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Abstract

Spatial deformation models are used to regularize image registration such that they prevent
physically and anatomically unlikely transformations. It is often assumed that optimal
models are obtained by modeling deformation properties of real tissues. However, this
is not exactly true, because external forces, which drive the registration, in general differ
from forces which in reality deformed the anatomy. In order to develop better spatial
deformation models, it is necessary to consider these differences. In this work we focus
on convolution based models. We analyze advantages and disadvantages of two most
commonly used spatial deformation models, i.e. elastic model, and incremental model,
and two widely used convolution kernels: an elastic kernel and a Gaussian kernel. The
result of this work is a new combined elastic-incremental model, suitable for non-rigid
registration of medical images.

1 Introduction

Deformation of materials is in physics described by various physical laws. The same defor-
mation properties characterizing real materials are usually expected from spatial deformation
models that are used for non-rigid registration. However, in order to exactly model the behavior
of realistic materials multiple physical laws must be employed. In practice, spatial deformation
models follow only a single, the most characteristic physical law, i.e. elasticity [1,4,11,12] or
viscosity [3, 5, 6], and furthermore, this characteristic behavior is usually linearized. Thus, the
deformation properties of real materials are usually approximated by linear models, which can
still describe deformation properties of tissues sufficiently well, although their computational
cost is considerably lower. Such spatial deformation models can be implemented using a cou-
ple of approaches. Initially, they were modeled exclusively by implementing corresponding
partial differential equations [1], while later a finite element approach [9] and a convolution
approach [3] were proposed. In this work we follow the convolution approach, proposed by
Bro-Nielsen [2, 3]. The idea of this approach is that every linear model can be implemented
by convolution filtering, where the filter kernel equals the impulse response of the deformable
media. Such regularization can be applied to voxel displacements or to voxel velocities. Thus,



common spatial deformation models differ only in two aspects: according to the filter kernel
and according to the data that is being filtered.

2 Convolution models

The most dominant deformation property of tissues is elasticity, which is in the case of con-
volution models implemented by filtering the total external forces, which cause the deforma-
tion [2]:

T = G ∗ F, (1)

Here, F denote external forces, G is a convolution kernel, and T stands for the transformation
that defines displacements of image voxels. However, in the case of image registration the
total forces are not available, as external forces are only an estimate how the forces should act
to improve similarity between the images. The equation (1) therefore cannot be used directly.

In order to solve this problem we separate the spatial deformation model into two parts.
The first part follows the Hooke’s law to compute unregularized displacement of image points,
while the second part regularizes them according to the impulse response of the deformable
media to obtain the final transformation T, see Fig. 1. In accordance with this we separate the
convolution filter G into two terms, a filter gain kF and a normalized kernel GE , such that

G = kFGE, (2)
∫

GE(x)dx =
∑
x

GE(x) = 1. (3)

Elastic regularization can now be performed by filtering voxel displacements instead of ex-
ternal forces. In contrast to total external forces total voxel displacements are known in each
registration iteration, which enables elastic as well as other types of spatial deformation mod-
els.

Figure 1: Convolution models can be separated into the Hooke’s law, which maps external
forces into a transformation (displacements) of independent image points, and spatial reg-
ularization filter GE , which models interdependencies between the points to regularize the
transformation.

2.1 Elastic model

The characteristic of elastic materials is to deform due to applied external forces and return
back into the undeformed configuration when the forces are retracted. This behavior requires
regularization of total voxel displacements.



External forces obtained during the registration procedure tend to improve the transfor-
mation iteratively. Consequently, the transformation in the t-th iteration T(t) is a sum of the
transformation obtained in the previous iteration T(t−1) and an increment T(t)

F that follows the
Hooke’s law, and furthermore, all together must be regularized by the spatial regularization
filter, see the block scheme in Figure 2:

T(t) = (T(t−1) + T
(t)
F ) ∗ GE (4)

This can be rewritten in the following form:

T(t) = T
(t)
F ∗ GE + T

(t−1)
F ∗ G2

E + T
(t−2)
F ∗ G3

E + ... + T
(1)
F ∗ Gt

E, (5)

where Gn
E stands for n-times convolution with filter GE . By increasing the number of con-

volution steps n the convolution kernel becomes wider and approaches towards averaging.
Consequently, if the external forces do not exist (F = 0), the model gradually returns back to
the undeformed configuration. As forces in earlier iterations are regularized with wider ker-
nels they contribute to more global matching, while forces in later iterations are regularized
with narrower kernels and deal with more localized image mismatches. This is advantageous
because the estimated forces do not act directly in the direction of the correct match, and thus
include a local error. This is more obvious in initial registration iterations, when images are
more mismatched, than in later registration iterations, when points used for estimating external
forces are already close to their correct position.

The elastic models have also one important disadvantage. The problem appears because
external forces exist only if there is some image mismatch, while they are necessary to maintain
the deformed state of the image. Thus, local image discrepancies can never be registered
absolutely correct as there is always some mismatch required to maintain the deformation.
The mismatch is actually a systematic error and is larger for larger deformations. This makes
the elastic model less suitable for large deformations, such that it is often replaced by viscous
fluid or incremental models.

Figure 2: A block scheme of the elastic model suitable for iterative non-rigid registration
procedures.

2.2 Incremental model

Incremental models were introduced to avoid systematic error of the elastic approach. They
are based on the elasticity and assume that the total force F0, which is required for registering
two images, can be obtained by summing the estimated external forces over all registration
iterations:

F0 =
∑

t

F(t), (6)



where t denotes the iteration number. Following the principle of linearity, the final transfor-
mation T can also be computed as a sum of partial transformations (displacements) T(t)

T = kFGE

∑
t

F(t) =
∑

t

GET
(t)
F , (7)

and consequently,
T(t) = T(t−1) + GET

(t)
F , (8)

A block scheme of incremental spatial deformation model is shown in Fig. 3. The incremental
model considerably differs from the deformation properties of real tissues. When forces are
retracted the material remains in the deformed configuration. Incremental model also enables
very large deformations, even such that are not expected for real tissues. The disadvantage
of this approach is in accumulation of registration error. External forces do not always act
exactly in the direction of the correct match, especially not in initial registration steps, and this
differences represent an error. The error accumulates in point displacements and cannot be
corrected in later registration iterations, such that it also reflects in the registration error. Thus,
the ability to perform large image deformation is related to reduced anatomical suitability,
which reflects in larger registration error. This is the main disadvantage of the incremental
model.

Figure 3: A block scheme of the incremental model.

2.3 Combined elastic-incremental model

Elastic as well as incremental models have certain advantages and certain disadvantages. The
elastic model provides physically and anatomically reasonable deformation properties and thus
assures relatively low registration error for information poor image regions, e.g. homogeneous
image regions. However, it suffers from the systematic error, which is the most obvious in
information rich regions, e.g. edges of anatomical structures may not perfectly overlap. On
the other hand, deformation properties of the incremental model and the viscous model differ
from deformation properties that are expected for most real tissues, which results in higher
registration errors in information poor image regions. However, because these models do not
suffer from the systematic error, they better register information rich image regions.

In order to improve the registration we have devised a combined elastic-incremental model,
which combines advantages of elastic and incremental models. The elastic part is expected to
contribute to low registration error for information poor image regions, while the incremental
part is expected to aid to matching of information rich image regions. The obtained model
consists of two convolution filters, where the first one, GI , follows the principle of the in-
cremental model and regularizes transformation improvements TF , and the second filter, GE ,



represents the elastic properties and regularizes the overall transformation T, see the block
scheme in Figure 4:

T(t) = (T(t−1) + T
(t)
F ∗ GI) ∗ GE (9)

The first filter (GI) enables large deformations and precise registration while the second one
(GE) serves to improve the linearity of the results. The total regularization G, i.e. the normal-
ized impulse response of the combined model, suits to the convolution of both filter kernels:

G = GI ∗ GE. (10)

If Gaussian filters are used then the obtained total standard deviation is

σG =
√

σGI
+ σGE

. (11)

The behavior of the combined spatial deformation model depends on the ratio between regu-
larization provided by each of the filters, such that in the extreme cases the incremental model
is obtained when GE = δ and the elastic model is obtained when GI = δ. Here δ is a Dirac’s
delta function. If both filters differ from δ, then the improvements are expected.

Figure 4: A block scheme of the combined elastic-incremental model.

3 Filter kernels

Kernels of the convolution filters define spatial deformation properties of the modeled material.
Firstly, the kernel width defines stiffness of the model, such that wider kernels correspond to
more stiff materials and narrower kernels correspond to more flexible materials. Secondly, the
type of the kernel defines some other characteristics of the deformation, e.g. compressibility,
isotropy, etc. In order to realistically model elasticity and viscosity Bro-Nielsen and Gramkow
proposed an elastic kernel [2,3,10], see Figure 5 left. The alternative is a Gaussian kernel, see
Figure 5 right, which can be regarded as a separable approximation to the elastic kernel. Due
to the separability it additionally reduces the computational cost and substantially increases
registration speed, which is the main reason why Gaussian kernels have been extensively used.
A disadvantage of separable kernels is that due to independence of spatial dimensions they
do not provide control over compressibility, such that longitudinal stretch does not induce a
lateral shrink.

Although it is often assumed that realistic kernels enable better registration, this not neces-
sarily true. The reason for this is in external forces that drive the registration, which should, in
order to perfectly recover the deformation, equal the forces that deformed the anatomy. This
is never the case, because images do not provide enough information to enable assessment



Figure 5: An example of elastic kernel (left) and Gaussian kernel (right) presented by a de-
formed grid.

of transformation in homogeneous image regions. Consequently, external forces act only on
information rich image regions, i.e. edges of imaged anatomical structures.

If forces that deform the anatomy actually act only on the edges of anatomical structures,
then realistic kernels do enable good registration. A one dimensional illustration of such case
is shown in Figure 6. The deformation caused by force F0 can be perfectly recovered when
using kernel that equals the impulse response of deformed media, because external forces FR

can be estimated correctly. Gaussian kernels in this case cause larger registration error. The
point on the edge is still correctly transformed, see T(xF0), such that images still look equal,
but transformation deviates from the ideal one in points inside homogeneous image regions
(x �= xF0).

The situation is different if forces F0 that deform the anatomy act on homogeneous image
regions and not on edges of anatomical structures, see Figure 7. In this case external forces FR

cannot be estimated correctly and still act only on edges of anatomical structures. Although
points on the edges can still be registered correctly and images may look equal after the reg-
istration, transformation inside homogeneous image regions cannot be assessed correctly. Our
example in Figure 7 shows that in such cases registration can be more correct if less realistic
kernels, e.g. Gaussian, are used instead of realistic ones, e.g. elastic kernels.

The experiments show that the best registration results are not necessarily obtained by
spatial deformation models that exactly follow deformable properties of the anatomy. This
justifies the use of Gaussian models, which are often used due to their lower computational
cost. The selection and setting of the model is therefore not straightforward an depends on the
application, specifically on the expected distribution of body forces, required compressibility
and volume preservation, etc. Because of all this we use Gaussian kernels and not elastic ones.
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Figure 6: If a force F0 that deform the anatomy acts on the edge of some imaged structure
as illustrated on the left hand side, the medium deforms as shown on the graph by thin solid
line. The estimated external force FR acts on the same image point (see illustration on the left)
such that images can be correctly registered using kernel that equals the impulse response of
the medium (see the graph, dashed line). If Gaussian kernel is used the deformation cannot be
perfectly recovered and some registration error exists (dotted line).

4 Results

We have compared the combined elastic-incremental model with the elastic and the incre-
mental model. Comparison was based on recovering synthetic deformations. The synthetic
deformation was generated as a sum of six three-dimensional Gaussian functions with stan-
dard deviation ranging between 15 and 60 mm, such that the initial RMS displacement error
was eRMS = 7.09 mm and the maximal displacement error was emax = 16.84 mm. The
experiment was performed using two spatially aligned Brainweb [7, 8, 13] images of human
head with voxel size 1 × 1 × 1 mm. The first image, MRI-PD, was synthetically deformed
and used as the target for registering the other image, MRI-T1. Gaussian convolution kernels
were used for the regularization, such that the standard deviation of the overall regularization
was in all the cases the same, σG = 4.24. The comparison was made between the results
for nine different settings of the combined spatial deformation model, where one of the set-
tings suited to the elastic model (σGI

= 0,σGE
= 4.24) and one to the incremental model

(σGI
= 4.24,σGE

= 0). In all the cases the coefficient kF was recomputed in each iteration,
such that the increment TF (x) was limited to the size of one image voxel. The comparison
was made for three resolution levels of a multiresolution registration strategy. First, images
subsampled by factor 4 were registered in resolution level 2, then the registration continued in
level 1 with images subsampled by factor 2, and finally, the original images were registered in
level 0. The best result of each level (with respect to maximal displacement error emax) was
used as the initial deformation for the next resolution level. The results are tabulated in Table 1.
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Figure 7: If a force F0 that deform the anatomy acts on a point inside a homogeneous image
region as illustrated on the left hand side, the medium deforms as shown on the graph by thin
solid line). The estimated external force FR does not act on the same image point, but on
the edges of anatomical structures (see illustration on the left). Images cannot be correctly
registered, not even by using realistic kernels (see the graph, dashed line). In such cases some
less realistic kernels, e.g. Gaussian (dotted line), may cause lower registration error. In the
presented experiment the Gaussian kernel (dotted line) is more suitable than the elastic kernel
(dashed line) and yields a 30% lower RMS registration error.

In all three resolution levels the best results were obtained when both of the filters of
the combined model were employed. Thus, the combined model performed better than the
incremental or the elastic model. The elastic model resulted in a large registration error due
to small external forces, which were limited in order to limit the change of transformation
in one registration iteration to the size of one image voxel. Consequently, the registration
cannot result in deformations larger than those, that can be maintained by such small external
forces. On the other hand, the incremental model also results in larger errors than the optimal
combined model, which is due to non-linear relationship between external forces and required
image transformation. The best results were obtained when both of the convolution filters were
used, such that elastic and incremental properties were combined. In general an optimal ratio
between elastic and incremental regularization may depend on the type of deformations that
are being recovered.

5 Conclusion

In this paper we focused on spatial deformation models based on convolution. We proposed
a new combined elastic-incremental model and compared it with the elastic model and the
incremental model. The combined model tends to reduce the systematic error of the elastic



Table 1: Evaluation results for the combined elastic-incremental spatial deformation model
Level 2 Level 1 Level 0

σGI
σGE

eRMS emax CC eRMS emax CC eRMS emax CC

0.00 4.24 5.03 14.05 0.9206 3.19 11.32 0.9626 1.51 6.19 0.9827
0.50 4.21 4.72 13.60 0.9305 2.96 10.93 0.9671 1.39 5.95 0.9840
1.00 4.12 4.11 12.85 0.9444 2.44 9.98 0.9751 1.16 5.33 0.9856
2.00 3.74 3.16 11.42 0.9565 1.44 7.25 0.9819 0.76 3.82 0.9869
3.00 3.00 2.13 8.40 0.9657 0.80 3.74 0.9838 0.50 2.62 0.9870
3.74 2.00 1.37 4.68 0.9523 0.55 1.95 0.9837 0.39 1.97 0.9863
4.12 1.00 1.30 4.13 0.9532 0.59 2.41 0.9827 0.43 1.78 0.9857
4.21 0.50 1.17 4.64 0.9611 0.68 2.83 0.9806 0.49 1.80 0.9854
4.24 0.00 1.49 4.95 0.9523 0.73 3.09 0.9809 0.51 1.92 0.9852

model and the accumulated error of external forces, which is characteristic for the incremental
model. It turns out that these two errors are related, such that the decrease of the first one
increases the second one, and vice versa. The combined model enables to find an optimum,
where the total error is the lowest. The comparison results prove that the combined model
does perform better than the other two models individually. However, the optimal settings,
including the ratio between elastic and incremental regularization, may depend on the nature
of the deformation.

Wa have also analyzed and compared two different convolution kernels: the elastic kernel
and the Gaussian kernel. The elastic kernel models the real tissue properties better than the
Gaussian kernel. Its major advantage is to provide control over the material compressibility
and thus enable volume preservation. As expected it turned out that it gives better results
when the anatomy is deformed by forces that act on the edges of anatomical structures. If
this is not the case, the situation is more difficult and transformation cannot be recovered
exactly. It turns out that in the case, when forces act in homogeneous image regions, the
realistic elastic model gives even worse results than some other, nonrealistic models, because
estimated external forces differ from the ones that actually deformed the tissues. This justifies
the use of Gaussian models, which have an additional advantage of lower computational cost.
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