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Abstract. Platynereis dumerilii are marine worms
that reproduce by external fertilisation and exhibit
particular swimming behaviours during spawning.
In this paper we propose a novel worm tracking
approach that enables the 2D tracking and feature
extraction during the spawning process of these
worms. The gathered data will be used in the
future to characterise and compare male and female
spawning behaviours.

1. Introduction

Platynereis dumerilii are marine polychaete
worms (Lophotrochozoa, annelida, nereididae),
which swim only when sexually mature, in order
to reproduce. The timing of reproductive spawning
events in this species is synchronized with the moon
phase, whereby spawning in nature occurs primarily
during new moon. This together with chemical
pheromone signaling allows mature male and female
worms to locate one another and engage in spawning
behaviors that constitute the nuptial dance. See
Figure 1 for an image of a male and female worm.

The spawning behaviors of male and female
worms are important for successful fertilization
of the gametes. The spawning process consists
of four general phases: Pre-spawning, engaged
spawning, gamete release and post-spawning.
During pre-spawning, male and female worms
typically swim independently of one another, usually
with lower speeds, and display a linear body shape.
Engaged spawning is initiated when male and female

Figure 1. Image of a male (red) and female (yellow) worm.

worms come into close contact and sense chemical
pheromones secreted into the water by the opposite
sex. This is accompanied by a noticeable change
in swimming behavior for both sexes: swimming
speeds increase (particularly for males), and worms
either begin to swim in circles, or swim in tighter
circles (particularly for females). Other changes in
the plane of swimming are more frequently observed
in both sexes during engaged spawning behavior.
During gamete release, sperm and eggs are secreted
into the water, which particularly for female worms,
results in a dramatic change in body area, length and
overall shape. The time individual spawning phases
take varies and depends on the worms and their
willingness to engage. Some worm pairs are better
matches than others which can result in shorter
spawning phases.

Our goal is to analyse these spawning behaviours in a
quantitative manner, and to characterise and compare
male and female-specific spawning behaviours.
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2. Task formulation

The aim is to develop methods that enable the
tracking of spawning worms from captured videos
and extract features to quantify behaviours. For the
tracking, it is important that we distinguish male and
female worms in every frame of a captured video,
label them and keep track of those labels. This paper
focuses on the extraction of features for the analysis
of behaviours. The tracking task is simplified by
only considering videos with single worms. In
order to quantify behaviours, we currently extract the
following worm features:

1. Skeleton

The skeleton describes the center line of a worm
and is defined by two endpoints and an ordered
list of points between them. We use the skeleton
to calculate the curvature of a worm and to
generate a normalized shape representation.

2. Head position

The head position is an important feature for
the calculation of the velocity and the worm
trajectory. We define it as an endpoint of
the skeleton. The tangent of the skeleton in
this endpoint can give us information on the
orientation of the worm.
To choose the right endpoint, we currently
select it at the beginning of a video and keep
track of that selection.

3. Velocity

As the swimming speeds increase for both
sexes, the velocity is a good indication for the
beginning of the engaged spawning.

4. Trajectory of the worm head

The mapping of the swimming trajectories gives
us information on the interaction between two
worms. Furthermore, for individual worms, the
curvature of the trajectory can be compared to
the curvature of the worm. A high correlation
indicates a circular movement and increases the
robustness of the curvature estimation. The
trajectory can also give an indication on where
we can expect the worm to be in a following
frame.

5. Curvature

Measurements of body curvature tell us both
about the gross and fine body movements

of the worm during the different spawning
phases. The gross curvature of the worm’s
body in general provides information on the
directionality of swimming. For example,
a mostly straight linear profile would be
indicative of linear swimming, while smoothly
curved body profiles would indicate circular
swimming. Good resolution of finer-scale body
curvatures along the length of the worm is also
important. For example, a linear profile with
several bends could indicate an acceleration
of swim speed, or ’wriggling’ movements,
depending on the amplitude of the curvatures.
Such wriggling movements can be seen for
males when they are stopping to secrete sperm.
Similarly, as gametes are released from the
tail, mapping fine-scale curvatures at the tip of
the tail could be used to map gamete release
events, or characterize sex-specific gamete
release behaviours. For example, we have
observed fast small tail flicks in males during
sperm release, and curling of the tip of the
tail in females just prior to egg release. The
calculation of the curvature is based on the
skeleton of the worm.

6. Normalized shape

To make the comparison of different worms
(or of the same worm at different times in
a video) easier, we create normalized shape
representations. To do this we follow a recent
strategy which is known as co-registration
where shapes are first straightened or flattened
to then register different views/deformations of
the same normalized shape [1].

7. Length and area

During the gamete release phase the body length
and area changes, especially for female worms.
Therefore, these features are a good indicator
for the beginning of this phase.

3. Existing tracking approaches

The tracking of animals and the extraction of
features to quantify behaviours is not a new field
of application. Caenorhabditis elegans (C. elegans)
are roundworms that have been used as model
systems in neuroscience for years and the demand
for robust computational methods has lead to a
number of different tracking systems like Nemo



[10], OptoTracker [8] or a tracking system developed
by Chatenay and Schafer [2]. These worm trackers
are capable of tracking worms and extracting a
variety of different features. Unfortunately they
are developed for C. elegans worms who differ in
their appearance as well as their locomotion from
Platynereis dumerilii. Furthermore some of them are
only capable of tracking single worms and others
terminate the tracking of animals if they collide
and assigns new tracks after they separate again.
This does not guaranty a continuous trajectory of a
single worm for a whole video sequence, which is
an important requirement for our behaviour analysis.
Other animal tracking projects like AnTracks
(www.antracks.org) or ”Visual Ants Tracking” by
Ying [11] are capable of tracking animals, but do not
allow the extraction of features, which match our
requirements.

Therefore, we propose a new system that is
capable of tracking Platynereis dumerilii worms and
offers feature extraction including a new method to
compute normalized shape forms.

4. Experimental setup

The setup of our worm tracker consists of a
light-tight box, a mounted infrared camera and an
ordinary PC to capture the videos. The worms are
placed inside a spherical bowl we refer to as arena.
Figure 2 shows the arena with two worms.

Figure 2. Image of the arena with two worms taken from
a captured video.

The camera takes videos at a size of 1280x960
pixels with 60 frames per second. The infrared
camera is important as the spawning in nature
occurs at night and we want to reproduce this

environment in the lab. The single camera setup
has some limitations regarding 3D movements of the
worms, as they might conceal parts of their body
from the cameras viewpoint, resulting in a flawed
representation. Analysis of spawning videos have
shown, that the worms move horizontally near the
water surface. Therefore, we decided to use this
single camera setup and neglect the few cases where
the gathered data is flawed due to 3D movement.
Although, we might change the setup in the future
using three cameras instead of one to solve the issue
with the 3D movement.

5. Segmentation and tracking

Basically, male and female worms can be
distinguished by their color and anterior / posterior
segment border, which can be seen in Figure 3.

Figure 3. Image of a female (top) and a male (bottom)
worm with their segment borders (Scale in cm).

The segment border divides a worm into a head
and a tail part and the position of the border is
different for male and female worms. Relative to
their whole body length, male worms have a longer
tail than female worms. Therefore, the segment
border is closer to the head. Unfortunately, the
segment border is not always clearly visible.

Figure 4 shows three frames of the same worm
in the same video just a few seconds apart. These
frames illustrate the problem with the segment
border. The worms tend to turn sideways when
moving fast and in such cases the segment border
is not visible to the camera. This prevents us from
using the segment border as a feature to distinguish
male and female worms.



Figure 4. Three different frames of a single worm taken
from the same video just a few seconds apart. In the first
frame on the left the worm turned sideways, therefore the
segment border is not visible.

Furthermore, due to the infrared capture, we do
not have color information in the captured videos
and the available grayvalues are not distinctive
enough to distinguish male and female worms.

Therefore, we choose an approach that does not
rely on the shape and color of the worms, but on their
continuous motion over time. First, we label the
worms at the beginning of a captured video. Then,
we calculate the distance between the head positions
in consecutive frames and assign the label based
on the smaller deviation. This approach already
works well for single worms, but it is too simple to
track pairs of worms, as they tend to overlap and
the distance of head positions alone is not a robust
criteria.

In this paper, we focus on tracking of single
worms. We will extend our approach to setups with
worm pairs in the future. Although, we only track
single worms at the moment, it is still possible to
analyse separate spawning behaviours in male and
female worms, as we add eggs or sperm manually to
the arena and the worms react to them. This allows
us to analyse isolated spawning behaviours.

To track a single worm we first need to segment
it from the background. We do this with a simple
background subtraction for every frame of the video.
For the subtraction, it is important that there is at
least one frame at the beginning of the video with an
empty arena, which serves as the background image.
As this image serves as the background image for
the whole video, it is assumed that the arena does
not move during the video.

After the background subtraction the resulting
image is converted to a binary image, based on
a global threshold. The binary image gives us a
collection of regions that correspond to changes in
relation to the empty arena. Ideally there is only

one region for a single worm. Unfortunately, as
the worm produces some noise when moving in the
arena (particles or bubbles in the water, reflections
on the edge of the arena) we also get some noise
in our binary image. Therefore, we only consider
regions whose area is above a given threshold as
worms. As the regions generated by noise are very
small, this approach works very well in our current
setup.

6. Feature extraction

Features are extracted for every frame of the
captured video and are based on the binary region
and/or the skeleton of a worm.

6.1. Skeleton

Given the binary region of the worm, we use
morphological thinning to compute the skeleton.
In our case this approach is superior to the
morphological skeletonization with the medial
axis transfrom algorithm as the latter tends to
generate more spurious branches. See Figure 5 for
a comparison between the two approaches for a
sample worm. The thinning approach also tends to
create a smoother skeleton.

Figure 5. Illustration of the worm skeletons (white)
computed from the binary segmentation image (outlined
by the red line). The left skeleton was computed
using the morphological thinning, the right one using
skeletonization (MAT) technique.

The skeleton is defined as an 8-connected curve
s = 〈p1, ..., pn〉where pi = (xi, yi) with i = 1, ..., n.
We order the points pi of the skeleton from head to
tail by comparing the endpoints of the skeleton in one
frame with the endpoints in the previous frame. The



position of the head in the first frame of the video has
to be specified by the user.

6.2. Head position

As we store the skeleton points in a head to tail
order, we get the head position from the first point
p1 = (x1, y1) in s.

6.3. Trajectory of the worm head

Given a list of head positions h = 〈h1, ..., hn〉
where hi = (xi, yi) with i = 1, ..., n we can
generate a connected trajectory. Furthermore, its
curvature can be computed to provide information on
the swimming direction. Figure 11 shows a section
of the trajectory from a single worm video.

6.4. Velocity

Velocity is defined as the rate of change of
position with respect to time. We get the change of
position by considering the head positions of a single
worm in two consecutive frames and calculating the
Euclidean distance between the two positions. The
time between two frames is given by 1/fps, where
fps is the number frames per second of the video
source.

6.5. Curvature

According to Hermann and Klette [6], the
estimation of the curvature along a discrete curve
can roughly be divided into three categories: the
derivative of the tangent angle, the derivative of the
curve and the radius of the osculating circle. We
chose a method based on osculating circles as it
is fast and the implementation is simple. Gray [5]
defines the osculating circle of a curve C at a given
point P in the continuous space as the circle that
has the same tangent as C at point P as well as the
same curvature. We approximate these circles with
the circumscribed circles of triangles on the discrete
skeleton curve. Casey [3] defined the circumscribed
circle as the unique circle that passes through each
of the triangle’s three vertices.

Given the definition for the skeleton s at the
beginning of this section, let k be 1 ≤ k ≤

⌊
n
2

⌋
if n is odd and 1 ≤ k ≤ (

⌊
n
2

⌋
− 1) if n is even,

where n is the number of points on the skeleton.
For each point pi on s we define a triangle between
the three points pi−k, pi and pi+k. Then the radius
of the triangles circumscribed circle is computed

to calculate the curvature at pi. See Figure 6 for a
visualization.

Figure 6. Illustration of the circumscribed circle (blue) for
a single point pi on a skeleton. The circle passes through
every vertex of the triangle (red) formed by the points
pi−k, pi and pi+k with k = 10.

The radius of the circumscribed circle is defined
as radius = abc

4∗area , where a, b and c correspond to
the edge lengths of the triangle and area is the area
of the triangle. The area of a triangle is given by
area = abs(12 ∗determinant) where determinant
refers to the determinant of the triangle matrix, which
is formed from the three triangle points:

determinant =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
As the sign of the determinant gives an indication

on the orientation of the triangle and therefore an
indication on the direction of the curvature, we don’t
use the absolute value. So we define the area as
area = 1

2 ∗ determinant. With this information
the radius is then defined as radius = abc

2∗determinant .
The curvature is given by the inverse of the radius
c = 1

radius . As we do not take the absolute value
of the determinant when calculating the radius, the
curvature is a signed value that is positive if the
curvature is on the right side and negative if the
curvature is on the left side of the skeleton curve. See
Figure 7 for a visualization.



Figure 7. Image of a worm with its skeleton (top) and a
plot of the estimated curvature of the worm for different k
(bottom).

An important factor in the accuracy of this
algorithm is the parameter k that defines a
neighbourhood around the point of interest on
the curve. We tested the accuracy on a discrete circle
with a radius of 40 pixels using Bresenham’s circle
algorithm. The results can be seen in Figure 8. The
Parameter k starts at 0.05∗n as the error gets too big
for smaller values. As k increases we can see that
the error gets smaller. The same is true for a constant
k but an increasing radius, which corresponds to the
multigrid convergence theorem, where we expect the
accuracy to increase as the grid resolution (or in our
case the circle radius) increases [7, Chapter 10].

Figure 8. Plot of the avg- and max-error for the curvature
estimation of a circle with radius 40 and increasing k.

So the accuracy gets better with increasing k.
Unfortunately, this accuracy comes at a price, as

small curvatures are overlooked in the process if
k is too big. Another problem with a fixed
neighbourhood k are points at the beginning and the
end of the skeleton curve. For points pa with a ≤ k
there are no neighbourhood points pa−k defined, as
the index would become null or negative. The same
is true for points pb with b > n − k where no
neighbourhood points pb+k are defined, as the index
would get bigger than n. We currently solve this
problem by disregarding those points on the curve. In
Figure 7 the curvature values always start at the index
1+k and end at the index n−k. Another problem is
the determination of a good value for the parameter
k. In Figure 7 the blue line shows the curvature for
k = 17 which equals 0.15 ∗ n and gives the best
results on the tested worms.

6.6. Normalized shape

We achieve the normalized shape representation
of a worm with a backward medial axis transform
approach. The starting point is the distance
transform of the binary worm image which labels
each pixel with the Euclidean distance to the nearest
boundary in the binary image. For every point pi
of of sorted list s of skeleton points, we use the
coordinates to look up the distances in the distance
transform. Those distances then serve as the radii for
the circles. See Figure 9 for a visualization.

Figure 9. Part of the distance transform of a worm with
circles drawn for four points on the skeleton.

To get a suitable representation of the worm, the
distances between the skeleton points in the video
frame need to stay the same on the normalized shape
representation. Therefore the Euclidean distance



between the points is calculated and taken into
account when drawing the circles. Figure 10
shows the results of this method, where in the first
visualization only the outlines of a few circles are
drawn to show the general idea behind this approach.

Figure 10. Plots of the normalized representation of a
worm using only the outlines of 24 circles to visualize the
general idea (top) and a complete shape visualization with
all 115 filled circles (bottom) for that worm.

6.7. Length

To calculate the length of a worm, we use the
geodesic distance of its skeleton plus the radii of the
circles at the first and last skeleton point. The circle
radii are needed as our skeleton endpoints do not lie
at the edge of the worm. The geodesic distance is
computed using the Euclidean distance.

6.8. Area

For the area of a worm, we simply calculate the
sum of all foreground pixels of the binary image of
the worm, which is the zeroth moment.

Figure 11. Part of a video frame with an overlay of the
head trajectory. The trajectory is taken from a short
sequence of a single worm video.

7. Single worm experiments

Some experiments with single female worm
videos were conducted. Figure 12 shows two plots
of smoothed worm lengths. For the smoothing a
moving average filter was applied to the original data.
The plots show the length of the worms around the
time of the gamete release where the female worms
secrete their eggs into the water and get smaller and
therefore shorter. This can also be observed in the
plots.

Figure 12. Two plots of smoothed worm lengths for
two different female worms right around the time of the
gamete release (marked in red).

Figure 13 shows how the length of a female
worm changes during an entire spawning process.
Annotation A marks a special case where the worm
is overlapping itself resulting in a faulty binary area
and skeleton. The problem here is the 3D movement
of the worm.



Figure 13. Change of worm length over time. During the gamete release the worm gets shorter. Annotation A: Wrong
skeleton due to 3D movement of the worm. Annotation B: Wrong length due to 3D movement of the worm.

Another special case where the 3D movement also
results in error-prone data is marked with annotation
B. Here the end of the tail is not visible to the camera
which makes the worm appear shorter in the video.

8. Conclusion and Future work

In this paper we proposed a novel worm tracking
approach for Platynereis dumerilii worms, that
enables both tracking and feature extraction from
captured videos. Although our tracking approach is
not suitable for tracking two worms in difficult cases
our methods to extract worm features already show
promising results.

The method we currently use to track single
worms works for two worms if they are physically
separated, but as they get close to each other or
overlap, the current method might fail. In the future,
we will extend the method to consider cases where
the worms are close to each other or even overlap.
Ideas to achieve this include the comparison of more
features than just the head positions of consecutive
frames. A combination of all other features could
yield an appropriate approach in distinguishing male
and female worms.

The current feature extraction is robust in most
cases, but there exist special cases, where a single
worm overlaps itself due to 3D movement in the
water. This results in regions and skeletons, which
do not represent the worm correctly and therefore the

extracted features are flawed as well. One approach
will be to look into the watershed method to segment
the worms as it might be superior to the simple
threshold based method we use now, especially for
worms that overlap.

Our approach to compute the curvature also
has some flaws and is not robust enough. In the
future we will look into alternative approaches to
compute the curvature of discrete curves. Other
methods that try to estimate the osculating circles
rely on digital straight segments (DSS) recognition
[6] [4] and Roussillon and Lachaud [9] base their
method around maximal digital circular arcs.
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