitable value for C is typically determined by trying several values of
C = C1, . . . , Cm. The best value is selected by cross-validation.

http://cmp.felk.cvut.cz
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SVMs and nonlinear tasks

� We learned already about the possibility to explicitly straighten quadratic
decision strategies by embedding the problem into a higher dimensional
linear space and the linear classifier for them.

� Φ: X → F , such as q′(x,w, b) = w>Φ(x) + b =
∑n
i=1wiΦi(xi) + b.

� After the mapping Φ(x) is used, the decision strategy q′(x,w, b) is linear in
F .

� The problem is the excessively high dimension of the obtained linear space,
dim(F)� dim(X ). The original n dimensional nonlinear space is
transformed into the

(
n+ 1

2 n(n+ 1)
)
-dimensional feature space.

Example:
Old dimension 1 2 3 4 5 6 10 20
New dimension 2 5 9 14 20 27 65 230

http://cmp.felk.cvut.cz
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Problems of a naïve feature space straightening

Two major problems:

1. Statistical: operation on high-dimensional spaces is ill-conditioned due to the
‘curse of dimensionality’ and the subsequent risk of overfitting.

2. Computational: working in high-dimensions requires higher computational
power, which poses limits on the size of the problems that can be tackled.

SVM solution to the problems:

1. Generalization capabilities in the high-dimensional manifold are ensured by
enforcing the largest margin classifier. Generalization in SVMs is strictly a
function of the margin (or the VC-dimension), regardless of the
dimensionality of the feature space.

2. Projection onto a high-dimensional manifold is only implicit because
observations from the training set appear as dot products only. Non-linear
mapping is realized by kernels.

http://cmp.felk.cvut.cz
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Kernel functions

� There is a ‘kernel trick’ which allows to perform calculations more efficiently
if the classification algorithm uses observations x only in the form of a dot
product.

� Kernel functions κ : X × X → R are symmetric and positive-definite.

� Kernel function κ(x1, x2)
.
= Φ>(x1) Φ(x2), i.e., the kernel function equals

to the scalar product of the non-linearly mapped original features.

� Kernel function κ(x1, x2) can be evaluated without explicit mapping
Φ: X → F .

Note related to the notation: Kernel functions are usually denoted by y in
the literature. We follow the notation used in the book Schlesinger, Hlavac 2002
and use y for hidden state. This would create a conflict. We solve the conflict by
denoting kernel functions by the Greek letter κ (kappa). Many authors denote
hidden state by y and not have this problem.

http://cmp.felk.cvut.cz
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SVM, non-separable linearly with kernels

� Transition to the dual task and related optimization using Lagrange
coefficients αi, i = 1 . . . L, is analogical to the linear non-separable case.

� The dot product x>i xj is replaced by the kernel κ(xi, xj).
� The optimization problem reads now

αi = argmax
αi

L∑
i=1

αi −
1

2

L∑
i=1

L∑
j=1

αiαjyiyjκ(xi, xj) ,

0 ≤ αi ≤ C ,
L∑
i=1

αiyi = 0 .

� The decision strategy is

q(x) = w>Φ(x) + b =

L∑
i=0

αi κ(xi, x) + b .

http://cmp.felk.cvut.cz
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How do we select a kernel function?

� Mercer’s condition tells us whether or not a candidate kernel is actually an
inner-product kernel in some space.

� Let κ(x1, x2) be a continuous symmetric kernel defined in the closed
interval a ≤ x ≤ b. The kernel can be expanded into series∑∞
i=1 λiφ(x1)φ(x2). Functions φ reside in the Hilbert space, a

‘generalization’ of an Euclidean space where the inner product can be any
inner product, not just the common dot product.

� Consider λi > 0, ∀i. The necessary and sufficient condition for the uniform
convergence of the above series is that∫ b

a

∫ b

a

κ(x1, x2)ψ(x1)ψ(x2) dx1dx2 ≥ 0 ,

holds for all ψ(.), for which
∫ b
a
ψ2(x)dx <∞.

http://cmp.felk.cvut.cz
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How do we select a kernel function?, cont.

� Functions φi(.) are called eigenvectors of the expansion. Numbers λi are
eigenvectors.

� The fact that all of the eigenvalues are positive means that the kernel is
positive definite.

� Notice that the dimensionality of the implicit space can be infinitely large.

� Mercer’s condition only tells us whether a kernel is actually an inner-product
kernel. It does not tell us how to construct the functions φi(x) for the
expansion.

http://cmp.felk.cvut.cz
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Kernels complying to Mercer’s condition

� Polynomial kernels of degree p, κ(x1, x2) =
(
x>1 x2 + 1

)p.
� Radial basis functions

κ(x1, x2) = exp

(
−1

2σ2
‖x1 − x2‖2

)
.

The width of the kernel σ is a user defined parameter. The number of radial
basis functions is determined automatically.

� Two layer perceptron κ(x1, x2) = tanh(β0 x
>
1 x2 + β1)

The number of hidden neurons and their weight vectors are determined
automatically by the number of support vectors and their values, respectively.
The hidden-to-output weights are the Lagrange multipliers αi. However, this
kernel will only meet Mercer’s condition for certain values of β0 and β1.

http://cmp.felk.cvut.cz
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Problems with kernel functions

Kernel methods yield the solution in the form

q(x) = Φ>(x) ·
L∑
i=1

αiΦ(xi)︸ ︷︷ ︸
w∈F

+ b =

L∑
i=1

αi κ(x, xi) + b ,

where [x1, . . . , xL] is the sequence of vectors in the training set.

� The decision function q(x) =
L∑
i=1

αi κ(x, xi) + b is not sparse, i.e., a lot of
αi are non-zero ⇒ slow evaluation.

� Representation of the training set in terms of a dot product is memory
demanding for large L since the full kernel matrix Yi,j = κ(xi, xj) has
dimension [L× L].

� Evaluation of κ(xi, xj) can be computationally demanding.

http://cmp.felk.cvut.cz


33/35
Notes on SVM performance

� SVMs work very well in practice.

� The user chooses the kernel function, its parameters and the regularization
constant C. The rest is automatic.

� SVMs can be expensive in time and space for large datasets.

• The computation of the maximum-margin hyper-plane has a lower
bound O(L2) for the nonlinear case and O(L) for the linear case.

• All the support vectors have to be stored in a memory.

http://cmp.felk.cvut.cz
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Multi-class SVMs

Several approaches are used:

� Direct multi-class formulation.

� One-against all.

� One against one.

� DAG, Directed Acyclic Graphs.

http://cmp.felk.cvut.cz
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Multi-class SVMs, one-against-all

� So far, we have considered only SVMs handling two-class problems, i.e,
dichotomic classification.

� If the task is to classify into N classes then then learn N independent SVMs
such that

• SVM 1 learns y = 1 vs. y 6= 1.

• SVM 2 learns y = 2 vs. y 6= 2.

• . . .

• SVM N learns y = N vs. y 6= N .

� In a run mode when deciding about new observation, apply all N SVMs and
select the class by looking which SVM puts the prediction the furthest into
the positive region.

http://cmp.felk.cvut.cz
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