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Technická 2, 166 27 Praha 6, Czech Republic

{sulcmila,matas}@fel.cvut.cz

Abstract. This paper studies the significance of
color in eight publicly available datasets commonly
used for texture recognition through the classification
results of ”pure-color” and ”pure-texture” (color-
less) descriptors. The datasets are described using
the state-of-the-art color descriptors, Discrimina-
tive Color Descriptors (DD) [15] and Color Names
(CN) [28]. The descriptors are based on partition-
ing of the color space into clusters and assigning
the image probabilities of belonging to individual
clusters. We propose a simple extension of the DD
and the CN descriptors, adding the standard devia-
tions of color cluster probabilities into the descrip-
tor. The extension leads to a significant improvement
in recognition rates on all datasets. On all datasets
the 22-dimensional improved CNσ descriptor outper-
forms all original 11-, 25- and 50-dimensional de-
scriptors. Linear combination of the state-of-the-art
”pure-texture” classifier with the CNσ classifier im-
proves the results on all datasets.

1. Introduction

Visual recognition based on texture and color are
well established computer vision disciplines with
several surveys available, e.g. [3, 10, 19, 20, 27, 30].
The state-of-the-art in texture recognition has been
recently dominated in terms of accuracy by meth-
ods based on deep Convolutional Neural Networks
(CNNs) [5, 6], yet the pre-CNN approaches may be
preferable in real-time applications for their perfor-
mance without parallel processing. Although it has
been shown that several texture description meth-
ods can benefit from adding color information [13],
a large number of the pre-CNN texture recognition
techniques has been evaluated only on gray-scale im-
ages. Since many publicly available datasets used

for texture recognition contain color information, we
decided to evaluate the accuracy of color-statistics
based methods to measure the significance of color
information in the datasets.

The first contribution of this paper is a study of
the significance of color information in available
datasets commonly used for evaluation of texture
recognition methods. In total we evaluate 8 texture
datasets, namely FMD (Flickr Material Database),
ALOT (A Lot Of Textures), KTH-TIPS (Textures
under varying Illumination, Pose and Scale), KTH-
TIPS2a, KTH-TIPS2b, CUReT (Columbia-Utrecht
Reflectance and Texture), VehApp (Vehicle Appear-
ance) and AniTex (Animal Texture).

The second contribution of the paper is an im-
provement of the state-of-the-art color descriptors,
Discriminative Color Descriptors (DD) [15] and
Color Names (CN) [28]. DD and CN are based on
partitioning of the color space into clusters and as-
signing each color the probabilities of belonging to
individual clusters. Our extension to the DD and
the CN descriptors adds the standard deviation for
each color cluster to the descriptor. This leads to
an improvement in recognition rates on all 8 tested
datasets, as shown in the experiments in Section 5.

The third contribution of the paper are experi-
ments combining a state-of-the-art ”pure-texture” de-
scriptor with the improved CNσ descriptor, leading to
further increase in recognition accuracy.

The rest of the paper is organized as follows: Sec-
tions 2.1 and 2.2 review the state of the art in tex-
ture and color recognition, respectively. The selected
”pure-color” image descriptors and our extension to
them are introduced in Section 3. Publicly avail-
able color-image databases commonly used for tex-
ture classification are described in Section 4. Section
5 describes the experiments and presents the results.



The observations are discussed and conclusions are
drawn in Section 6.

2. State of the Art

2.1. Texture-Based Classification

A large number of texture recognition techniques
has been proposed, many of them being described in
the surveys [3, 19, 20, 30]. In this section we only
review the recent development and the state-of-the-
art.

Several recent texture recognition algorithms re-
port excellent results on standard datasets while ig-
noring the available color information. A number
of them is based on the popular Local Binary Pat-
terns, such as the Pairwise Rotation Invariant Co-
occurrence Local Binary Pattern of Qi et al. [22] or
the Fast Features Invariant to Rotation and Scale of
Texture of Sulc and Matas [26]. A cascade of in-
variants computed by scattering transforms was pro-
posed by Sifre and Mallat [24] in order to construct
an affine invariant texture representation. Mao et al.
[18] use a bag-of-words model with a dictionary of
so called active patches: raw intensity patches that
undergo further spatial transformations and adjust
themselves to best match the image regions. While
the Active Patch Model doesn’t use color informa-
tion, the authors claim that adding color will fur-
ther improve the results. Cimpoi et al. [4], us-
ing Improved Fisher Vectors (IFV) for texture de-
scription, show further improvement when combined
with describable texture attributes learned on the De-
scribable Textures Dataset (DTD) and with color at-
tributes.

Recently, Cimpoi et al. [5, 6] pushed the state-
of-the-art in texture recognition using a new encoder
denoted as FV-CNN-VD, obtained by Fisher Vector
pooling of a very deep Convolutional Neural Net-
work (CNN) filter bank of Simonyan and Zisser-
man [25]. The CNN filter bank operates on (pre-
processed) RGB images. The method achieves state-
of-the-art accuracy, yet may not be suitable for real-
time applications when evaluated without a high-
performance GPU.

2.2. Color Statistics for Classification

Color information is processed by many state-of-
the-art descriptors in Computer Vision, including the
neurocodes of Deep CNNs or different extensions of
SIFT incorporating color. Yet we are interested in

simpler color statistics, not making use of spatial in-
formation.

Standard approaches to collect color information
include color histograms (based on different color
representations), color moments and moment invari-
ants. Sande et al. [27] provide an extensive eval-
uation of such descriptors. The Color Names (CN)
descriptor by Weijer et al. [28] is based on models
learned from real-world data obtained from Google
by searching for 11 color names in English. The
Color Names have shown to be a successful color at-
tribute for object detection [12] and recognition [14].
The model assigns each pixel the probability of be-
longing to one of the 11 color clusters. A similar ap-
proach is used by the Discriminative Color Descrip-
tor (DD) of Khan et al. [15], where the color values
are clustered together based on their discriminative
power in a classification problem with the objective
to minimize the drop of mutual information of the
final representation.

Khan et al. [13] study the strategies of com-
bining color and texture information. They carried
out a comparison of pure color descriptors on the
publicly available KTH-TIPS2a, KTH-TIPS2b, and
FMD datasets, and on another small dataset denoted
as Texture-10. Since the results of Color Names
and Discriminative Color Descriptors outperformed
other color descriptors in texture classification, we
will describe the usage of CN and DD in more detail
in Section 3 and use the models in our experiments
in Section 5.

3. Selected Color Descriptors

Based on the findings of Khan et al. [13] and on
our preliminary results, we consider the Color Names
[28] and Discriminative Color Descriptors [15] the
best match for our experiments for their superior
classification accuracy.

While each of the approaches creates the color
models based on a different criteria, the result is
a soft assignment of clusters to each RGB value.
In both cases the assignment is performed using
a lookup table, which creates a mapping from
RGB values to probabilities over C clusters ci, i.e.
p (ci | x). In this work we use the lookup tables pro-
vided by the authors of the methods, i.e. the 11-
dimensional Color Names representation by [28] and
the universal color 11-, 25- and 50-dimensional rep-
resentations by [15].

The models assume uniform prior over the color



names p(ci). The conditional probabilities for each
cluster ci given an image I are computed as an aver-
age over all N pixels xn in the region:

p (ci | I) =
1

N

∑
xn∈I

p (ci | xn) (1)

The standard descriptor D for image I is then a vec-
tor containing the probability of each cluster:

D(I) =


p (c1 | I)
p (c2 | I)

...
p (cC | I)

 (2)

We propose to add another statistics to the color
descriptor, the standard deviation of the color cluster
probabilities in the image:

σ(ci | I) =
√

1

N

∑
xn∈I

[p (ci | xn)− p (ci | I)]2

(3)
We concatenate the standard deviations to the

original descriptor to get the extended representation:

Dσ(I) =



p (c1 | I)
p (c2 | I)

...
p (cC | I)
σ(c1|I)
σ(c2|I)

...
σ(cC |I)


(4)

(a) Felt (b) Polyester (c) Lettuce
leaf

(d) Corn
husk

Figure 1: Examples of four texture classes from the
CUReT database.

4. Color Texture Datasets

This section reviews publicly available texture
datasets that contain color information. Databases
available only in the gray-scale version, such as Bro-
datz, UIUCTex or UMD, are omitted.

4.1. CUReT

The Columbia-Utrecht Reflectance and Texture
(CUReT) image database [8] commonly used for tex-
ture recognition1 contains 5612 images of 61 classes.
There are 92 images per class, with different combi-
nations of view- and illumination-direction.

The standard experimental protocol divides the
dataset into two halves, using 46 training images per
class for training and 46 images for testing. Exam-
ples of four selected classes from the dataset are dis-
played in Figure 1.

4.2. KTH-TIPS

The Textures under varying Illumination, Pose
and Scale (KTH-TIPS) database [9, 11] was col-
lected by Fritz, Hayman and Caputo with the aim
to supplement the CUReT database, concerning tex-
ture variations in real-world conditions. The dataset
contains 81 images for each of 10 selected materials,
taken with different combination of pose, illumina-
tion and scale. The dataset contains samples of dif-
ferent color for several materials, each of the samples
appears several times. In the experimental protocol
the dataset is randomly divided into halves, 40 im-
ages per class are used for training and the remaining
41 images are used for testing. It is thus probable,
that each of the samples appear in the training data
set.

4.3. KTH-TIPS2

The KTH-TIPS2 database [2, 17], gathered by
Mallikarjuna, Targhi, Hayman and Caputo, largely
followed the procedure used for the previous KTH-
TIPS database, with some differences in scale an il-
lumination. The database also contains images from
the previous KTH-TIPS dataset. The objective of the
database is to provide a better means of evaluation: It
contains 4 physical samples for each of 11 materials
and images of no physical sample are present in both
training and test set. The database contains 108 im-
ages of each physical sample. There are two version
of the database: KTH-TIPS2a and KTH-TIPS2b. In

1http://www.robots.ox.ac.uk/ vgg/research/texclass/setup.html



(a) Corduroy (b) Lettuce (c) Wood (d) Wool

Figure 2: Examples of four texture classes from the
KTH-TIPS2 database. Each image belongs to a dif-
ferent physical sample.

the KTH-TIPS2a dataset, 144 images are are miss-
ing (namely there are four samples with only 72 im-
ages). In the experimental protocol, three samples
from each class form the training set and the remain-
ing sample is used for testing. In the case of the
KTH-TIPS2b dataset, one sample forms the training
set and the remaining three form the test set. Exam-
ples from all four samples of four selected classes
from the database are displayed in Figure 2.

4.4. ALOT

The Amsterdam Library of Textures (ALOT) [1] is
similar in spirit to the CUReT dataset, yet the num-

(a) Fruit
sprinkles

(b) Pepper
(red)

(c) Color
calibration
checker

(d) Macaroni

Figure 3: Examples of four texture classes from the
ALOT database.

(a) Fabric (b) Foliage (c) Glass (d) Stone

Figure 4: Examples of four texture classes from the
FMD database.

ber of materials is much higher: it contains 250 tex-
ture classes, 100 images per class. The pictures were
taken under various viewing and illumination direc-
tions and illumination colors. For evaluation, 20 im-
ages per class are used for training and the remaining
80 images per class are used for testing. Examples
from the ALOT database are displayed in Figure 3.

4.5. FMD

The Flickr Material database (FMD) was devel-
oped by Sharan et al. [23] with the intention of cap-
turing a range of real world appearances of com-
mon materials. The dataset contains 1000 images
downloaded manually from Flickr.com (under Cre-
ative Commons license), belonging to one of the fol-
lowing materials: Fabric, Foliage, Glass, Leather,
Metal, Paper, Plastic, Stone, Water or Wood. There
are exactly 100 images for each of the 10 material
classes. Unlike the dataset described above, FMD
was not primarily created for texture recognition, and
it includes images of objects with various textures
for each material. The dataset also includes binary
masks for background segmentation. The standard
evaluation protocol divides the images in each class
into two halves, 50 images for training and 50 for
testing. Examples from the FMD dataset are dis-
played in Figure 4.

4.6. AniTex

The Animal Texture dataset (AniTex) constructed
by Mao et al. [18] contains 3120 texture patch im-
ages cropped randomly from the torso regions in-
side the silhouettes of different animals in the PAS-
CAL VOC 2012 database. There are only 5 classes
(cat, dog, sheep, cow and horse), 624 images each.
The authors created the dataset to explore less ho-



(a) Cat (b) Dog (c) Sheep (d) Cow

Figure 5: Examples of four texture classes from the
AniTex database.

mogeneous texture and appearance than available in
standard texture datasets. The patches in the dataset
come from images under different conditions such as
scaling, rotation, viewing angle variations and light-
ing condition change. For evaluation, the dataset is
randomly divided into 2496 training and 624 testing
images. Examples from the AniTex dataset are dis-
played in Figure 5.

4.7. VehApp

The Vehicle Appearance dataset (VehApp) was
created by the same authors as AniTex [18] with the
same intentions. It contains 13723 images cropped
from PASCAL VOC images containing vehicles of
6 classes (aeroplane, bicycle, car, bus, motorbike,
train). The images are evaluated in a way similar to
AniTex: 80% images are randomly chosen into the
training set, the remaining 20% is used for testing.
Examples from the VehApp dataset are displayed in
Figure 6.

5. Experiments

We compute 8 descriptors for each image in every
database: the standard 11-dimensional Color Name
descriptor CN and our extended 22-dimensional ver-
sion CNσ; the 11-, 25- and 50- Discriminative Color
Descriptors DD11, DD25, DD50 and the extended
versions DD11σ, DD25σ, DD50σ of double dimen-
sionality.

(a) Plane (b) Bicycle (c) Bus (d) Car

Figure 6: Examples of four texture classes from the
VehApp database.

The multiclass classification is then performed for
each descriptor separately by combining binary SVM
classifiers in a One-vs-All scheme. Linear SVM
classifiers were used together with an approximate
feature map of Vedaldi and Zisserman [29]. The
χ2 kernel approximations and the histogram inter-
section kernel approximations were considered, the
latter was chosen based on slightly superior perfor-
mance in preliminary experiments. The Platt’s prob-
abilistic output [16, 21] was used in order to estimate
the posterior class probabilities to choose the result
in the One-vs-All scenario. To minimize the effect of
the random splits into training and testset, each ex-
periment is performed 10 times on a different split,
with the exception of the KTH-TIPS2 databases with
4 experiments based on the material samples.

All 8 color descriptors are compared in terms of
class recognition accuracy in Table 1. The best pub-
lished results of ”pure-texture” (color-less) methods
and the results of the state-of-the-art FV-CNN [5]
method are attached to the table for comparison.
The comparison of the best ”pure-color” and ”pure-
texture” results on all 8 datasets is illustrated in Fig-
ure 7.

An experiment on combining efficient classifiers
of ”pure-texture” and ”pure-color” was performed as
follows: Each image was described using the CNσ

color descriptor (using the same method as above)
and the Ffirst [26] texture descriptor (with nconc = 3



Table 1: Recognition accuracy of selected color descriptors on publicly available databases commonly used for
texture recognition.

# classes
CN
DD11
DD25
DD50
CNσ

DD11σ

DD25σ

DD50σ

FV-CNN[5]
Pure-texture

CUReT
61
85.9±0.6

68.7±0.9

83.4±0.8

87.7±1.0

94.2±0.6

81.9±0.8

88.9±0.7

91.0±0.7

99.0±0.2

99.8±0.1[24]

TIPS
10
99.3±0.9

95.5±1.3

96.8±0.9

99.0±0.7

99.8±0.3

97.6±1.0

99.4±0.3

99.6±0.2

–
99.7±0.1[4]

TIPS2a
11
46.7±2.0

43.5±6.5

44.0±7.6

46.9±4.8

51.7±5.7

48.5±3.8

49.1±3.7

53.2±4.6

–
88.2±6.7[26]

TIPS2b
11
39.0±2.5

36.1±1.0

36.0±2.3

38.5±1.5

42.6±1.4

38.3±1.9

39.9±4.5

42.0±2.8

81.8±2.5

76.0±2.9 [26]

ALOT
250
51.0±0.5

38.2±0.4

60.9±0.5

65.5±0.4

73.9±0.5

60.1±0.5

75.0±0.5

78.0±0.5

98.5±0.1

95.9±0.5 [26]

FMD
10
26.3±2.4

24.0±1.1

23.9±1.4

22.6±1.4

28.0±2.2

22.7±1.6

23.9±1.1

25.3±1.7

79.8±1.8

57.4±1.7[22]

AniTex
5
38.0±2.0

32.4±1.6

36.0±1.7

37.4±1.1

41.7±1.8

35.9±2.1

39.9±1.6

38.9±0.8

–
50.8[18]

VehApp
6
34.7±1.0

33.2±1.0

36.9±0.6

39.1±1.0

39.1±0.7

35.8±0.5

39.3±0.7

41.2±0.9

–
63.4[18]

descriptors per image, each describing c = 7 con-
secutive scales). An approximate intersection kernel
map is applied to both color and texture descriptors,
which are then classified using the One-vs-All Sup-
port Vector Machines with Platt’s probabilistic out-
puts. The final scores in Table 2 were then combined
using 3 axiomatic approaches, denoted as:

1. PROD: The dot product of both of the scores is
used for final decision.

2. SUM: The sum of both of the scores is used for
final decision.

3. SUM0.3: The weighted sum of both of the
scores is used for final decision, where the
weight of color is only 30% of the weight of tex-
ture, taking into account the lower performance
of the color descriptors on most datasets.

In terms of combining probability distributions [7],
the SUM and SUM0.3 schemes represent a linear

opinion pool and the PROD scheme represents a log-
arithmic opinion pool.

6. Observations and Conclusions

A set of experiments with color-based image de-
scriptors was performed on 8 datasets commonly
used for texture classification, leading to interesting
insights in color-based classification and in the un-
derstanding of available texture-recognition datasets.

One can see that using the simple color descrip-
tors is sufficient for excellent results in specific cases,
such as the KTH-TIPS dataset, where materials of
the same color appear in both training and test data.
Satisfying results can also be obtained on the CUReT
and ALOT datasets. The KTH-TIPS2a and KTH-
TIPS2b datasets are more difficult for ”pure-color”
classification, since testing data may come from sam-
ples of different colors than training data, as illus-
trated in Figure 2. The FMD, AniTex and VehApp

CUReT KTH-TIPS KTH-TIPS2a KTH-TIPS2b ALOT FMD AniTex VehApp
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Figure 7: Comparison of the best published results of ”pure-texture” descriptors and the best results obtained
using ”pure-color” descriptors.



Table 2: Recognition accuracy for combinations of ”pure-texture” (Ffirst) and ”pure-color” (CNσ) descriptors.

# classes
CNσ

Ffirst
PROD
SUM
SUM0.3

CUReT
61
94.24±0.60

99.65±0.09

99.41±0.15

99.04±0.20

99.68±0.12

TIPS
10
99.83±0.31

99.51±0.53

99.98±0.08

100.00±0.00

99.85±0.26

TIPS2a
11
51.73±5.71

88.29±6.77

68.13±5.06

77.59±5.87

88.76±6.40

TIPS2b
11
42.64±1.43

76.60±4.29

60.12±4.06

60.35±5.13

77.17±4.23

ALOT
250
73.86±0.46

96.43±0.23

94.65±0.20

92.06±0.29

97.05±0.14

FMD
10
27.98±2.20

50.22±1.90

46.58±2.37

45.70±2.47

52.24±1.68

AniTex
5
41.67±1.77

45.72±1.78

49.97±1.50

50.08±1.56

48.99±1.83

VehApp
6
39.07±0.67

54.41±0.66

56.47±0.76

56.56±0.98

56.62±0.92

datasets are quite difficult for their heterogeneous na-
ture, both in terms of texture and color. Yet the color
statistics might still provide useful information when
combined with other descriptors.

An extension to the Color Names (CN) and Dis-
criminative Color Descriptors (DD) has been pro-
posed (denoted as CNσ, DDσ), significantly im-
proving the recognition accuracy on all 8 tested
datasets. The comparison of Color Names (CN) and
Discriminative Color Descriptors (DD) descriptors
brings a surprising observation: on 6 out of the 8
texture datasets, Color Names outperform even the
higher-dimensional Discriminative Color Descrip-
tors DD25, although the opposite may be expected
from the findings on different tasks [15]. The im-
proved CNσ outperforms other ”pure-color” descrip-
tors on 5 out of 8 datasets, the best results on the
remaining 3 datasets are achieved by the improved
DD50σ descriptor.

Combining a state-of-the-art ”pure-texture” clas-
sifier [26] with the ”pure-color” classifier of CNσ

leads to an improvement on all 8 tested datasets. The
weights of the classifiers in the combination should
be set according to the classifiers performance. Note
that by combining the classifiers a 100% accuracy
was achieved on the KTH-TIPS. Significant im-
provements are also achieved on the AniTex and Ve-
hApp databases, where [26] performs rather poorly.

The state-of-the-art ”pure-texture” and ”pure-
color” classifiers and their combinations obtain ex-
cellent results on simpler texture-recognition prob-
lems. They are outperformed by the recent FV-CNN
model [5] in the more difficult tasks. Yet the low
computational complexity of some ”pure-texture”
and ”pure-color” descriptors is beneficial and their
performance may be still interesting for future works,
e.g. when used in a cascade classification scheme
and followed by FV-CNN in case of ambiguity.

Acknowledgements
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