215t Computer Vision Winter Workshop
Luka Cehovin, Rok Mandeljc, Vitomir Struc (eds.)
Rimske Toplice, Slovenia, February 3-5, 2016

A Computer Vision System for Chess Game Tracking

Can Koray
Department of Computer Engineering
Bagkent University
Ankara, TURKEY

cannkorayy@gmail.com

Abstract. In this paper, we present a real-time sys-
tem that allows the detection of the moves of a chess
game. In the proposed approach, each captured
video frame, from a RGB webcam positioned over the
chessboard, is processed through the following steps;
the detection of the corner points of the chessboard
grids, geometric rectification, chessboard position
adjustment, automatic camera exposure adjustment,
intensity adjustment, move detection and chessboard
drawing. All steps were implemented in MATLAB
programming environment without using any chess
engine. The proposed approach correctly identified
162 of 164 moves in 3 games played under different
illumination conditions.

1. Introduction

There are many systems of computer vision,
which require algorithms to be able to recognize
different objects and scenes. Since, chess game
has become an interesting issue in terms of human-
computer interaction systems, a computer vision sys-
tem is needed for chess playing and chessboard
recognition system.

There are various published techniques related to
chess-playing systems. Sokic and Ahic-Djokic [11]
proposed a computer vision system for chess playing
robot manipulator as a project-based learning sys-
tem. The proposed algorithm detects chess moves by
comparing frames captured before, during and after
a move, and finds the difference between them. In a
similar study, Atas et al. [[1] developed a chess play-
ing robotic arm system composed of various modules
such as main controller, image processing, machine
learning, game engine and motion engine of robot
arm. In their study, the top of the pieces are uniquely
designed to be different from each other in order to

Emre Stimer
Department of Computer Engineering
Bagkent University
Ankara, TURKEY

esumer@baskent.edu.tr

track by the system.

On the other hand, in a study conducted by Bennet
and Lasenby [2]], the recognition of chessboards un-
der deformation was carried out. Their method deter-
mined a grid structure to detected vertices of a chess-
board projection. Further, the same authors devel-
oped a feature detector named ‘Chess-board Extrac-
tion by Subtraction and Summation (ChESS)’ to re-
spond to chessboard vertices [3]]. In a different study,
a chessboard recognition system was proposed [8].
The proposed system was applied to chessboard in
order to identify the name, location and the color of
the pieces. Piskorec et al. [10] presented a com-
puter vision system for chess game reconstruction.
The system reconstructs a chessboard state based on
video sequences obtained from two cameras.

The tracking of the chess moves can be regarded
as the preliminary task before designing a robotic
chess playing system. In the literature, there are
several efforts that perform the chess move tracking.
The studies conducted by Matuszek et al. [9]], Urting
and Berbers [12]], Cour et al. [4] and Gongvales et al.
[7] use unique algorithms to identify the chessboard
grids along with the classification of squares. These
methods are not only based on corner detection but
also rely on having a clean background.

In this paper, we propose a real-time chess game
tracking system using a RGB webcam positioned
over the chessboard. In general, the move is detected
by comparing the occupancy grids based on average
color information of the pieces and the squares. Be-
fore that, several pre-processing steps are employed
including geometric rectification, intensity adjust-
ment and chessboard position adjustment. The sys-
tem also works successfully under different illumina-
tion conditions by means of automatic camera expo-
sure adjustment. Besides been a tracking system, the



proposed system can also perform 2D reconstruction
of the chessboard states and generate movement logs.

2. Equipment and Setup

In this work, a setup is prepared to detect the
moves of the pieces during the game. The setup has
the Logitech ¢310 webcam for the capturing footage.
The camera which has 5 megapixels resolution is ca-
pable of HD 720p recording. The camera has no aut-
ofocus functionality. Only the exposure mode from
the camera settings is changed to ‘manual mode’ for
move detection process. The webcam was used on a
mid-range notebook. The chessboard and pieces are
selected to meet World Chess Federation (FIDE) re-
quirements in terms of color and size [6]]. The board
and the pieces have different colors from each other.
The colors of the pieces are black and white, while
the board has dark and light brown colored squares.
The camera is positioned over the chessboard by a
long and flexible holder as shown in Figure 1.

Figure 1. The image of the setup

3. The Overall Framework

The general block diagram of the proposed sys-
tem is given in Figure 2. The details of the steps of
the proposed framework are given in the further sub-
sections.

3.1. Chessboard Grid Corner Detection

In this process, the first step is to find all grid cor-
ner points of the chessboard (Figure 3(a)) by using
the snapshot of the camera. To find grid corners (Fig-
ure 3(b)), we used detectCheckerboardPoints func-
tion of MATLAB. The function that is particularly
used in camera calibration gets an RGB image as an
input and returns the located grid corners and the size
of the board as an output. Until all grid corners are

Chessboard Image Frame

v

Chessboard Grid Corner
Detection

v

Geometric Rectification

v

Chessboard Position
Adjustment

v

Automatic Camera
Exposure Adjustment

"

Intensity Adjustment

v

Average Color References

v

Move Detection

.

2D
Reconstructed
Chessboard
State

Move Logs

Figure 2. The overall framework

located, the saturation value of the captured image is
increased gradually as a pre-process step. Once all
grid corners are located, the second step is to locate
the chessboard corners (point-C in Figure 3(c)). The
grid corner points which are closest to the corners
of the image are selected as pivot points. Point-A in
Figure 3(c) is one of the pivot points. The diagonal
closest inner point to the point-A is point-B, which is
shown in Figure 3(c). The reflection of the point-B
over the point-A is the point-C, which is the one of
the chessboard corners as shown in Figure 3(c). This
procedure is applied for all remaining corner points.

3.2. Geometric Rectification

The geometric rectification is an essential step to
isolate the chessboard from the environment and cor-
rect the perspective distortion of the chessboard to
pave the way for the other processes. The chessboard



(b)

(©)
Figure 3. (a) The original chessboard image, (b) the de-
tected chessboard grid corners and (c) the related points
to chessboard grid corner detection

is warped from its corner points which are located in
the previous section to coincide with our predeter-
mined size square corners (480x480px) (Figure 4).

(48{} 480)

Figure 4. The chessboard before geometric rectification
step

This process is applied only once before the game
starts therefore, either the camera or the board should
not be moved during the game. The geometrically
corrected chessboard is presented in Figure 5.

Figure 5. The chessboard after geometric rectification step

3.3. Chessboard Position Adjustment

To ease the calculations of the future processes,
the white pieces are needed to be positioned at the
bottom of the view. Thanks to camera position, we
know that the positions of the pieces have to be on the
left and right side of the camera. The comparison of
the average colors of the both side’s king square gives



us the position of the white pieces. According to the
white side position, a new transformation matrix is
computed to be used in the future warping processes.
In Figure 6, the white pieces are located at the bottom
while the black ones are at the top.

&7 2 Q J
Figure 6. The chessboard after chessboard position adjust-
ment

3.4. Automatic Camera Exposure Adjustment

The built-in automatic exposure mode of the cam-
era may cause undesirable image acquisition for the
move detection. In this mode, the camera continu-
ously adjusts the exposure level according to the cap-
tured footage. Especially, whenever the player makes
a move, the camera changes its exposure level due to
the player hand on the captured image. In addition,
the exposure level which is adjusted by built-in au-
tomatic exposure mode of the camera can be under
or overexposure. In order to find optimum exposure
level of the camera, it needs to be adjusted manually
at the beginning of the game. The aim of this process
is to get correct color values as much as possible by
preventing under and overexposure situations. We
proposed our automatic camera exposure algorithm
that aims to find the optimum exposure level which
maximizes the average of the color differences be-
tween light/dark piece and square (Figure 7). The
calculated optimum exposure level is set to camera
as a new exposure level for the following processes.
In the present case the computed exposure level was
computed to be -6 where the full range is between -
9 (the darkest) and O (the lightest). The snapshot of
the chessboard after applying the computed exposure
level is given in Figure 8.

0 Begin Procedure: FindOptimumExposureLevel
1 FOREACH Exposure Level

2 CALCULATE theaverage color of dark squares, dark pieces, light
squares and light pieces

3 CALCULATE the color distance between the average color of dark
squares and dark pieces

4 CALCULATE the color distance between the average color of light
squares and light pieces

5 CALCULATE theaverage of the color distances
6 IF the exposurelevel is the first exposure level THEN
7 SET theaverage to the maximum average
8 SET the exposurelevel to the optimum exposure level
9 ELSE
10 IF theaverageis greater than the max average THEN
11 SETthe average to the maximum average
12 SET the exposure level to the optimum exposure level
13 ENDIF
14 ENDIF
15 ENDFOR
16 RETURN the optimum exposure level

17 EndProcedure: FindOptimumExposureLevel

Figure 7. The pseudo-code of the automatic camera expo-
sure adjustment

Figure 8. The chessboard after automatic camera exposure
adjustment

3.5. Intensity Adjustment

To improve the image quality, a set of enhance-
ments is applied to the snapshots of the camera. The
first one is to reduce the noise problem. We used a
5x5 median filter to minimize the noise level of the
images. The second one is to increase the saturation
of the image to enhance colors. After this process,
the average colors of pieces and squares are calcu-



lated to be used in further processes. The image of
the chessboard after the intensity adjustment step is
illustrated in Figure 9.

Figure 9. The chessboard after intensity adjustment

3.6. Average Color References

After all enhancements, in order to get color val-
ues of each square of the chessboard, the image of
the chessboard (Figure 9) divided into 64 identical
pieces each in correspondence to a square of the
board. Therefore occupancy grids are created for the
chessboard. After that, it is defined a region of in-
terest (ROI) for each square (grid) of the chessboard.
The primary aim of using ROIs is to get color infor-
mation of the piece. ROI is defined as a 25x25px
rectangle from the center of each square as shown in
Figure 10.

Figure 10. The orange colored region of interest superim-
posed on the pawn

At the beginning of the game, before the move
detection, the average color values of the light/dark
pieces and squares are received and recorded as ref-
erence values.

The reference colors of each type of piece and
square calculated as follows:

e Reference color of the light pieces is calculated
by taking the average of the 16 squares that are
occupied by the light pieces.

e Reference color of the dark pieces is calculated
by taking the average of the 16 squares that are
occupied by the dark pieces.

e Reference color of the light squares is calculated
by taking the average of the 16 light squares that
are not occupied by any pieces.

e Reference color of the dark squares is calculated
by taking the average of the 16 dark squares that
are not occupied by any pieces.

3.7. Move Detection

The implementation of the move detection is
based on a comparison between the reference im-
age and the snapshot of the camera. For this pro-
cess, the reference image is used as the first snapshot
which is taken after each valid move. The first ref-
erence image is regarded as the first snapshot of the
footage. During the game, the average color differ-
ence is calculated between the reference image and
snapshots. Whenever the result of the calculation ex-
ceeds a predetermined threshold, we conclude that
the player makes a move. After the result goes down
below the threshold, we assume that the player fin-
ished the move.

At this point, the last snapshot is interpreted to de-
termine the color and position of the pieces. Before
this process, the last snapshot is warped and the en-
hancements are applied to the warped image of the
chessboard. The ROI within each square of the im-
age is compared with the four reference colors which
are determined in section 3.6. In this comparison, the
color differences are calculated in Lab color space by
computing the deltaE value that represents the Eu-
clidean distance of the related items. As a result of
the comparisons, the reference color that gives the
minimum deltaE value determines if a grid cell is a
square or a piece with light or dark color. By ap-
plying this process to all squares of the chessboard,
the chessboard state of the last snapshot is revealed.
The state of the last snapshot and the previous chess-
board state are compared to detect the move of the
piece. The previous chessboard state represents the
chessboard state of the last valid move. At the begin-
ning of the game, the first state of the game is stored
as the previous chessboard state.



When the state of the snapshot and the previ-
ous chessboard state are compared, six different out-
comes can be obtained:

1. If there is no difference between previous and
last states, this means there is no change in the
game. For this reason, the color difference over
the board is not a move.

2. If there are only one occupied and only one un-
occupied squares difference with the same piece
color then this is a move.

3. If there are two occupied and two unoccupied
squares difference with the same piece color,
then this is a special move called ’castling’.

4. If there are one occupied and one unoccupied
squares difference with the same piece color and
one unoccupied square difference with the other
piece color, then this is another special move
called ’en passant’.

5. If there is only one unoccupied square differ-
ence and if there is a piece color change to the
previous piece color of the unoccupied cell in
any other occupied square, then this is a captur-
ing move.

6. For all other conditions, the result of the com-
parison is not a move.

If the result is a move then the state of the chess-
board is updated as the last chessboard state. The
move is added to the move list and the last state of
the chessboard is reconstructed in 2D. An example
2D state reconstructed from a test game and the move
list are presented in Figure 11. The moves are logged
as standard algebraic notation which is the notation
standardized by World Chess Federation (FIDE) [5]].
Note that all the steps of the proposed methodology
including the graphical user interface were imple-
mented in MATLAB.

4. Experimental Evaluation and Discussion

In order to test the system, three chess games are
played at different times having different illumina-
tion conditions. In these tests, 162 moves of all 164
moves are successfully detected by the system. The
corner points of the chessboard are successfully lo-
cated in all games. The system performance was
found to be satisfactory to detect moves in real-time.

(4] ChessGui o) e==

Chessboard

Move List

iisinis —

& & 7 | F—

e

5 & 5
R

ittt

1 )

Figure 11. The reconstructed chessboard state with move
list

©

~

4

The saturation enhancement which is applied to
the images taken from capturing footage helped to in-
crease the accuracy of the average color differences.

The combination of the lighting, camera settings
and chess set are playing a big role in the success
of detecting moves in a chess game. Although the
proposed system works well under different illumi-
nation conditions, lighting environments (having a
single light source) that cast strong shadows over the
board are unsuitable for tracking.

On the other hand, shadows over the light pieces
are another important problem. This makes difficult
to separate the light pieces from the light squares, as
in 2 of 164 undetected moves during the experimen-
tal evaluation. In addition, this problem may cause to
get incorrect results from the automatic camera expo-
sure adjustment method.

Shadows and specular reflections over a particu-
lar area of the chessboard can break the uniformity
of the colors. In these conditions, a chess game can-
not be tracked by the proposed system. Besides, due
to the reference colors of pieces and squares are de-
termined at the beginning of the game, the overall
illumination of the environment should not change
dramatically during the game. Otherwise, the move
detection cannot be possible by the system.

5. Conclusion

In this paper, we have presented a real-time sys-
tem that performs the detection of the chess moves.
The preprocessing steps are found to be quite useful.



In particular, automatic camera exposure adjustment
highly reduces the color ambiguities. The environ-
ments which are heavily under the influence of direc-
tional lights are not recommended because of casting
strong shadows. The results of the played games in-
dicate that the proposed system can be an affordable
and efficient option among chess game tracking sys-
tems.

As an addition to the current system, a chess move
validation system is under progress to interpret the
player moves. By this way, the system not only
tracks the position of the pieces but also validates
the movements according to the type of the piece.
Therefore, the future system can be used to help de-
cision making and monitoring by referees and anti-
cheat committee.

References

[1] M. Atas, Y. Dogan, and 1. Atas. Chess playing
robotic arm. Proceedings of the IEEE 22nd Signal
Processing and Communications Applications Con-
ference, pages 1171-1174, 2014. 1]

[2] S. Bennet and J. Lasenby. Robust recognition of
chess-boards under deformation. Proceedings of the
20th IEEE International Conference on Image Pro-
cessing, pages 2650-2654, 2013.

[3] S. Bennet and J. Lasenby. Chess — quick and robust
detection of chess-board features. Computer Vision
and Image Understanding, 118:197-210, 2014. E]

[4] T. Cour, R. Lauranson, and M. Vachette. Au-
tonomous chess-playing robot, 2006.

[5] FIDE. Handbook, 2015. Laws Of Chess. [6]

[6] FIDE. Handbook, 2015. Standards of Chess Equip-
ment and Tournament Venue.

[7] J. Gongalves, J. Lima, and P. Leitao. Chess robot
system: A multi-disciplinary experience in automa-
tion. Proceedings of the 9th Spanish-Portuguese
Congress on Electrical Engineering, 2005. [1]

[8] I. M. Khater, A. S. Ghorab, and I. A. Aljar-
rah. Chessboard recognition system using signature,
principle component analysis and color information.
Proceedings of the Second International Conference

on Digital Information Processing and Communica-
tions, pages 141-145, 2012. 1]

[9] C.Matuszek, B. Mayton, R. Aimi, M. P. Deisenroth,
L. Bo, R. Chu, M. Kung, L. LeGrand, J. R. Smith,
and D. Fox. Gambit: A robust chess-playing robotic
system. Proceedings of the IEEE International Con-

ference on Robotics and Automation, pages 4291—
4297, 2011.

[10] M. Piskorec, N. Antulov-Fantulin, J. Curic,
O. Dragoljevic, V. Ivanac, and L. Karlovic. Com-
puter vision system for the chess game reconstruc-

[11]

[12]

tion. Proceedings of the 34th International Conven-
tion, pages 870-876, 2011. 1]

E. Sokic and M. Ahic-Dokic. Simple computer vi-
sion system for chess playing robot manipulator as
a project-based learning example. Proceedings of
the IEEE International Symposium on Signal Pro-
cessing and Information Technology, pages 75-79,
2008.

D. Urting and Y. Berbers. Marineblue: A low-
cost chess robot. Proceedings of the International
Conference Robotics and Applications, pages 76—
81, 2003.1]



