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Abstract

In this paper we focus on local similarity measures based on Shannon entropy which can be
used for multimodal image matching employing deformations. The advantage of our
approach is that global similarity or similarity of a larger image region can be computed
from the similarities of its constitutive parts or individual voxels. We also discuss the
interpolation artefacts in entropy based similarity measures caused by linear and partial
volume interpolation.
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1. Introduction

Image matching is usually used to spatially align one image to another. For that purpose first
image, sometimes called target, has to be geometrically transformed, or aligned, to achieve
high spatial correspondence with the second image, called reference image. Similarity
measure, which serves to evaluate the spatial correspondence of images, plays a crucial role in
this process. When we need to select the measure of similarity, there are lots of issues to
consider, but the most important ones are domain of transformation, modalities involved, and
optimization method used to align the images. Selection of an appropriate similarity measure
becomes even more important when matching involves deformations (Bajcsy and Kovacic,
1989, Lester and Arridge 1999). In this case similarity measure is used not only to estimate
the differences between the images, but also to define the direction and strength of the forces,
which deform one image to make it more similar to the other image. The domain, i.e. the size
of an image region used for similarity determination, also influences the rigidity of the model.
As the region size increases the elasticity of model decreases, and it is more difficult to detect
and correct small local differences.  In some sense, the region size effectively limits the
maximum possible elasticity that can be achieved by elastic model or the maximum possible
viscosity of viscous fluid model. When using such models, properties of deformations are
expected to be defined by spatial model, and therefore, the similarity measure is desired to
have small influence on them.  This motivated us to focus on similarity measures which could
be suitable for image matching, in particular multimodal image matching, involving local
deformations. Thus, we limit ourselves to local multimodal similarity measures.  More
specifically, we investigate how widely used multimodal entropy based similarity measures
could be modified to reflect local image properties.

2. Multimodal similarity measure

The most commonly used multimodal similarity measure is mutual information. It was first
proposed and brought to the medical imaging field by Viola and Wells (Viola and Wells,
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1995). The definition of mutual information is based on statistics and its origins are in
information theory. When used as a similarity measure it measures the statistical dependence
between the image intensities. In principle, it reveals how much one image tells us about the
other image, and if suitably defined, it takes on maximum value when the images are
geometrically aligned. Given two images A and B mutual information I(A,B) between them is
defined as

),()()(),( BAHBHAHBAI −+= , (1)

where H(A) and H(B) denote marginal entropies of A and B, and H(A,B) is their joint entropy.
The entropies can be calculated using well-known Shannon definition:
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where p(.) stands for either marginal or joint probability distributions, estimated from image
intensities. There are also other types of multimodal similarity measures like energy similarity
measure (Buzug et al., 1997). Various types of generalised entropies (Taneja, 1989) could be
used as well. Nevertheless, due to their statistical nature they are all inherently global in the
sense that they can only be estimated from large enough image regions, and as such they can
not be used directly to estimate local image properties. If the region covered by the similarity
measure is small, the statistical significance of joint probability is low and similarity function
is not well defined. To alleviate this problem one can reduce the number of histogram bins or
resort to similarity measures based on 1D histograms, e.g. H(A-B). Another approach is to use
a prior joint probability (Likar and Pernuš, 1999). In this case joint probability used for
calculating mutual information is a combination of the joint probability, derived from the
image region, and the prior joint probability, which can be obtained from a pre-registered
training set. Local similarity measure based on global conditional probabilities was also used
(Maintz et al., 1998). In the next section we describe our approach.

3. Local multimodal similarity measure

We propose a local similarity measure derived from Shannon entropy that can be also used as
a voxel based similarity measure. It is noted (Baens et al., 1998, Maintz et al., 1998) that
matching based on individual voxels is ill-posed if displacements are calculated separately for
each image voxel. Thus, matching schemes using voxel based similarity measures must
incorporate spatial model, which in our case is the model of elastic deformation. Let us
rewrite Eq. (2) in the following form,
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where i and j denote image intensities of reference and target image, and pi,j is the joint
probabilty of intensity pair (i, j). Ni,j is the number of occurrences of this intensity
combination, and N is the total number of intensity pairs in the image, which is usually equal
to the number of image voxels. Let us assume that the images are divided into smaller non-
overlapping regions Rr, each containing, say, r

jiN ,  occurrences of intensity combination (i, j).
The total number of occurrences Ni,j in the whole image can be obtained by summing

r
jiN , over all regions,
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Substituting Eq. (4) in Eq. (3) we obtain
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If the image is divided into individual voxels v = (x,y,z), then
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and Eq. (5) can be simplified to
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where pv is the probability pi,j with i equal A(v) and j equal B(v),  and vpvh log)( −=  is the
“uncertainty” of this intensity combination. Thus, it is possible to calculate the entropy, which
is global similarity measure, from voxel based similarities h(v) by summing up over all image
regions, i.e. voxels. Of course, we can also sum up over image regions of arbitrary size. Thus,
local similarity measure Hr of region Rr can be calculated from voxel similarities in this
region,
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If the selected region covers the whole image, the result is the entropy of entire image. Notice
that h(v) is always estimated out of the whole image.

3.1 Generalisation

Observing Eq. (7) it is easy to see its close relation with log likelihood similarity measure
described in (Leventon and Crimson, 1998). The only difference is in the way how the
probability p(.) is derived. In our case, it is estimated from the image pair, while in case of
likelihood similarity measure the probability p(.) is a prior information. It is also possible to
use a combination of both (Likar and Pernuš, 1999). Moreover, instead of joint intensity
probability p(A,B), it is possible to use probability of intensity difference p(A-B), or
conditional intensity probability p(A|B). Finally, it is possible to replace the log function with
any other function f(p) that meets the requirement that the first derivative of  function p⋅f(p) is
strictly monotonically increasing or decreasing. If it is increasing/decreasing, higher/lower
value means better correspondence. When linear function f(p)=p is used similarity measure is
computed as the sum of squared histogram values and therefore it is often called energy
similarity measure.
Based on observations mentioned above the voxel based local similarity measure derived
from entropy, can be more generally written as

)( pfS v = ;     ∑∑ == )( pfSS vr , (8)

where Sv is  voxel based similarity measure, Sr is similarity measure for region r, and f(p) can
be any function that meets the requirement mentioned before. Probability p may be joint
probability p(A,B), difference probability p(A-B), conditional probability p(A|B), which are
derived from image pair, or combination of intensity probability derived from image pair
pimage and prior probability pprior that is given in advance. In the most general case we have
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where λ is weighting parameter.

4. Comparative study of voxel based similarity measures

A reasonable approach to compare global similarity measures is to apply them on various
transformations and to evaluate their properties, such as the number of local extrema, their
smoothness, position of global maximum, capture range, etc. However, comparing voxel
based similarity measures turns to be more problematic, because, as we mentioned before, the
results do not depend only on similarity measure but also on spatial model of elasticity. We
argue that voxel based similarities cannot be tested in isolation without considering spatial
model, and it appears that the only meaningful way to compare them is their treatment in the
context of complete matching systems.
To show the relative performance of our local similarity measures we used two spatially
aligned MRI sets of human head. The first image (T1) was transformed with a known
transformation and then deformed back to match the second image (PD) using different
versions of local similarity measure within the same elastic deformation model.  The overall
matcher performance was evaluated by using the average voxel displacement (AVD) as
performance criterion, defined as the absolute difference between voxel displacements
achieved by matcher and the displacements derived by known inverse transformation. Lower
AVD value means better performance. The results obtained using different selections of p are
tabulated below.

Table 1: Comparison results of voxel based similarity measures.

AVD CR
λ f(p) p(A,B) p(A-B) p(A|B) p(A,B) p(A-B) p(A|B)

log(p) 1.5725 1.8121 1.5725 0.9278 0.9332 0.92781 p 2.6153 2.3150 1.9323 0.7182 0.8283 0.8271
log(p) 1.5180 1.7981 1.5180 0.9339 0.9106 0.93390 p 2.5600 2.4834 1.6861 0.7260 0.8024 0.8915

Table 1 shows that prior information (λ=0) in general gives better result than the probability
derived from image pair (λ=1). This was expected, because in our experiment prior
probability distribution was correctly estimated from already aligned images. Unfortunately,
in general this is not the case. Nevertheless, when estimated properly, it can improve
matching results.  Furthermore, the logarithmic function shows better performance than linear
function. Among different probabilities conditional probability p(A|B) performed in all cases
best.

For illustrative purposes normalized cross correlation ratio (CR) between the original T1
image and recovered T1 image in additon to AVD was used as performance criterion.  Ideally,
CR should be 1. While both criteria show similar results, we need to mention that using CR as
performance measure might be misleading, because aligned images can correlate well
although transformation is not correct. For example, CR( log p(A – B),  λ=1)  shows good
correlation, while AVD indicates higher residual differences than in some other cases.

There is another problem that needs to be mentioned. Because we are dealing with discrete
images, as one of the images is exposed to the deformation process, the positions of voxels do
not necessarily lie on the regular grid and an interpolation method has to be employed to
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determine the image intensity probabilities. This problem is present in global as well as local
approaches. Fig. 1 shows similarity functions obtained for different multimodal similarity
measures with respect to translational misalignment, using linear interpolation and partial
volume interpolation (Maes et al., 1999). It is evident that linear interpolation (Fig. 1 – top
row) causes high interpolation artefacts and many local extrema, making this kind of
interpolation inappropriate for practical use. It is possible to improve its performance by
random resampling of one of the images (Pluim et al.,1999). While random resampling
improves the performance of global similarity measures, it becomes less appropriate as the
region size in which similarity is estimated gets smaller.
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Fig. 1: Similarity functions for translation, using MRI PD and MRI T1 image of human head.

Partial volume interpolation (PV interpolation shown in Fig. 1 – bottom row) results in a
much smoother similarity function with lower interpolation artefacts. We have found that
interpolation artefacts do not appear in the marginal entropies H(A) and H(B) if partial volume
interpolation is used. This makes joint entropy H(A,B) appropriate to be used individually as
the similarity measure. From the examples in Fig. 1 it is evident that even PVI causes some
interpolation artefacts that cause local extrema in H(A,B) and therefore in I(A,B). The
interpolation artefacts have smaller influence on H(A-B) as a similarity measure, but the
function itself has wider global extremum and as such it is more appropriate for the initial
steps of the matching process. In general, partial volume interpolation is recommended when
entropy based similarity measures are used.

5. Conclusions

We have presented various similarity measures for local multimodal image matching. They
are all based on probability distribution. To achieve high statistical significance, probability is
determined using whole image content and prior information, if available. If prior information
can not be used, high initial correspondence of images is required to prevent incorrect
matching, caused by incorrect determination of probability distribution. Different similarity
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measures give different results. Which one to use depends on the problem wished to solve.
Generally, probability of image difference p(A-B) is more appropriate for initial steps of
image matching while joint probability p(A,B) and conditional probability p(A|B) are more
appropriate for final steps as they better define intensity correspondences. In all cases partial
volume interpolation is recommended.
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