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Abstract

Hierarchical feature-distribution scheme is a re-
cently proposed framework for distribution of features
in visual-sensor networks. It is intended for tasks,
where one needs to establish a correspondence be-
tween two objects, seen by different cameras at differ-
ent occasions. In visual-sensor networks, such pair
of cameras may be very distant in network terms.
Therefore, the hierarchical scheme results in signif-
icant reduction of network traffic, compared to naive
approaches, which rely on flooding. In this paper
we explore the performance of two state-of-the-art
feature descriptors (histogram of oriented gradients
and region covariance descriptor) in such feature-
distribution scheme. Both methods are compared in
the terms of network load on the COIL-100 data set.
Results show that even state-of-the-art feature de-
scriptors benefit from hierarchical feature-distribution
scheme.

1 Introduction

In visual systems we usually deal with large
amounts of digital image data. Data has to be
archived or exchanged between numerous users and
systems [1], consuming expensive resources, such as
storage space or transmission bandwidth. This prob-
lem is especially important in visual-sensor networks
(VSN), where data-intensive modality (images) is
usually combined with network connections of lim-
ited capacity and usually, limited range.

In our previous work [2, 3] we focused on prob-
lem of object recognition in VSN. In our case, we de-
fine distributed object recognition as follows: given
the acquired image of an object, find all the images
of visually similar objects that have been acquired by
any of the nodes on any previous occasion. In visual-
sensor network (VSN), a single node (camera) does
not have all the relevant features to make such deci-
sion. Features, belonging to the objects seen by the
other network nodes reside in local memory of those
nodes. If particular node wants to recognize previ-
ously seen object, all features from the network have

to be requested for comparison. This way, distributed
feature comparison results in non-negligible amount
of network traffic.

The result of our research [2, 3] was hierarchical
feature-distribution (HFD) scheme for object recog-
nition in a network of visual sensors, which utilizes
network in a more balanced way than trivial network
flooding. In a nutshell, the HFD for VSNs is based
on hierarchical distribution of the information, where
each individual node retains only a small amount of
information about the objects seen by the network.
However, this amount is sufficient to efficiently route
queries through the network without any degrada-
tion in the recognition performance. The amount of
data transmitted through the network can be signifi-
cantly reduced using our hierarchical distribution, as
demonstrated in [3].

HFD does not rely on particular object recognition
method or a particular feature descriptor. It only
provides the algorithm for feature distribution dur-
ing the learning phase and corresponding algorithm
for feature routing during the recognition phase. It
also specifies the requirements, which have to be ful-
filled by particular recognition method to be used in
our distributed scheme. Those requirements concern
abstraction, storage space, existence of metric and
convergence [2, 3]. We already confirmed the fulfill-
ment of those requirements for several basic recogni-
tion methods (template matching, histogram match-
ing, PCA and random projection [4]). The perfor-
mance of those methods within HFD scheme was also
established experimentally. It was demonstrated that
HFD indeed results in significant savings in network
traffic, while preserving recognition rates.

In this paper we applied HFD scheme to two state-
of-the-art feature descriptors, that is histogram of
oriented gradients (HOG) [5] and region covariance
(COV) descriptor [6]. The remainder of this paper
is organized as follows. In the Section 2 we provide
theoretical background of both methods, along with
the implementation details. Experiments in the VSN
simulator and the results of tests are reported and
discussed in the Section 3. Section 4 concludes the
paper.



2 HOG and COV descriptors

In this section we briefly present two region de-
scriptors that we used in our work. In accordance
with requirements of HFD scheme [2] we also define
the appropriate mappings f : x(n) 7→ x(n+1), 0 < n ≤
N , which translates a level n feature vector x(n) into
a higher, more abstract, level (n + 1) feature vector
x(n+1). N denotes the highest level of abstraction.

We also define the metrics d(n)(x
(n)
1 ,x

(n)
2 ), which pro-

vides a measure of the similarity between two feature

vectors x
(n)
1 and x

(n)
2 of the same level n.

2.1 Histogram of Oriented Gradients

HOG features have been introduced by Dalal and
Triggs in [5]. Authors have shown that HOG de-
scriptors significantly outperform other feature sets,
such as Haar wavelets. They have studied influence
of several variants of HOG descriptors (R-HOG and
C-HOG), with different gradient computation and
normalization methods. HOG descriptors are based
on the idea that local object appearance and shape
within an image can be described by the distribution
of intensity gradients or edge directions. Implemen-
tation of these descriptors in practice is as follows:
the image window is divided into small spatial re-
gions (cells) and for each cell a 1D histogram of gra-
dient directions or edge orientations is accumulated
over the pixels within the cell. The combination of
these histograms then represents the descriptor [7].
For better performance (e.g., invariance to the illu-
mination or shadowing) the local histograms can be
contrast normalized.

HOG descriptor is based on the first order deriva-
tives with respect to x and y of the image intensity
(denoted by Ix and Iy). From these derivatives, a
gradient field is computed assigning to each pixel a
magnitude mg(x, y) and an angle Θ(x, y) [8]:

mg(x, y) =
√

I2
x(x, y) + I2

y (x, y) (1)

Θ(x, y) = arctan(
Iy(x, y)

Ix(x, y)
). (2)

A histogram is formed where each bin is the sum of all
magnitudes with the same orientation on in a given
region. Histograms are compared using Hellinger dis-
tance.

Implementation details An implementation
which follows the original publication exactly [9] was
used. Experiments were run with default parameters
as specified in [6].

Requirements Histograms form a basis of HOG
descriptors, therefore, the mapping f : x(n) 7→ x(n+1)

and the metric d(n)(x
(n)
1 ,x

(n)
2 ) can be the same as in

the plain histogram matching, as shown in [2]. Such
choice also fulfills the four HFD requirements [2].

2.2 Region covariance descriptor

COV descriptor was first presented by Tuzel et
al. [6] and was shown to outperform histogram de-
scriptors [8].

Let I be a one dimensional intensity or three di-
mensional color image. Let F be the W×H×d di-
mensional feature image extracted from I:

F (x, y) = Φ(I, x, y), (3)

where the function Φ can be any mapping such as
intensity, color, gradients, filter responses, etc. For a
given rectangular region R ⊂ F , let {zk}k=1...n be the
d-dimensional feature points inside R. The region R

with the d×d covariance matrix of the feature points
is represented as:

CR =
1

n − 1

n
∑

k=1

(zk − µ)(zk − µ)T , (4)

where n is the number of points in the region, and µ

is the mean of the points.
For the distance calculation on covariance matrices

we used the distance measure proposed by Förstner
and Moonen in [10]:

ρ(C1, C2) =

√

√

√

√

n
∑

i=1

ln2 λi(C1, C2), (5)

where λi(C1, C2)i=1...n are the generalized eigenval-
ues of C1 and C2, computed from

λiC1xi − C2xi = 0, i = 1...d, (6)

and xi 6= 0 are the generalized eigenvectors [10]. Us-
ing distance formulated in Eq.(5), the dissimilarity of
two covariance matrices was measured.

Implementation details First, for each pixel, a
nine-dimensional feature vector fn was extracted.

fn = [x, y, I, Ix, Iy, Ixx, Iyy,mg,Θ]T , (7)

where x, y are pixel location, I is the grayscale inten-
sity, Ix, Iy are the norms of the first order derivatives
and Ixx, Iyy are the norms of the second order deriva-
tives. mg and Θ are defined as in Eq.(1) and Eq.(2).

The covariance of a region is computed as shown in
Eq.(4). This COV matrix is unwrapped into the fea-
ture vector x(0), and vectors fn are discarded. From
this point on, feature vectors x are used in HFD in
similar way than all other types of features.

In preliminary tests, we evaluated the influence of
each of the nine components of the covariance de-
scriptor on recognition performance(Figure 1). This



was done by dropping one or two of the nine com-
ponents and running recognition tests with the re-
maining eight or seven components (horizontal and
vertical components of the same type were dropped
together). This way an approximation of relative im-
portance of each component of covariance descriptor
was obtained.
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Figure 1: Relative importance of each of the nine
components of the covariance descriptor, expressed
as the recognition error on removing the component
from the descriptor. Leftmost bar shows a baseline
value - recognition error, when all components are
used. Data was obtained on COIL-100 data set.

Requirements Following the requirements de-
fined in [2] the mapping f : x(n) 7→ x(n+1) and the

metric d(n)(x
(n)
1 ,x

(n)
2 ) can be defined as follows.The

mapping f : x(n) 7→ x(n+1) is defined as dropping
a feature, which has the lowest effect on recognition
performance of the method. This obviously results
in the decrease of the required storage space, there-
fore, Requirement 2 [2] is fulfilled as well. The met-

ric d(n)(x
(n)
1 ,x

(n)
2 ) can be the distance proposed by

Förstner and Moonen (Eq.(5)).
We did not examine the fulfillment of Requirement

4 [2], which guarantees that the recognition perfor-
mance remains the same when a method is used in
HFD scheme. Instead, we rely on the results of ex-
perimental testing to see the impact of the HFD on
the recognition rate.

3 Experimental setup

We performed a series of experiments using both
descriptors. The recognition performance of both
methods in terms of percentage of false positives and
false negatives on a COIL-100 data set [11] was ex-
amined. We used both methods in the VSN simu-
lator [3] in conjunction with three types of feature-
distribution methods. Following the same protocol
as in [3] the proposed HFD scheme, denoted Mhier

was compared to two flooding based (naive) feature-
distribution methods, denoted Mnaive1 and Mnaive2,
respectively.

Simulator To test the performance of both meth-
ods in the HFD scheme [2], we used a distributed
network simulator. It runs on a standard desktop
computer and is written in Matlab. The simulator
measures both the amount of traffic transmitted be-
tween the nodes and the number of nodes (hops) over
which the traffic is transmitted. For the experiments,
we used a network consisting of 99 nodes, arranged
in a 11×9 rectangular, 4-connected grid.

Experiments Experiment was divided in two
phases. The first (learning) phase measured the per-
formance of the network during learning. Twenty
nodes, evenly distributed through the network, were
injected with images of the 100 different objects from
the data set. Those images corresponded to the zero
orientation in the COIL-100 data set. Next, the simu-
lation cycle was started, and, after the network traffic
stopped, the statistics on the network load (number
of hops and the total network traffic per sample) was
examined.

The second (recognition) phase measured the per-
formance of the network during recognition. A
pseudo-random sequence (same for all tests) was used
to choose any image from the data set and any node
from the network. The image was injected into the
chosen node, and the simulation cycle was started.
After the network activity stopped, the result of the
recognition was read from the same node, and the
statistics on the false positives (FPs) and the false
negatives (FNs) were updated. The process of in-
jecting the random image to a random node was re-
peated 5,000 times, and the statistics on the network
load (number of hops and the total network traffic
per sample) was recorded. The results for training
and recognition for both HOG and COV are shown
in Table 1.

Results It can be seen that recognition perfor-
mance remains the same regardless whether naive or
hierarchical feature distribution method is used. This
holds both for HOG and COV descriptors. This is
not surprising in the case of HOG descriptor, since
our implementation of object recognition using HOG
descriptor fulfills the Requirement 4 [2]. However,
the preservation of recognition rate in the case of
COV descriptor indicates that our implementation of
COV descriptor fulfills Requirement 4 as well, even
though we did not prove this analytically. This prop-
erty makes both descriptors an appropriate choice for
the use in the HFD scheme.

It can also be seen that the HFD outperforms naive
methods in terms of network load. In learning stage,
where the features are distributed across the network
Mhier drastically lowers the amount of transmitted
data per sample in comparison to Mnaive2. This holds



Table 1: Experimental results for each combination of recognition methods and feature-distribution methods

Recognition Distribution Learning Recognition Recognition rate
method method Hops Traffic Hops Traffic FPs FNs

[ 1

sample
] [ kbytes

sample
] [ 1

sample
] [ kbytes

sample
]

HOG
Mnaive1 0 0 376 16331 18% 27%
Mnaive2 614 11271 0 0 18% 27%
Mhier 614 587 255 8663 18% 27%

COV
Mnaive1 0 0 323 24 9% 16%
Mnaive2 614 119 0 0 9% 16%
Mhier 614 15 196 13 9% 16%

for both descriptors. The amount of hops remains un-
changed, since features have to reach all the nodes in
the learning stage. Essentially, the amount of trans-
mitted data using HFD (Mhier) is negligible in com-
parison to Mnaive2. In recognition stage, the amount
of transmitted data is halved when HFD (Mhier) is
used. For recognition, Mnaive1 is used as a base-
line, since it floods the network for each recognition
task. It can also be seen that the drop in number
of hops during recognition when using HFD is more
pronounced in case of COV descriptor. This is, again,
expected as the number of hops directly depends on
accuracy of the descriptor used.

4 Conclusion

The paper focuses on adaptation of two state-of-
the-art computer vision methods to the hierarchical
feature-distribution scheme. When image process-
ing and computer vision methods (in our case ob-
ject recognition) are used in the distributed vision
systems, they can easily overload communication-
constrained distributed network. For this reason we
previously proposed hierarchical feature-distribution
scheme (HFD), which utilizes network in a more bal-
anced way than trivial network flooding.

Based on the above observations, we can conclude
that COV descriptor is the most appropriate choice
for use in the HFD scheme. It is accurate, compact
and self-contained (subspace independent). We per-
formed our tests on COIL-100 data set, however, the
COV descriptor has been found to be one of the best
choices in the more realistic (surveillance) applica-
tions as well [8].
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