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Abstract. The human brain undergoes structural
changes in size and in morphology between the sec-
ond and the third trimester of pregnancy, corre-
sponding to accelerated growth and the progress of
cortical folding. To make fetal brains comparable,
spatio-temporal atlases are used as a standard space
for studying brain development, fetal pathology loca-
tions, fetal abnormalities or anatomy. The aim of this
work is to provide a continuous model of brain devel-
opment and to use it as base for an automatic tissue
labeling framework. This paper provides a novel lon-
gitudinal fetal brain atlas construction concept for
geodesic image regression using three different age-
ranges which are parametrized according to the de-
velopmental stage of the fetus. The dataset used for
evaluation contains 45 T2−weighted Magnetic Res-
onance (MR) volumes between Gestation Week (GW)
18.0 and GW 30 day 2. The automatic tissue label-
ing framework estimates cortical segmentations with
a Dice Coefficient (DC) of up to 0.85 and ventricle
segmentations with a DC of up to 0.60.

1. Introduction

The aim of brain mapping experiments is to cre-
ate maps (models), based on studies, to understand
structural and functional brain organization. To this
end, neuroimaging methods as well as knowledge of
neuroanatomy and physiology are combined. Due to
the fundamental changes occurring in the human fe-

tal brain during pregnancy, a single map is not suf-
ficient to model brain development [19]. Changes
in size, according to accelerated growth, changes in
morphology, due to the progress of cortical folding
and deceleration of the proliferation of ventricular
progenitor cells [16] occur and are illustrated in Fig-
ure 1a. Thus, a collection of brain maps is needed
to describe these alterations as a function of time.
For studying the brain organisation during its de-
velopment, abnormalities, and locations of patholo-
gies, brain maps are used as a reference model [18].
Newly acquired brain images are labelled to iden-
tify structures and possible abnormal changes or to
find indicators for diseases. This labeling can be per-
formed manually by annotating the images, which
needs an expert, time and consequently leads to in-
creased costs compared to an automatic labeling pro-
cedure [3]. In this case, labels for non annotated
images are estimated automatically by software us-
ing a brain model for the mapping. Such an auto-
mated labeling procedure on the one hand and a ref-
erence model on the other form an atlas. To cover the
time-dependent development of the fetal brain, time-
varying reference models are considered for building
spatio-temporal atlases.

1.1. State-of-the-Art

State-of-the-art approaches [8, 10, 13, 17, 21] for
computing a spatio-temporal atlas combine registra-
tion methods and interpolation techniques to obtain
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(a) Fetal Brain Development (b) Observable Brain Structures

Figure 1: Left: MR imaging and schematic illustration of the fetal brain development at GW 20, 23 day 3 and
30 day 2. Right: Illustration of identifiable brain structures in a T2 weighted fast MR image acquired with a
1.5 Tesla scanner (Grey Matter (GM), White Matter (WM), the VENTricles (VENT) and the Germinal MATrix
(GMAT) [21]). Also extraventricular Cerebro Spinal Fluid (CSF), Deep Grey Matter (DGM) and Non-Brain
structures (NB), like skull or amniotic fluid are identifiable. MR images courtesy of Medical University of
Vienna (MUW).

continuity in time. The use of an ”all-to-one” ap-
proach (a single subject as reference) introduces sub-
stantial bias. The brain structures of fetuses can-
not be described by one image, since it does not re-
flect occurring changes over time [10, 17]. Exclu-
sive pairwise affine registration for image alignment
results in blurred regions in the templates obtained
by intensity averaging. Affine registration is not ca-
pable of compensating local inter-subject variabil-
ity [17]. This leads to worse registration results be-
tween atlas-based segmentations and individual ob-
jects compared to non-rigid approaches, which show
a higher level of detail [17]. An advantage of pair-
wise approaches lies in the registration of wider age-
ranges between 15 to 18 Gestation Weeks (GW),
compared to groupwise approaches, which are able
to cover only small age ranges between 5 to 8 GW.
A benefit of groupwise registration approaches is
the template-free estimation of the initial reference
space. The template is estimated and updated dur-
ing the registration procedure [10]. The main limita-
tions of groupwise registration lie in the lower level
of anatomic definition [17]. Examples for pairwise
approaches can be found in [10, 17] and for group-
wise approaches in [8, 13, 21].

1.2. Challenges

Imaging of a fetus in utero is challenging, due to
its constantly changing position, which causes image
unsharpness and artefacts [5]. Thus, a main issue in
fetal imaging lies in shortening the image acquisi-
tion time to 20 seconds and to use motion correc-
tion techniques [4]. The Magnetic Resonance (MR)

imaging technique is used as an alternative to ultra-
sonography for prenatal diagnosis and is able to im-
age a fetus in a non-invasive way. Distinguishable
brain structures using this technique are illustrated in
Figure 1b. A problem of MR imaging is the lack of
comparability and constancy of gray-values. Thus,
for the comparison of brains of adult patients, an at-
las as a standard space is required, which avoids the
gray-value discrepancies. The brains are mapped to a
standardized coordinate system according to marked
anatomical locations. However, the fetal brain is a
developing structure. In comparison to building an
atlas of an adult brain, the fast change of a fetal brain
in shape and size has to be taken into account [10].
Also, fetal brains at a certain GW show differences in
orientation shape and size. Possible reasons are the
inaccuracy in determination of the gestational age,
inter-patient variability or pathological growth pro-
cesses [15]. The motivation for building a fetal atlas
is the possibility to compare fetal brains for study-
ing brain development, fetal pathology locations, fe-
tal abnormalities or anatomy.

1.3. Contribution

We create a tissue labeling framework for corti-
cal and ventricle structures in the fetal brain from
GW 18 to GW 30. An automatic segmentation pro-
cedure including a longitudinal fetal brain atlas and
a labeling procedure are considered. In our work
we demonstrate that image regression is capable to
build a spatio-temporal atlas of the fetal brain and
is able to model a mean trajectory encoding the
brain development in a single diffeomorphic defor-



mation, instead of calculating discrete age-dependent
templates combined with interpolation. As found
in literature [7, 9, 11], image regression for time-
series data have been evaluated only using adult- and
child-brain datasets, which record changes of brain
structure over time. In the proposed work the lo-
cal inter-subject variability is considered to be mod-
elled continuously in time and non-rigidly in space
by geodesic regression [1, 2]. The computed atlas
is used as a prior of the Graph Cut (GC) approach
for multi label segmentation proposed by Yuan et
al. [20].
The paper is organized as follows. In Section 2 an
overview of the methodology used and the concept
of the tissue labeling framework proposed is pre-
sented. The results and the corresponding discussion
are given in Section 3. This work concludes with a
summary of the contributions in Section 4.

2. Methodology

The framework proposed is illustrated in Figure 2.
The input represents a gray value image Inew at time
point tnew, which is preprocessed in a first step, by
performing motion correction, rigid alignment, im-
age masking and image cropping. Subsequently, the
longitudinal diffeomorphic fetal brain atlas is used to
estimate a time point tnew corresponding diffeomor-
phic transformation for computing a time-dependent
intensity image IA and a time-dependent segmenta-
tion for ventricular and cortical tissue Stissue

A in atlas
space. In a pairwise registration procedure, a trans-
formation T from the preprocessed input (Aligned
Inew) to the atlas-based intensity image IA is esti-
mated. The inverse of the computed transformation
T−1 is used to transform the atlas based segmenta-
tions Stissue

A to the subject’s space (Stissue
A ◦ T−1 =

Stissue
GC ). As next step the transformed segmentations
Stissue
GC and Inew are used as input parameters for the

multi label GC segmentation refinement. The output
of the framework are segmentations for ventricular
and cortical brain tissues Stissue

new of the input image
Inew.

2.1. Image Acquisition and Preprocessing

The time series MR image dataset used consists
of 45 healthy fetal brains with an age range between
18 and 30 GW. The MR image acquisition is per-
formed using an 1.5 Philips Gyroscan superconduct-
ing unit scanner performing a single-shot, fast spin-
echo T2-weighted MR sequence: In-plane resolu-

tion = 0.78 - 0.9 pixels per mm, Slice thickness =
3 - 4.4mm, Acquisition matrix = 256×256, Field
of view = 200 - 230mm, Specific Absorption Rate
(SAR) = < 100% /4.0W/kg, Image acquisition time
= ≤ 20s, TE (Echo Time) = 100 - 140ms, TR (Rep-
etition Time) = 9000 - 19000ms. The dataset of MR
images used for atlas learning are preprocessed using
the pipeline illustrated in Figure 2. First the images
are motion corrected using the toolkit for fetal brain
MR images published by Rousseau et al. [14]. Sub-
sequently, the manual annotation of the cortex, left
and right eye, ventricle and occipital foramen mag-
num is performed by an expert. After this step, the
data is rigidly aligned, the surrounding mother tissue
is excluded in a masking step and the volumes are
cropped to reduce computational costs in the longi-
tudinal registration procedure using a bounding box
of size 90× 140× 140 voxels.

2.2. Spatio Temporal Atlas Learning

The algorithm used for Diffeomorphic Anatom-
ical RegistraTion using Exponential Lie algebra
(DARTEL) of Ashburner et al. [1, 2] for geodesic
regression is integrated in the Statistical ParaMetric
(SPM) tool box - release SPM8 1. This approach
is used to encode the brain development in a single
diffeomorphic deformation by optimising the energy
term E expressed in Equation 1 [2].

E =
1

2
‖Lv0‖2+

1

2

N∑
n=1

( ∫
x∈Ω

‖It0 − Itn(ϕtn)‖
2 dx

)
(1)

The term ϕtn denotes the forward deformation from
source It0 to target Itn at time point tn, where n =
1, . . . , N and L represents a model of the ”inertia”
of the system, i.e. a linear operator which operates
on a time-dependent velocity that mediates the defor-
mation over unit time [2]. It is introduced to derive
an initial momentum m0 through an initial velocity
v0. The velocity field v(x) learned at position x is
parametrised using a linear combination of i basis
functions. Such basis functions consist of a vector
of coefficients ci and a ith first degree B-spline basis
function ρi(x) (cf. Equation 2) [1].

v(x) =
∑
i

ciρi(x) (2)

The aim of the DARTEL implementation is to esti-
mate an optimized parametrisation of c. The energy

1http://www.fil.ion.ucl.ac.uk/spm/;
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Figure 2: Fetal brain tissue labeling framework. MR images courtesy of MUW.

cost term E in Equation 1 is reformulated in terms
of finding the coefficients of c for a given dataset D
with maximum probability (cf. Equation 3). A maxi-
mization of the probability leads to the minimization
of its negative logarithm and thus, is used to interpret
registration of data D as a minimization procedure
of the objective function (− log p(c,D)) expressed
in Equation 3, consisting of a prior term (− log p(c))
and a likelihood term (− log p(D|c)) [1].

− log p(c,D) = − log p(c)− log p(D|c) (3)

The prior term denotes the prior probability p(c).
Ashburner et al. [1] use a concentration matrix (in-
verse of a covariance matrix) K to encode spa-
tial variability. The parameters [λ1, λ2, λ0, λ, µ],
which have to be predefined to computeK, influence
the behaviour of the deformation (bending energy,
stretching, shearing) as well as the divergence and
amount of volumetric expansion or contraction [1].
The term λ0 encodes the penalisation of absolute dis-
placements, λ1 penalises the difference between two
neighboured vectors by observing the first derivatives
(linear term) of the displacements, λ2 penalises the
difference between the first derivatives of two neigh-
boured vectors by observing the second derivatives
of the displacements and λ denotes the variability of
the spatial locations (divergence of each point in the
flow field) with a constant value. Increasing λ leads
to increasing smoothing of the flow vector field and
preserves volumes during the transformation. The

term µ encodes the variance according to symmetric
components, rotations and the penalisation of scaling
and shearing. The likelihood term encodes the prob-
ability of c given the data D [1] and corresponds to
the mean-squared difference between a warped tem-
plate deformed by the calculated transformation and
the target image.

2.2.1 Optimisation Procedure

A Full Multi Grid (FMG) approach is used to solve
the equation (cf. Equation 4) which is needed to up-
date the vector field during a Gauß-Newton opti-
mising procedure, where H iter denotes the Hessian,
giter the gradient and K the concentration matrix.
Details regarding the computation of viter+1

0 are ex-
plained in [1, 2].

viter+1
0 = viter0 − ε(K +Hiter)−1

(Kviter0 + giter) (4)

For this task images are observed in different scales.
For every resolution level multigrid methods recur-
sively estimate the field, starting at the coarsest scale
and computing the residual to solve the update equa-
tions on the current grid. Subsequently, the solution
is prolongated to the next finer grid [1].

2.3. Automatic Tissue Labeling using Graph Cuts

For tissue labeling, we use a continuous max flow
formulation of a multi label GC [20]. Three input
parameters are necessary for performing tissue seg-
mentation. A data term (gray value volume Inew



at age tnew), a cost (unary) term, and a penalty
(binary) term. For computing a unary term, atlas
based segmentations for cortex and ventricle tissue
Stissue = {Scortex, Sventricle} at age t are estimated
and smoothed with a Gaussian filter G. The parame-
ter δ is defined to weight the smoothed result with a
constant factor. The unary term is illustrated in Equa-
tion 5, where ? denotes the convolution operator.

C = δ ∗ (Stissue ? G) (5)

Three different binary terms are evaluated:
Penalty term 1 (P1) is a weighted norm of the gra-
dient of the data term D (cf. Equation 6), where δ
denotes the same weighting term as used in Equation
5 and a, b are constant weighting parameters.

P1 = δ ∗ b

1 + (a ∗ ‖∇D‖)
(6)

Penalty term 2 (P2) denotes an intensity based term
and is calculated separately for cortex and ventri-
cle segmentation (cf. Equation 7). Tissue type spe-
cific gray values are modelled as Gaussian distribu-
tions N∼(µtissue, σtissue), which parameters µtissue
and σtissue are estimated using the a-priori atlas seg-
mentation. These parameters are used to calculate
the probability of every pixel belonging to cortex or
ventricle. Subsequently, the gradient of the resulting
probability map P and its norm are computed and
weighted by the parameters δ, a, b as shown in Equa-
tion 6.

P2 = δ ∗ b

1 + (a ∗ ‖∇P (µtissue, σtissue)‖)
(7)

Penalty term 3 (P3) represents an exponential for-
mulation and is expressed in Equation 8. The param-
eter u is a constant and v a linear weighting parame-
ter. The term w weights the norm of the image’s D
gradient non-linearly in the exponential term.

P3 = u+ v ∗ exp
(
−‖∇D‖

w

)
(8)

3. Results

Evaluation of the proposed framework is per-
formed using leave-one-out cross validation. In this
paper a novel longitudinal registration procedure is
formulated by dividing the data set into three age
ranges, based on the developmental stage of the fetus.
Age range 1 reaches from 20 GW day 6 (146 GD) to
23 GW day 3 (164 GD), age range 2 from 23 GW

day 3 (164 GD) to 26 GW day 2 (184 GD) and age
range 3 from 26 GW day 2 (184 GD) to 30 GW day 2
(212 GD). The first part of the evaluation documents
the atlas learning results for each age range. Subse-
quently, the atlases computed are used to evaluate the
tissue labeling procedure as a second part of the eval-
uation. Estimated atlas templates at the testing time-
point are pairwise registered to the test MR volume to
obtain a transformation T . The inverse T−1 is used
to transform the atlas based segmentation to the test-
subject’s space. As last step the segmentation of the
test volume using the transformed atlas is computed.
To evaluate our approach, we report the overlap be-
tween automatic- and manual segmentations of the
fetal cortex and ventricles. In the leave-one-out cross
validation, we compare the Dice Coefficient (DC) [6]
between the groundtruth annotation and different au-
tomatic segmentations based on (1) the atlas, (2) the
transformed atlas, and (3) the GC segmentation opti-
mization.
Furthermore, we report the volume of cortex and
ventricles, and the area of the cortical surface of the
atlas based segmentations.

3.1. Results Spatio-Temporal Atlas Learning

The deformation behaviour of image regres-
sion using 21 different regularisation kernels
K [λ1, λ2, λ0, λ, µ] (cf. Section 2.2) is evaluated for
every age range. Beside the DC also the behaviour
of the regularisation of the volume expansion and
changes of the area of cortical surface have to be
taken into account, when choosing a suitable ker-
nel. Atlas-based cortical and ventricle segmentations
are studied. According to the evaluation results, ker-
nel 1 (K1

[
0.01, 0.01, 9e−6, 1e−5, 1e−5

]
) is chosen

as suitable regularisation for age range 1, kernel 4
(K4

[
0.01, 9e−6, 9e−6, 0.01, 1e−5

]
) for age range 2

and kernel 7 (K7

[
0.01, 0.01, 9e−6, 0.01, 1e−5

]
) for

age range 3. Figure 3a shows examples of the at-
las templates learned and Figure 3b illustrates the
anatomical details of these at age GW 21 day 4 (GD
151), GW 24 day 3 (GD 171) and GW 29 (GD 203).
In both figures the growth of the brain structures is
observable. The brain model at age range 1 is char-
acterised by a smoother cortex surface in compari-
son to a brain at a higher age range. It also visu-
alises the increase of the cortical folding grade. Ac-
cording to Pugash et al. [12], the ventricles achieve
their thickest size in early gestation and regress in the
third trimester, which is not visible. The regularisa-
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Figure 3: Left: Atlas based templates of age range 1, 2 and 3 between GW 21 day 1 (GD 148) and GW 30
day 2 (GD 212). Right: Anatomical details of atlas based templates at age GW 21 day 4 (GD 151), GW 24
day 3 (GD 171) and GW 29 (GD 203). Coronal (first row), axial (second row) and sagital (third row) slices
are illustrated. Denoted structures: Sylvian Fissure (SF), InterHemispheric Fissure (IHF), Germinal MATrix
(GMAT), Lateral-VENTricle (L-VENT), Cingulate Sulcus (CiS), ColLateral Sulcus (CLS), Cavum of Septum
Pellucidum (CSP), Occipital Lobe (OL), Frontal Lobe (FL), Central Sulcus (CeS), PreCentral Gyrus (PreCG),
PostCentral Gyrus (PostCG), ParietoOccipital Sulcus (POS) and Calcarine Sulcus (CaS).

tion term for geodesic regression is not able to model
location specific volume expansion and shrinkage at
the same time. This leads to worse modelling results
for ventricles, compared to cortical structure, since a
kernel is chosen which models expansion. Addition-
ally, the subject specific variability of age-dependent
ventricle size in the dataset and the complex form of
ventricles complicate the determination of a suitable
kernel and consequently the registration procedure.
Observable structures at every age range are Sylvian
Fissures (SF), Lateral VENTricle (L-VENT), Inter-
Hemispheric Fissure (IHF), Cavum of Septum Pellu-
cidum (CSP), Occipital Lobe (OL) and Frontal Lobe
(FL). The SF show in the coronal and axial slices a
smooth bending at age range 1 and develop to a deep
fold at the lateral side of the brain at age range 3.
Also the IHF shows a deeper folding at age range
3 with Cingulate Sulcus (CiS) as additional form-
ing compared to age range 1. The Germinal MATrix
(GMAT) is existent until age range 2 and disappears
later in the third trimester of pregnancy. The Central
Sulcus (CeS) formation starts at age range 2 and gets
more apparent at age range 3 as well as the develop-
ing of the PreCentral Gyrus (PreCG) and PostCen-
tral Gyrus (PostCG). The ColLateral Sulcus (CLS) is
visible at age range 3 as well as the Calcarine Sulcus

(CaS) and PreOccipital Sulcus (POS).

3.2. Results Automatic Tissue Labeling

For pairwise registration kernel A
(KA

[
5e−3, 5e−3, 3e−5, 1e−5, 9e−6

]
) is used

for regularisation. The DC distributions of seg-
mentations of the cortex for age range 1, 2 and
3 are illustrated in Figure 4 on the top and for
ventricle segmentations on the bottom. The DC
distribution of atlas based and transformed atlas-
based segmentations using pairwise registration are
illustrated and the three dotted lines visualise the
DCs of GC based segmentations computed using
penalty terms 1, 2 and 3. For age range 1 the
highest DC improvement from 0.727 to 0.771 at
GD 158 is achieved by pairwise registration and GC
refinement compared to atlas based segmentations.
In contrast to this no improvement is reached at GD
151, but shows the highest DC of about 0.851. At
GDs older than 154 the GC refining using penalty
1 and penalty 2 achieve a higher DC increase of
about 0.02 compared to using penalty 3. At age
range 2 no improvement of transformed atlas based
segmentations is observed after pairwise registration,
which leads to a decrease of the DC. It is observed
that the labeling result of the pairwise registration
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Figure 4: DCs of automatically estimated labels of the cortex and ventricle at age range 1, 2 and 3.
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Figure 5: Top: Coronal view - segmentations of the cortex at GD 171 (GW 24 day 3), bottom: sagital view
- segmentations of the ventricle at GD 203 (GW 29). Segmentations are illustrated estimated by the atlas
(ATLAS), after the pairwise registration procedure (PW), estimated by the GC approach (GC) and manual
annotations (M).

has an influence on the GC labeling since it acts as
initialization of this procedure, best visible at GD
184. The GC refinement is able to compensate the
results of the pairwise registration between GD 164
and 184 and shows an increase of the DC between
atlas and graph-cut based segmentations in average
of about 0.02. At age range 3 an increase of DC at
every age range is achievable using GC refinement.
The highest improvement between atlas-based seg-
mentations and GC based segmentations is reached
at GD 206 with a DC increase from 0.71 to 0.795.
The highest DC at age range 3 of about 0.819 is
achieved at GD 203 and the lowest of about 0.575 at
GD 184. It is observable that pairwise registration

is not capable to compensate differences in volume
size or absolute displacements. If an estimated
segmentation has a bigger volume than the structure
to be segmented or is displaced, then the borders of
neighboured tissue prevents the GC approach from
cutting through regions of a high gradient, since
this would lead to increasing costs in the energy
minimisation procedure. Consequently, the GC is
not capable to refine the segmentation. In Figure 5
an example for a misaligned segmentation and its
deformation through the labeling procedure is illus-
trated. The displacement is observable at the IHF in
the first column and the superior part of the anterior
horn of the ventricle in the second column. Test



data and corresponding estimated segmentations,
transformed segmentations to subject’s space and
GC based segmentations of the cortex at GD 171
(top) and of ventricular tissue at GD 203 (bottom)
are shown. The GC segmentations are computed
using the penalty term 3, since it shows the best
improvement between atlas-based and GC based
segmentations.

4. Conclusion

In this paper an automatic fetal brain tissue label-
ing framework using geodesic image regression was
presented and was identified to be suitable as regis-
tration approach to longitudinally model the changes
of the brain during the 18th and 30th GW. The advan-
tage is the provision of a time-dependent transforma-
tion from a source to a target brain, instead of com-
bining a template building technique and interpola-
tion technique to obtain continuity in time. A novel
longitudinal registration scheme was proposed, using
separate age ranges for flexible regularisation of the
deformation behaviour due to the age range depen-
dent changes. The atlas learned was evaluated us-
ing a leave-one-out cross validation approach for ev-
ery age range and 21 different regularisation kernels
were analysed according to their behaviour regard-
ing volume expansion, modelling of cortical surface
and Dice similarity to manual annotations. The fe-
tal brain atlas proposed is not capable of modelling
the thinning of ventricles from age range 1 to age
range 3. Since the proposed method uses one regu-
larisation kernel per age range, geodesic regression
is not able to regularise location specific volume ex-
pansion and shrinkage at the same time. To overcome
this issue, the usage of tissue specific regularisation
and consequently the computation of separate ven-
tricle atlases are a possible solution. In contrast to
this, the increase of the cortical folding grade and of
the volume over time are integrated in the proposed
spatio-temporal model. The quality of transformed
atlas based segmentations to subject’s space using
pairwise registration leads to the conclusion that the
kernel for pairwise registration has to be defined dif-
ferently according to the age range and also tissue
type, for being able to improve the graph cut initiali-
sation term. Additionally, it is shown that the quality
of graph cut labeling is dependent on the initialisa-
tion cost term (atlas segmentation) and the penalty
term. A false or displaced atlas segmentation hinders
as cost term the refinement of the graph cut based

labeling. Finally the proposed framework is able to
estimate cortex segmentations with a DC up to 0.85
and ventricle segmentations up to 0.60. We show
that image regression is capable to model the vari-
ability of fetal brains in time and is qualified to be
used for building a spatio-temporal atlas as basis for
fetal brain tissue segmentation. The evaluation of the
cortical labeling results for age range 1, 2 and 3 show
that a single kernel for pairwise registration for every
age range is not suitable. Thus, a main focus of future
work will lie in the improvement of the labeling pro-
cedure, by evaluating age range and tissue dependent
regularisation, to improve the quality of graph cut
based segmentation. Additionally, a combination of
global rigid and local deformable pairwise registra-
tion could be analysed for transforming atlas based
segmentations to the subject’s space as extension to
this work.
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