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Abstract Many different methods for tracking humans were proposed
in the past several years, but only a few authors examined the accuracy
of the proposed systems. As the accuracy analysis is impossible without
the well-defined ground truth, some kind of at least partially controlled
environment is needed. Analysis of an athlete motion in sport match is
well suited for that purpose, and it coincides with the need of the sport
research community for accurate and reliable results of motion acqui-
sition. This paper presents a development of a multiple-camera people
tracker, incorporating two complementary tracking algorithms. The de-
veloped system is suited for simultaneously tracking several people on a
large area of a handball court, using a sequence of 384-by-288 pixel im-
ages from fixed cameras. This paper also examines the level of accuracy
that this kind of computer vision system setup is capable of.
Keywords: computer vision, people tracking, controlled environment.

1 Introduction

People tracking is a rapidly developing field of computer vision. However, the
most interesting locations to deploy computer vision based people trackers usu-
ally represent highly uncontrollable environments (railway stations, crowded
halls, etc.), which poses significant difficulty in evaluating the performance of
developed systems. On the other hand, many sport researchers struggle to ob-
tain reliable data about movement of athletes, especially when sport activity
covers a large area, for example in team sports. Sport matches, especially indoor
ones, represent partially controlled environment, and are as such highly suitable
as a test ground for development and testing of new people tracking methods.

The research in the fields of people tracking and analysis of sports-related
video has flourished in the past several years [1–8]. However, the emphasis is
still on development of tracking methods and improvement of reliability of the
tracking itself. Only a few authors (for example [5]) examined the accuracy of
their tracking systems or suggested both the method for evaluating the accuracy
and obtaining the ground truth (for example [6]). On the other hand, use of



computers in gathering and analyzing the sport data is an established practice
in sport science [9, 10]. One of important aspects of football, handball or bas-
ketball match analysis is the information about player movement [11], but due
to limitations in available technology, the results obtained were often coarse and
only approximate.

In this article, we present the method for tracking known number of peo-
ple in a partially controlled environment - the handball court inside the sports
hall. First, problems associated with image acquisition are discussed. Next, two
algorithms for tracking athletes during the match are presented, and their combi-
nation which yields best results in terms of reliability and accuracy is presented.
Next, the required post-processing of trajectories is briefly discussed. The col-
laboration with sports scientists enabled thorough evaluation of the accuracy of
the developed system, which is described in a separate section. Finally, some
conclusions about tracker performance are drawn.

2 Image Acquisition

Proper image acquisition significantly influences the performance of the track-
ing algorithms. In case of video annotation and highlighting [12] high accuracy
is not required. In case of player motion acquisition and analysis, where cer-
tain measurements are performed and degree of uncertainty has to be specified,
careful planning of image acquisition proves to be crucial for the success of the
whole system [4]. Camera movement can add significant degree of difficulty to
the tracking problem, as the objects and the sensor are independently moving
with respect to the reference coordinate frame. Therefore, continuous calibration
is required. To alleviate these problems, two stationary cameras with wide-angle
lenses were chosen in our case. Their placement on the ceiling of the sports hall
and the resulting combined image is shown in Figure 1.
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Figure 1. Handball playing court and camera placement (left). Example of combined
image from two cameras, taken at the same instant of time (right).

The whole handball match that lasted for about an hour was recorded using
two PAL cameras and two S-VHS videorecorders. A transfer to digital domain
was carried out using the Motion-JPEG video acquisition hardware, at 25 frames
per second and image resolution of 384x288 pixel. The combined image from both
cameras is shown in Fig. 1.



3 Camera Calibration

To perform position measurements based on the acquired images, the relations
between pixel coordinates in each of the images and world (court) coordinates
have to be known. These relations are obtained by the camera calibration. The
procedure is simplified due to rigid sport regulations, which precisely specify
the locations and dimensions of various landmarks on the playing court. Un-
fortunately, due to the large radial distortion otherwise widely used calibration
technique [13] fails to produce satisfactory results. We decided to build the model
of radial image distortion, and couple it with simple linear camera model.

Fig. 2 illustrates the problem of radial distortion. For illustrative purposes
only, let us imagine an ideal pinhole camera, mounted on a pan-tilt device. Point
0 is the point of intersection of optical axis of the camera with the court plane,
when the pan-tilt device is in its vertical position. Point C denotes the location
of the camera, and X is the observed point on the court plane, at distance R
from the point 0. H is the distance from the camera to the court plane. Angle α
is the angle of the pan-tilt device when observing the point X. The differential
dR of radius R is projected to the differential dr, which is parallel to the camera
image plane. The image of dr appears on the image plane. Relations between
dR, dr and α are given within the triangle on the enlarged part of Fig. 2 (left).
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Figure 2. A model of radial distortion (left). A combined image from both cameras
after the radial distortion correction (right).

Thus, we can write the following relations:

dr = cos(α) · dR, α = arctg(
R

H
), (1)

dr = cos(arctg(
R

H
))dR. (2)

Let us substitute the pan-tilt camera with a fixed camera, equipped with
wide-angle lens. The whole area, which is covered by changing the angle α of the
pan-tilt camera, is captured simultaneously to the single image of the stationary
camera. Additionally, let us assume that the scaling factor between the dr and
the image of dr on the image plane equals 1. Therefore, we can obtain the length



of the image of radius R on the image plane by integrating the left side of Eq.
(2) over the interval (0, r1), and the right side over the interval (0, R1),

r1∫
0

dr =

R1∫
0

cos(arctg(
R

H
))dR, (3)

R1 being the distance from the observed point X to the point 0 and r1 being
the distance from the image of point X to the image of point 0 on the image
plane. The solution of the inverse problem is then:

r1 = H · ln
(

R1

H
+

√
1 +

R2
1

H2

)
. (4)

By solving Eq. (4) for R1 we obtain the formula, which can be used for
correcting the radial distortion:

R1 =
H

2

(e−
2r1
H )− 1

e−
r1
H

. (5)

Parameters were obtained with the help of various marks, which are part
of the standard court marking for handball matches (boundary lines, 6 and 9
m lines, etc.) and non-linear optimization. For illustrative purposes, a result of
radial distortion correction is shown in Fig. 2 (right). Nevertheless, we decided
to perform tracking on uncorrected images, and to correct the obtained player
positions thereafter.

4 Player Tracking

Many general-purpose tracking algorithms could be used for the player tracking.
However, in our setup, we are faced with the following difficulties:

• Players are small objects, typically only 10-15 pixels in diameter, which
makes histogram-based identification techniques difficult.

• Players cast shadows, which overlap frequently, causing trouble for simple
background subtraction techniques.

• Due to strict handball rules, any placement of markers is forbidden during the
European Handball Federation (EHF) matches. However, players of different
teams wear differently colored dresses.

4.1 Color-Based Tracking

Color as an identifying feature [14] can be also used for the task of tracking
players. Color is generally largely independent of the view and resolution, and
remains constant over long intervals of time. Therefore, colors of the players
dresses could be input to the tracking system manually at the beginning of the
tracking process without any adaptations later.



Color identification and localization, based on color histograms, was reported
by Swain and Ballard [14]. However, given a small number of pixels that comprise
each of the players, this technique is not appropriate. In most cases, there are
only a few (3-6) pixels that closely resemble the reference color of the player’s
dress. The situation is illustrated by Fig. 4b. Therefore, different approach was
needed.

The algorithm searches for the pixel most similar to the recorded color of
the player. The search is performed in a limited area (9-by-9 pixels) around the
previous player position. The three-dimensional RGB color representation was
chosen instead of HSI, as some players wear dark dresses, which would result in
undefined values of hue. The similarity measure is defined as euclidean distance:

Scolor(x, y) =
√

((IR(x, y)− CR)2 + (IG(x, y)− CG)2 + (IB(x, y)− CB)2, (6)

where I is the image and C is the recorded color of the player. R,G and B
denote the red, green and blue channel, respectively.

The advantage of described algorithm is high reliability. The algorithm tracks
players successfully even when the apparent player color is changed due to signal
distortion during tape recording or lossy compression. The main problem is
caused by diverse background with colored areas, which closely correspond to
the color of the player’s dress. The disadvantage of this method is also a high
amount of jitter in the resulting player trajectories, which makes it inappropriate
for a stand-alone use.

4.2 Template Tracking

Visual differences between the players and the background are exploited to fur-
ther improve the tracking process.

Feature set, which can be used to successfully separate players from the
background, needs to be found. Due to low resolution and rapidly changing
appearance of the players it is extremely difficult to build an accurate model of
a handball player. Instead, we have used a subset of modified Walsh functions
and their complements, i.e. “templates”, shown in Fig. 3, which extract the very
basic appearances of the players.

First, the region of interest (ROI) which surrounds the position of the player
is defined. Considering the size of the players in captured image, the region
size was set to 16x16 pixels, with player position in the center of the region.
Each channel of the RGB color image is processed separately and the vector
F, consisting of 14 features for each channel, is obtained using the following
formula:

Fi+14j =

16∑
x=1

16∑
y=1

Ki(x, y) · Ij(x, y), (7)
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Figure 3. Basic templates of the player - modified Walsh functions. Black areas rep-
resent zeros, while gray areas denote value of 1 (left). Classification of an unknown
object (right).

where Ki is one of the 14 template functions (i = 0 . . . 13), and Ij is one of
the three RGB channels (j = 0, 1, 2), obtained with respect to ROI from the
current image. Each channel yields 14 features, which results in 42-dimensional
feature vector F.

Let vector H represent the estimated appearance of the player, and vector
G represent the appearance of the background (empty playing court) at the
same coordinates. Our goal is to classify the unknown object in the region of
interest I, represented as vector F, either as a “player” or a “background”. The
simplified, two-dimensional case is shown in Fig. 3, right.

Vector of features G is calculated from the image of the empty playing court
at the same coordinates as F. The reference vectorH is obtained by averaging the
last n vectors of features for a successfully located player, which allows certain
adaptivity, as the player appearance changes over time. The value of n depends
on the velocity at which the players move, but best results were obtained with
the value of n = 50 which corresponds to two seconds of video sequence.

Similarity measure S is obtained using the following formula:

Stemplate =
DFH

DGF + DFH
, S ∈ [0, 1], (8)

where DGF and DFH are Euclidean distances. The domain of measure S is inter-
val [0 . . . 1]. Low value of Stemplate means high similarity between the observed
object F from the region of interest I and stored appearance of the player in the
vector H. Fig. 4 (c) shows the test result on a single player and demonstrates
the ability of this technique to locate an object.

4.3 Tracking

At the very beginning of the tracking, human operator initializes player positions.
Initial estimates for player positions for each subsequent frame are derived from
the preceding image from image sequence. On each image from the sequence,
the color tracking method, described in section 4.1 is used to roughly estimate
player position. 3-by-3 pixel neighborhood of estimated position is examined for
the minimum of similarity measure (8). The position of the minimum is used as
the next estimate and the process is iteratively repeated up to 10 times. The
maximum number of iterations limits the area that is being searched and is
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Figure 4. Locating the player wearing a yellow dress. (a) The player is shown in the
center of the image. (b) Distance Scolor (Eq. 6) to the yellow color for a close-up view
of a player from the image (a). White pixels mark the areas that match the yellow
color, while darker ones mark areas of different colors. (c) Similarity measure Stemplate

of the whole image (a), as defined in (Eq. 8). Feature vector H (player reference) was
obtained from the subimage of the same player, captured at different instants of time.
The white area corresponds to the region of high similarity (Stemplate is 0.2 or lower).

defined by the maximum expected player movement. However, initial estimate,
provided by the color tracking algorithm is saved and used as the starting posi-
tion for the next frame. This ensures both high reliability provided by the color
tracking mechanism, and low amount of trajectory jitter, due to use of template
tracking to correct initial estimates.

4.4 Trajectory Post-processing

The trajectories obtained using previously described method contain certain
amount of noise, which makes player velocity calculation extremely difficult.

The spectrum of noise overlaps with the spectrum of rapid player movements
and some data loss is expected when filtering player trajectories. An obvious way
of trajectory filtering is by using a Gaussian filter, as shown in (9). We process x
and y components of the trajectory separately, treating them as one-dimensional,
time-dependent signals,

u(t) =
1

2NF + 1

NF∑
i=−NF

x(t + i) · G(i), (9)

where 2NF +1 denotes the width of the filter, u is the filtered component of the
trajectory, x is the component of the raw trajectory as provided by the tracking
method and G is the array of Gaussian coefficients. The precalculated set of
NF + 1 coefficients in the range of Gaussian function (−3σ, 3σ) was used.

5 Evaluation and results

5.1 Reliability and efficiency

A sequence of 750 images, corresponding to the 30 seconds of the handball match
was used to test tracker reliability. Tracking was performed simultaneously for



the all 14 players, present at the playing court. Human operator, supervising the
tracking process had to intervene 14 times during the tracking process. Inter-
vention consisted of stopping the tracking process, manual marking of the player
which was tracked incorrectly and restarting the tracking process. However, in
comparison to full manual tracking, which would require 10500 (750*14) manual
annotations for the same sequence, the tracker proved to be extremely useful.
Processing speed averaged 4.5 frames per second.

5.2 Accuracy

There are several sources of errors that can influence the overall accuracy of the
tracking: movement of player extremities, VCR tape noise, image compression
artifacts, imperfect camera calibration and quantization error. However, thor-
ough analysis of the error propagation would be difficult in our case. Therefore,
a set of experiments was designed to determine tracker accuracy. All experiments
included several handball players, differently dressed, which performed various
activities, according to the purpose of each experiment.

Ground truth was obtained simply by drawing a pattern of lines near the
middle of the one half of the handball court. The pattern, shown in Fig. 5 was
measured using a measuring tape.
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Figure 5. Setup for experiments I.-IV. on the one half of the handball court. Left:
player positions during the experiment I. are marked with black boxes. Middle: Ref-
erence player trajectories for experiments II. and III, shown with thick lines. Right:
Approximate player trajectories for the experiment IV.

The following experiments were performed:

Experiment I. Players were instructed to stay stil at the predefined places -
3 players near the court centre, 2 players near the court boundary. In the
second part of experiment, they were instructed to perform various activities
(passing ball, jumping on the spot, etc.) but they were not allowed to move
across the court plane. Reference position was obtained from the drawn
pattern. Reference velocity and path length were exactly zero, since the



players never left their positions. RMS (Root Mean Square) error in player
position and player velocity was calculated, as well the error in path length.
Effect of trajectory smoothing was also evaluated.

Experiment II. Players were instructed to run and follow the square trajec-
tory. Influence of trajectory filtering was observed. RMS error in player posi-
tion (distance from measured player position to the square reference trajec-
tory) with respect to filter width was calculated. The results confirmed that
heavy smoothing hides rapid changes in player trajectory and is therefore
inappropriate from this viewpoint.

Experiment III. Players were instructed to run and follow the circular trajec-
tory with constant velocity. RMS error in player velocity was observed, and
the reference velocity was simply calculated from the length of the circular
path and the time each player needed for one round. As players were unable
to move with exactly the same velocity all the time, part of the velocity vari-
ation can be contributed to them. In this way we made sure that our tracker
was performing even better than the actual measurements have shown.

Experiment IV. We compared our system to widely used manual, video-based
kinematic analysis tool - APAS (Ariel Performance Analysis System, [10]),
which was used as a ground truth this time. Results were consistent with pre-
vious experiments, except in the level of detail that APAS captured. Velocity
graph obtained using APAS has clearly shown accelerations and deccelera-
tions of the player, associated with each of his steps. This is the feature that
our system was designed to avoid, since it is not useful in match analysis.

Accuracy of the designed system can be summarized as shown in Table 1.

Accuracy using: 11 samples wide filter 25 samples wide filter

Position, still player: 0.2 (0.5) m RMS 0.2 (0.5) m RMS
Position, active player: 0.3 (0.6) m RMS 0.3 (0.6) m RMS
Velocity, uniform motion: 0.4 m/s RMS 0.2 m/s RMS
Velocity, uniform motion (%) 12% 7%

Path length, still player: +0.9 m/min +0.6 m/min
Path length, active player: +10 m/min +6 m/min

Table 1. Tracker accuracy. Numbers in parentheses indicate accuracy for player posi-
tion near the court boundary.

6 Conclusion

Use of the controlled environment for our people tracker has enabled us to de-
velop a tracking system which suits its purpose and, most importantly, it has
enabled us to test its accuracy. We are confident that the obtained accuracy does
not hit the limits of our tracking system, but rather the limits of possible defini-
tion of player position, velocity and path length itself. Our system observes the
movement of the people across a plane at some level of detail. From computer



vision point of view, the handball players are large, non rigid objects and in
many cases reporting player position with uncertainty as low as shown in Table
1 does not make any sense, simply due to the lack of exact definition of player
position and velocity.
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