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University of Ljubljana, Faculty of Electrical Engineering,
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Abstract

This paper presents an original non-rigid image registration approach, which tends
to improve the registration by establishing a symmetric image interdependence. In
order to gather more information about the image transformation it measures the
image similarity in both registration directions. The presented solution is based
on the interaction between the images involved in the registration process. Images
interact through forces, which according to Newton’s action-reaction law form a
symmetric relationship. These forces may transform both of the images, although
in our implementation one of the images remains fixed. The experiments performed
to demonstrate the advantages of the symmetric registration approach involve the
registration of simple objects, the recovery of synthetic deformation, and the inter-
patient registration of real images of the head. The results show that the symmetric
approach improves both the registration consistency and the registration correct-
ness.

Key words: Non-rigid registration, similarity measure, symmetry, registration
consistency, registration correctness.

1 Introduction

The aim of image registration is to find a transformation that puts two im-
aged anatomies into a spatial correspondence. Each anatomical point in the
first anatomy is expected to have exactly one homologous point in the second
anatomy. It is intuitively expected that a more correct registration is reflected
in a higher image similarity, which is also a standard assumption of image
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registration procedures. However, this assumption is not always valid, as simi-
larity measures compare images in terms of their appearance and cannot assess
transformations that do not change them in this respect.

Let us suppose that the overall transformation consists of several transforma-
tion components, e.g., translation and rotation in the case of rigid registration,
and local deformations in the case of non-rigid registration. Such transforma-
tion components might correspond to changes in the individual transformation
parameters, such that the number of transformation components is equal to
the dimensionality of the transformation. The problem arises when some of the
components do not change the image’s appearance and therefore they cannot
be assessed by measuring the image similarity. Although this phenomenon is
rare for global/rigid cases, it is quite common for local/non-rigid cases. By
increasing the dimensionality of the transformation the proportion of trans-
formation components that cannot be assessed by measuring the similarity
increases. This causes difficulties in non-rigid registration, as well as in its
validation (Woods, 1999; Gee, 2000; Schnabel et al., 2003; Fitzpatrick, 2001).

One of the properties of similarity measurement is asymmetry. To illustrate
the problem, let us assume we have two images, A and B, and some transfor-
mation T. Let us compare the images after the transformation is applied. The
situation is shown in Figure 1. By transforming image A using the transfor-
mation T, image TA is obtained. Although the transformation T does change
the image A (note the difference between the grids of A and TA), in our spe-
cific case the appearance of image A remains unchanged. Consequently, the
transformation cannot be assessed by measuring the similarity S, as S(TA,B)
equals S(A,B). However, the same match, i.e., the same point-to-point image
correspondence, can be obtained by transforming image B instead of image A,
but using the inverse transformation T−1. In our example the obtained image
T−1B evidently differs from the initial image B. Thus, this transformation
can be detected and assessed by measuring the similarity S, as S(A,T−1B)
differs from S(A,B). This illustration shows that measuring the similarity in
different directions, i.e., by transforming the other image to obtain the same
match, makes it possible to assess the different transformation components.

The phenomenon of the asymmetry of a similarity measurement is important
for image registration, because it causes differences between registration re-
sults obtained when registering images in different registration directions. The
presence of such differences is known as inverse inconsistency and indicates an
error in at least one of the registration directions.

To avoid the inconsistency and thereby improve the registration Christensen
and Johnson (Christensen and Johnson, 2001) proposed consistent image reg-

istration. Here, images are jointly registered in both registration directions,
while both of the registration processes are linked with an additional consis-
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Fig. 1. Illustration of the similarity measure’s asymmetry. The measurement of sim-
ilarity in different directions can assess the different transformation components.
The transformations are shown by the deformation of the regular image grids. The
similarity S(TA, B) does not differ from the similarity S(A, B), which indicates
that none of the transformation components present in transformation T can be as-
sessed by measuring the similarity in this registration direction. On the other hand,
the same image correspondence as obtained by transforming image A using T can
also be obtained by transforming image B using T

−1. This inverse transformation
changes the appearance of image B such that the similarity S(A,T−1B) differs
from S(A, B), which indicates that at least some transformation components can
be assessed in this registration direction. The illustrated asymmetry is independent
of the selection of the similarity measure used. In our particular case, using the
overlap measure results in the following similarities: S(TA, B) = S(A, B) = 0.75
and S(A,T−1B) = 0.85.

tency constraint. Another approach was proposed by Cachier and Rey (Cachier
and Rey, 2000), whose inversion invariant energies symmetrize non-rigid reg-
istration in such a way that the overall criterion function becomes independent
of the registration direction. Both solutions implicitly require measuring the
similarity in both registration directions. However, in both cases this requires
the computation of inverse transformations, which is a difficult and computa-
tionally complex task. Another interesting work was done by Ashburner et al.
who symmetrized the probability distribution within the Bayesian Framework
(Ashburner et al., 1999).

We propose an alternative registration approach, which does not force the
consistency, but tackles the problem at its source by establishing a symmetric
image interdependence. This makes it possible for the registration to gather
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more information about the image transformation, as the image similarity is
measured explicitly in both registration directions. The obtained registration
results are consequently more correct as well as more consistent. In addition,
the computational cost of the proposed approach is low and the computation
of inverse transformations is not required.

2 Symmetric image registration

The symmetric registration approach treats both images involved in the regis-
tration process in the same manner. Both of the images share the same global
coordinate system and can overlap. Both of the images can be modeled by spa-
tial deformation models, possibly different ones, such that both of them can
move and/or deform. Finally, the most distinctive feature of the symmetric
registration approach is the interaction between the images. Images interact
via forces in accordance with Newton’s third law of motion. Forces applied to
one image are reflected in opposing forces on the other image, which forms the
basis for the symmetry. The result of this interaction is a transformation of
the images that puts the whole system into the equilibrium state of minimum
energy.

Let A and B be the images involved in the registration. Each of them is defined
in its own coordinate system, xA for image A and xB for image B. The images
are mapped to the world coordinate system x by the transformations TA

and TB, such that TAA and TBB represent the transformed images as they
appear in the global coordinate system x. Here, the mappings of the image
coordinates to the global coordinates are:

x = xA + TA(xA), (1)

x = xB + TB(xB), (2)

where TA(xA) and TB(xB) denote the displacements of points A(xA) and
B(xB) from their initial (untransformed) positions.

Following a widely used gradient descent optimization algorithm, the external
forces are defined as a gradient of image similarity S(TAA,TBB). The forces
FA, which act on image A in order to match it with image B are then as
follows:

FA =
∂S(TAA,TBB)

∂TA

. (3)

In addition to image A, image B also tends to improve the matching. Forces
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FB are exerted on image B in order to improve the matching of image B with
image A:

FB =
∂S(TAA,TBB)

∂TB

. (4)

The obtained forces, FA and FB, which we call forward forces, are not sym-
metric:

FA(x) 6= −FB(x). (5)

Here, FA(x) and FB(x) denote forces at the same global coordinates x. Note
that the forces FA and FB act on different images. This asymmetry is a source
of inverse inconsistency in the case of conventional non-rigid registration ap-
proaches. The forces FA and FB are actually estimated by measuring the
similarity in different registration directions and so they are based on dif-
ferent information about the image transformation. Each of the gradients of
similarity as defined in Eq. (3) and Eq. (4) depend only on the intensity gradi-
ent of one image. For example, if S is some global similarity measure, then the
forces FA can differ from zero only at points with a non-zero gradient of image
A, while the forces FB differ from zero at points with a non-zero gradient of
image B. For an illustration of the forward forces see Figure 2.

A

B

A

B

FA FB

Fig. 2. Illustration of forces FA acting on image A (left) and forces FB acting on
image B (right) when matching two rectangles. Note the asymmetry of the forces
with respect to the registration direction, which is the main source of inconsistency
with conventional registration procedures.

In contrast, the asymmetry does not affect the symmetric registration ap-
proach. In accordance with Newton’s third law of motion, each force exerted
in one of the images reflects in another force of the same magnitude that acts
in the other image in the opposite direction. Thus, the forces FA reflect to
forces F′

A, which act on image B such that F′

A(x) = −FA(x), and the forces
FB reflect to forces F′

B, which act on image A such that F′

B(x) = −FB(x).
The new forces are called reverse forces and are illustrated in Figure 3. The

5



resultant forces that act on image A are the sum of the forward and reverse
forces:

FA(x) = FA(x) + F′

B(x) = FA(x) − FB(x), (6)

and likewise the resultant forces on image B are

FB(x) = FB(x) + F′

A(x) = FB(x) − FA(x). (7)

For an illustration of the resultant forces FA and FB see Figure 4.

A

B

A

B

F′

B F′

A

Fig. 3. Illustration of the reverse forces F
′

B acting on image A (left) and the reverse
forces F

′

A acting on image B (right) when matching two rectangles.

A

B

A

B

FA FB

Fig. 4. Illustration of the symmetric forces F
A acting on image A (left) and the

symmetric forces F
B acting on image B (right) when matching two rectangles.

Note the increased amount of information available for transforming each of the
images and the obtained symmetry F

A = −F
B, which is required for achieving the

registration consistency.

The forces FA and FB are symmetric in the sense that they have the same
magnitude but act on different images and in the opposite direction:

FA(x) = −FB(x). (8)
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When the symmetric forces are used for the registration, each of the resulting
transformations, TA and TB, tend to correct the image differences in both
directions, i.e., those that can be detected in one and those that can be de-
tected in the opposite registration direction. Nevertheless, transformation TA

can still be regularized with a different spatial deformation model than trans-
formation TB, which presents us with new registration possibilities. In the
case that the same spatial deformation model is used for both of the images,
the registration is symmetric in all aspects and the registration results are ab-
solutely consistent. However, it is often assumed that one of the images repre-
sents the undeformed configuration of the anatomy, while the other one is its
deformed version. In this case better results are expected when transforming
only one of the images, while the other image should remain untransformed.
Consequently, images should be modeled by two different spatial deformation
models. The target image A, which should not get transformed, must be fixed
(modeled as a rigid body and anchored to the coordinate system), while the
source image B must be modeled using a suitable deformable model. Note
that although the target image is fixed, the forces FA still exist and they still
contribute to the registration. Even if they cannot change the configuration
of image A they still have an influence on the transformation of source image
B. Therefore, the advantages of the symmetric registration approach remain
and an improvement in the registration correctness can be expected.

2.1 Implementation details

In our implementation of registration we assume that only one of the images
needs to be transformed (image B), while the other image (A) is fixed. How-
ever, the forces that drive the registration are obtained using the symmetric
approach, such that the information of both registration directions is used.

For measuring the quality of the image match we use point-similarity measures
(Rogelj et al., 2003), which are capable of estimating the similarity for individ-
ual image point pairs. They separate the process of measuring similarity into
two steps. In the first step a point-similarity function f(i), which is an estima-
tion of image intensity dependence, is computed using the whole images. Here,
i = (iA, iB) denotes an image intensity pair. In the second step the similarity
S(x1,x2) of a point pair (A(x1), B(x2)) is computed from the corresponding
intensity pair i(x1,x2) = (iA(x1), iB(x2)) such that S(x1,x2) = f(i(x1,x2)).

Due to point-similarity measures, we do not optimize the similarity of the
whole images, but instead, the improvement of the image match is searched for
by optimizing the similarities of individual image voxels. This is convenient for
high dimensional registration, where transformation components correspond
to the displacements of individual voxels. In this case an estimation of the ex-
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ternal forces, which are also estimated for individual voxels, can be simplified,
as each force F(x) depends only on one transformation component T(x) and
not on the whole transformation (transformation of the whole image) T.

The transformation TB, which transforms image B into image TBB, moves
each point from its original (untransformed) position x = xB to a new position
x = xB + TB(xB). Thus, the point at the global coordinate x in image TBB,
denoted TBB(x), is in image B (according to its own image coordinate system)
located at coordinates xB and denoted B(xB):

TBB(x) = B(xB), (9)

The point TBB(x) gets matched with point TAA(x), but because image A is
fixed (TA(xA) = 0) its image coordinates are equal to the global coordinates
xA = x, see eq.(1). Thus, at global coordinate x, image point TAA(x) matches
with image point TBB(x), such that

TAA(x) = A(x) = A(xB + TB(xB)). (10)

This relationship can be used to compute the forward forces FB(x):

FB(x) =
∂S(TAA(x),TBB(x))

∂TB

=
∂S(A(xB + TB(xB)), B(xB))

∂TB(x)
. (11)

The gradient of the point similarity can be computed numerically using sim-
ilarities that correspond to the point displacements ∆TB(x) = [−ε, 0, +ε]3

and form a 3×3×3 point-similarity window, see Figure 5. Similarities for the
points in image A that are not positioned on the image grid are interpolated
from the similarities of neighboring grid points to obtain subvoxel accuracy
and prevent interpolation artifacts (Rogelj and Kovačič, 2003). The further
estimation of forces, i.e., gradients of similarity, follows Bajcsy and Kovačič
(Bajcsy and Kovačič, 1989). Because point similarity measures rely on a global
estimation of intensity dependence, an additional symmetrization of similarity
window, such as proposed by Dengler (Dengler, 1986), is not needed.

For the computation of the reverse forces F′

A = −FA, a gradient of similarity
with respect to the transformation TA must be obtained. Although TA is in
reality zero (image A is fixed) we need to compute how the similarity would
change if the registration was performed in the opposite direction, using TA.
In this case, point A(xB +TB(xB)) would no longer match with point B(xB),
but with some other point in image B, displaced from the coordinate xB by
some displacement u. To avoid any interpolation of image B, which is difficult
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voxel B(xB)

points A(xB + TB(xB) + ∆TB(x))

image grid A

ε

Fig. 5. 2D illustration of the points used for the estimation of forward forces FB.

because image B might be deformed, the gradient of similarity is numerically
estimated by applying small displacements u according to the coordinate sys-
tem of image B, and not directly according to the global coordinate system:

FA(xB) =
∂S(A(xB + TB(xB)), B(xB + u))

∂u

∣

∣

∣

∣

∣

u=0

. (12)

voxels B(xB + u)

point A(xB + TB(xB))

image grid B

J

J
−1

FA(xB)
FA(x)

Fig. 6. 2D illustration of the points used for the numerical computation of reverse
forces. The numerical derivation is performed in the coordinate system of image B

and the result is mapped to the global coordinate system using a Jacobian matrix
J .

Because the final reverse forces must be defined according to the global coor-
dinate system x, a local transformation between the global coordinate system
x and the image coordinate system xB must be obtained, see Figure 6. Ac-
cording to Eq. (2) the local transformation equals the Jacobian matrix J :

∂x

∂xB

= J = I +
∂T(xB)

∂xB

, (13)

∂xB

∂x
= J−1. (14)
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Thus, the reverse forces defined in the global coordinate system are

FA(x) = J−1FA(xB). (15)

When both sets of forces, FB and FA, are obtained, the resultant forces FB,
used for registering image B to image A, are obtained as (7):

FB(x) = FB(x) − FA(x). (16)

3 Results

Three sets of experiments were performed to demonstrate the symmetric reg-
istration approach and compare it with mono-directional approaches. The ex-
periments involved the registration of simple objects, the recovery of synthetic
deformations, and the inter-patient registration of real images of a human
head.

Each pair of images (A,B) used in the experiments was registered in both
registration directions using the three different force-estimation approaches,
i.e., one symmetric and two unidirectional. In total, six transformations were
obtained for each image pair. The result of registering image B to image
A using the forward forces FB, the reverse forces F′

A and the symmetric
forces FB were the transformations TF , TR and TS, respectively. When the
registration was performed in the opposite direction, registering image A to
image B, the transformations T′

F , T′

R and T′

S were obtained, see Figure 7.

TF

TR

TS

T
′

F

T
′

R

T
′

S

Fig. 7. Transformations obtained by registering images A and B, with respect to
the method used for estimating forces (forward, reverse and symmetric) and the
registration direction.
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All the experiments were based on a multi-modality point-similarity measure
with the similarity function:

f(i) = log
p(i)2

p(iA) · p(iB)
, (17)

where the joint distribution p(i) and the marginal distributions p(iA) and p(iB)
are estimated from the images that are being registered. The registration was
regularized using a Gaussian spatial deformation model (Rogelj et al., 2003)
that follows the implementation of linear elasticity proposed by Bro-Nielsen
(Bro-Nielsen, 1996).

Three different methods were used to assess the quality of the registration.
First, when the correct transformation T0 was known, the registration quality
was measured directly by computing the RMS displacement error ERMS,

ERMS(T) =

√

1

N

∑

x

(T(x) − T0(x))2 (18)

where N is the number of image voxels. The second method measures the regis-
tration consistency by computing the RMS deviation of point correspondences
defined by the transformations T and T′, which are obtained by registering the
same images using the same method but in different registration directions.

CRMS(T,T′) =

√

1

N

∑

x

(

T(x) − T′−1(x)
)2

(19)

T′−1 denotes the inverse of transformation T′, such that it forms the same
image correspondence in the other registration direction. Please note that our
symmetric registration approach does not enforce the inverse consistency, so
it does make sense to verify by CRMS measure whether the consistency in
fact improves. The last method used for assessing the registration quality was
the measurement of image similarity. This method is less appropriate (Woods,
1999) as it can only judge transformation components that change the image’s
appearance. For our experiments the correlation coefficient CC(A,TB), see
(Hill and Hawkes, 1999), was used.

3.1 Registration of simple objects

Two images of simple objects were generated, a rectangular prism for image
A and a sphere for image B. The central image slices are shown in Figure 8.
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A B

Fig. 8. The central slices of the simple 3D images, representing a rectangular prism
(image A) and a sphere (image B). The lines in image B represent the image grid.

TF B TRB TSB

A − TF B A − TRB A − TSB

CRMS = 1.349 CRMS = 1.658 CRMS = 0.893

CC = 0.968 CC = 0.984 CC = 0.976

Fig. 9. Results of registering the simple image pair using different methods for
estimating the external forces. The first row shows the resulting images TB, and
the second row shows the differences compared with the target image A. Below the
images are the consistency results CRMS and the final image similarities CC for
each of the methods.
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After registering the images with all three registration approaches in both
directions, the results were compared by measuring the consistency CRMS and
the similarity of the registered images CC. As the ideal transformation T0 is
not known in this case, the registration error ERMS cannot be obtained.

The results are shown in Figure 9. Although all three resulting images look
very similar, the consistency measure CRMS indicates the advantage of the
symmetric approach. The results of the other two methods are worse, espe-
cially when using only the reverse forces (transformation TR). However, dif-
ferent conclusions could be drawn when observing the image similarity. Here,
the method based on the reverse forces gives the best result, better than the
symmetric approach. To find out which of the approaches is more correct we
performed the second experiment, based on recovering synthetic deformations.

3.2 Recovering synthetic deformations

In this experiment we used Brainweb (Kwan et al., 1996) simulated images
of a human head. First, the original MRI-T1 image was used for A, and its
synthetically deformed version was used for B. Second, we performed a multi-
modality registration by using the MRI-PD image as a target A, while B

remained the same synthetically deformed MRI-T1 image, see Figure 10.

T0

A (mono-modality)A (multi-modality) B

MRI-T1MRI-T1MRI-PD

Fig. 10. Images used for the experiment based on recovering synthetic deformations.
Image A was an original untransformed MRI-T1 image (mono-modality registration)
or MRI-PD image (multi-modality registration). Image B was in all cases generated
by deforming the original MRI-T1 image.

Five different synthetic deformations T0 were used, each of them generated as
a sum of five three-dimensional Gaussian functions with randomly selected pa-
rameters, where the amplitude was in the range 0 to 26mm, and the standard
deviation was in the range 5 to 50mm.

The synthetically generated transformation T0 made it possible to evaluate
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Table 1
Results of recovering the synthetic deformations.

Experiment Method Mono-modality Multi-modality

ERMS CRMS CC ERMS CRMS CC

TF 1.267 0.548 0.974 1.302 0.854 0.973

T
(1)
0 TR 1.382 1.570 0.976 1.876 2.050 0.974

TS 1.052 0.322 0.977 1.108 0.400 0.976

TF 1.520 0.908 0.911 1.241 1.020 0.993

T
(2)
0 TR 1.358 1.885 0.995 1.791 2.086 0.995

TS 1.242 0.356 0.994 1.093 0.326 0.995

TF 1.413 0.785 0.988 1.716 0.819 0.986

T
(3)
0 TR 1.225 2.066 0.994 1.760 2.200 0.992

TS 0.981 0.768 0.991 1.040 0.672 0.992

TF 1.043 0.305 0.995 1.166 0.565 0.994

T
(4)
0 TR 1.233 1.509 0.995 1.801 2.001 0.994

TS 0.919 0.192 0.995 1.037 0.255 0.994

TF 1.580 1.005 0.990 1.661 1.103 0.989

T
(5)
0 TR 1.501 1.663 0.993 1.970 2.203 0.992

TS 1.425 0.491 0.992 1.521 0.509 0.992

TF 1.578 0.916 0.987 1.417 0.872 0.987

average TR 1.489 1.731 0.991 1.840 2.108 0.989

TS 1.330 0.510 0.990 1.160 0.433 0.990

the registration correctness ERMS, the consistency CRMS and the image simi-
larity CC. Because the original MRI-T1 and MRI-PD images were registered,
the measured CC and the original MRI-T1 image were also used to evalu-
ate the multi-modality registration results (TB). The results are tabulated in
Table 1. In all cases the symmetric approach performed the best in terms of
the registration correctness and the registration consistency, while the mea-
surement of final image similarity gave similar results for all three registration
approaches (considering the average initial image similarity S0 = 0.841). It is
also evident that the mono-modality and multi-modality registrations produce
practically identical registration results.
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A B

TB

Fig. 11. An example of the inter-patient registration of real MRI-T1 images of a
human head. Image A is a target used for registering image B, and TB is the
registered image.

3.3 Registration of real inter-patient data

In the last experiment we tested how the symmetric registration approach
performs in the case of real medical images and complex inter-patient trans-
formations. We used six real MRI-T1 images of a human head. One image
always served as image A and the other five images were used as image B.
Thus, altogether there were five image pairs and each one of them was regis-
tered six times, by using all three different methods and registering in both
directions. Example images are shown in Figure 11.

The registration results were evaluated by measuring the consistency CRMS

and the image similarity CC; the registration error ERMS cannot be measured
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Table 2
Results of interpatient registration of real images of head.

Experiment Method CRMS CC

TF 3.090 0.788

MRI01 TR 4.859 0.839

TS 1.384 0.818

TF 3.145 0.851

MRI02 TR 5.136 0.878

TS 0.963 0.875

TF 3.155 0.859

MRI03 TR 4.142 0.864

TS 1.062 0.870

TF 3.410 0.874

MRI04 TR 5.323 0.880

TS 1.023 0.883

TF 2.951 0.863

MRI05 TR 4.747 0.881

TS 0.911 0.880

TF 3.150 0.847

average TR 4.841 0.868

TS 1.068 0.865

due to the unknown ideal transformation T0. The results are tabulated in
Table 2.

It is clear that the consistency of the symmetric registration is, in all cases,
much better than the consistency of the other two methods. As a result, we
would expect that the results of the symmetric registration would also be more
correct. However, it is also evident that the symmetric approach does not yield
better results in terms of the final image similarity, which is similar for all three
methods. This indicates that similarity measures are not capable of detecting
the differences between the transformations obtained using different methods.
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3.4 Discussion

All the results show that the symmetric registration approach performs better
in terms of consistency than the standard registration approaches, thereby
indicating a more correct registration. Furthermore, the results of recovering
synthetic deformations prove that symmetric registration also improves the
registration correctness. However, the improvement in the registration error is
smaller than the improvement in the consistency, which indicates that some
transformation components cannot be detected by measuring image similarity
in any of the registration directions. Note that the gradients of similarity
and the external forces still appear only at image points with a non-zero
intensity gradient (although according to both images), which renders the
exact registration of homogeneous image regions impossible. To improve the
registration correctness of these regions an appropriate spatial deformation
model must be used.

The results also show that in general the final image appearance becomes
most similar to the target image when only the reverse forces are used. One
possible explanation for this is that the reverse forces actually optimize the
image similarity in the same registration direction as is observed after the
images are registered.

In our implementation the reverse forces appear at the intensity gradients
of the source image, while the forward forces appear at non-zero gradients
of the target image. During the registration the image match changes from
iteration to iteration and thus, forward forces appear at different coordinates
with respect to the image that is being registered (TB). This contributes to the
registration consistency of the forward-force estimation method in comparison
with the results for the reverse forces, see Table 2.

The consistency of the symmetric registration approach is considerably bet-
ter than the consistency of the other two methods, although not as good as
one would expect. We should emphasize that the differences between the re-
sults obtained in different registration directions are not caused only by the
asymmetry of the similarity measurement, but also by the asymmetry of the
spatial deformation model (Cachier and Rey, 2000). Two transformations of
the same tissue, that are inverses of each other, generally require different
deformation energies. This phenomenon arises because an additional defor-
mation of already deformed tissue requires different energy than deformation
of undeformed tissue. Registration tasks commonly assume that one of the
images represents the undeformed state of the anatomy, while the other image
represents the deformed anatomy. In this case it is important to know which
image is playing which role, in order to correctly set the registration. Note that
swapping of images, in order to perform registration in the opposite registra-
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tion direction, also exchanges the assumptions of initial image deformations.
Thus, if assumptions were correct for the original registration direction, they
would be incorrect for the opposite direction, giving a raise to the registration
error. This discrepancy of registration results obtained in both registration
directions is also present in our experiments. As a consequence, the measure
of consistency CRMS looses its absolute meaning, because it does not mea-
sure only the disturbing asymmetry of similarity measurement, but also an
eventually desirable asymmetry of the deformation model.

In contrast to consistent image registration (Christensen and Johnson, 2001)
symmetric registration does not force the consistency. Instead, it improves the
registration in one direction, without performing it in the opposite direction.
As such it allows realistic asymmetric assumptions about the undeformed
configuration of the anatomy and/or about the spatial deformation models.
Furthermore, in comparison to the approach based on inversion invariant

energies (Cachier and Rey, 2000) it only symmetrizes the similarity energy

while not constraining the regularization energies. When the symmetrization
of the regularization energies is also desired, this can be obtained by using the
same spatial deformation model for both images. Finally, the implementation
of symmetric registration is computationally efficient and does not require the
computation of inverse transformations.

4 Conclusion

Symmetric image registration is a new aspect of the registration process. It is
physically motivated and uses general physical laws. This solves the problem
of the asymmetry of the similarity measurement, which is the main source of
inconsistency and one of the sources of registration errors.

Three different experiments were performed to demonstrate the symmetric
registration approach and to compare it with two standard unidirectional ap-
proaches. The results prove that the symmetric registration approach does
improve the registration consistency as well as the registration correctness. In
addition, the computational cost of the symmetric approach is still relatively
low, as it does not require the computation of inverse transformations.

In general, the symmetric approach allows both images to be modeled by suit-
able deformable models and thus both of them could actually deform. Such an
approach could better suit certain registration tasks when both of the images
actually represent the deformed anatomy. In addition to this generalization,
it would also be possible to use more than two images, which would interact
with forces at the same time.
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Finally, note that the registration process is completely symmetric only if
both of the images are modeled using the same spatial deformation model.
When this is not the case, the registration error depends on the selection of
the registration direction and some inconsistency appears due to the different
assumptions in the different registration directions.
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