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Abstract

In this paper, we propose a framework for hierarchical feature distribution scheme for object
recognition in a distributed environment, e.g. in a network of visual sensors. The key of our
approach is the principle that individual nodes in the network hold only a small amount of
information about objects seen by the network, however, this small amount is sufficient to
efficiently route queries through the network. We outline a set of requirements, which have to be
fulfilled by the object recognition method to be used in our framework. We provide examples of
three simple object recognition methods, which can be adapted for use in such feature distribution
scheme, and we also present their implementations which fulfill those requirements. The proposed
approach has been tested using our own distributed network simulator on a standard COIL-20
database. Preliminary results suggest that amount of data transmitted through the network can
be significantly reduced in comparison to naive feature distribution schemes.

1 Introduction

One of the main characteristics of computer vision algorithms is a large amount of data that has
to be processed, stored or transmitted. Usually a state-of-the-art hardware is employed to deal
with the requirements that go along with processing of digital images and digital video streams. In
terms of sensor network topology, such approach usually leads to a star network structure – a single
powerful processing unit and one or more sensors. In the majority of applications, these sensors are
simply ordinary digital or analog cameras.

Many applications, such as video surveillance, traffic and environment monitoring, need a large
number of visual sensors. In some cases the number of cameras is large, where in extreme cases it
may go into hundreds (e.g. 230 for London Congestion Charge monitoring), and the requirements
for transmitting and processing such amounts of data are correspondingly large. For such systems,
a decentralized, distributed network structure would be a natural choice.

Transition to a distributed network topology of visual sensors is not straightforward. Due to
a high processing, transmission and storage requirements of many computer vision algorithms, the
distributed network would be put under significant strain, if such algorithms are directly mapped to
the network. Let us, for example consider a frequent task in computer vision – detection and recog-
nition of objects that have been previously seen by any of the sensors (cameras). In a distributed
system, one of the following two scenarios would appear:
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• Captured visual information (images or extracted object features) from each sensor are dis-
tributed to all nodes for local storage. Future detection of similar objects is then performed
locally by each sensor as new images are acquired.

• Captured visual information is stored locally. However, each task of finding an object is
broadcasted across the network, for comparison with the locally stored information on each
node, for each new image acquired.

In the first scenario, large amount of data would have to be transmitted across the network for
each object learned. Storage requirements for the individual nodes are similar to the central unit in
a star network structure. In the second scenario, large amount of data would have to be transmitted
across the network for each new object encountered, as every node has to be supplied with newly
acquired image or object features to find a possible match. In this case, each node would have to
handle the similar amount of traffic than the central node in the star network structure.

This problem may be tackled by encoding information in a hierarchical way, where each node
stores only part of information about objects previously seen by the network. This information
can be low in volume and serves only to efficiently route network queries, when a new object is
encountered by any of the nodes (e.g. when new image is acquired).

Not all recognition methods can be used in that way. In this paper we outline a set of criteria,
which have to be fulfilled by object recognition method, to be considered for use in such framework.

In the remainder of the paper we describe the concept of such hierarchical feature distribution
scheme. Algorithms for efficient feature distribution and distributed object recognition are pro-
posed. Next, three very simple object recognition methods are analyzed and shown to fulfill the
stated requirements. Finally, results of tests in application-layer distributed network simulator are
presented and obtained results are discussed.

1.1 Related work

Visual sensor networks (VSNs) are the meeting point of two significantly different technologies.
On one side there is a distributed sensor approach, which puts significant constraints on available
processing power and network transmission capabilities. On the other side there are image pro-
cessing and computer vision, which are both computationally and data intensive. Therefore, the
main issues in VSNs revolve around the task of achieving maximum performance on hardware with
limited capabilities.

This issue is not unique to typical VSNs. With widespread use of digital cameras, prevalence
of wireless connectivity and an integration of visual sensors in objects of personal use, like mobile
phones or PDAs, the technology of VSNs has become widespread as well [1]. In addition to this, the
technology of VSNs is applicable to other fields of science and engineering, such as mobile robotics,
where many robots now include low cost imaging sensors and wireless communication solutions.
Therefore, the popularity of the VSN research is not surprising.

In [2], an object recognition system with real time capabilities for deployment on a DSP-based
embedded platform is proposed. In [23], authors proposed a system for target detection, classifi-
cation and tracking. Those tasks are performed in each sensor node. In [18], authors applied a
multi-agent framework to control the capture parameters of a surveillance system using a VSN.
In [10], authors proposed a technique for tracking objects across spatially separated, uncalibrated,
non-overlapping cameras. In [11] a new technique for tracking objects across uncalibrated, non-
overlapping cameras is described as well. An autonomous multicamera tracking method on dis-
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tributed, embedded smart cameras is presented in [19]. In [3] an implementation of a smart camera
for traffic surveillance is described. In [9], authors present a distributed network of smart cameras
for real-time tracking and the corresponding visualization in 3D. Person detection system based
on distributed smart cameras is presented in [14], where authors show that using on-line learning
classifiers on smart cameras can reduce memory and bandwidth requirements and therefore can be
appropriate for embedded systems.

One of the major issues in VSNs, is dealing with efficient data transmission between the nodes.
Transmission of visual information usually requires a large bandwidth and therefore, specifically
tailored optimization to the distributed sensor topologies is highly desirable. Data transmission
techniques in VSNs can be roughly categorized into three categories [5]. In the first category, there
are efficient image and video transmission methods for transmission over a single hop, such as [13].
In the second category, there are techniques that consider multihop transmission strategy such as
[24]. The third category includes end-to-end multi-path transmission techniques. One of many is
[6].

The next major issue in VSNs is their distributed nature. Computer vision algorithms have to
be either adapted or totally rebuilt to deal with the specifics of distributed networks. For example
in [7], authors propose decentralized methods for obtaining the vision graph for a distributed cam-
era network. The algorithm for estimating camera relations in vision system built of distributed,
uncalibrated, smart cameras is presented by [20]. A geometry-free method that allows camera net-
works systems to estimate their topology and auto-organize their own activities according to the
content of the scene and the task to be achieved is introduced in [4]. In [8], a fully distributed
calibration approach for 3D camera networks, using belief propagation is proposed. Calibration
and synchronization of a network of cameras from a set of unsynchronized silhouettes sequences is
proposed in [21]. Using distributed look-up tables for selecting a subset of cameras, that is likely to
carry out the current requested task most effectively, is solved by [17].

Our approach aims to facilitate an efficient distribution of features to a large number of visual
sensors and an efficient routing of queries to those nodes, which have enough information to perform
the object recognition. Differently from many other studies, we do not deal with the implementation
details or low level issues in a data transmission. Our approach aims to reduce the total amount
of data that has to be transmitted across the network or stored in individual nodes, while retaining
exactly the same recognition performance. We achieve this by encoding features in a hierarchical way,
where less descriptive features are derived from the original object features. Those less descriptive
features are used for efficient routing, while consuming significantly less network resources than full
distribution of original object features.

2 Hierarchical feature distribution scheme for object recognition

Despite discrepancy between computationally intensive image processing in computer vision algo-
rithms and relatively low processing capabilities of nodes in a typical VSN, properly designed VSN
may provide significant storage and computing capabilities, but in a highly distributed manner. The
algorithms that run on such network have to be aware of this distributed nature to take advantage
of these capabilities.

The basic approach to object recognition is as follows:

• Learning phase: compact representation (model) of object is extracted from one or more
images and stored. In our case, we assume that such compact representation is in the form of
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a feature vector.

• Recognition phase: the same compact representation of an object (feature vector, in our case)
is extracted from the newly acquired image. This vector is compared to the feature vectors
stored during learning phase to obtain a correspondence with one of the learned objects.

In general, a network of visual sensors is expected to encounter a large number of objects. The
purpose of learning in such distributed environment would for example be to provide the capability
to recognize objects that have been already seen by any of the nodes. Therefore, after a new image
is acquired, a node would proceed as follows:

1. Extraction of relevant feature vector from the visual representation of object.

2. Distribution of feature vector to other nodes that comprise VSN.

As soon as sufficient amount of knowledge (e.g. sufficient number of feature vectors) has been
obtained by the network, object recognition can be performed simultaneously with learning. In our
case, we do not explicitly deal with the concept of incremental learning; as new images are acquired,
network knowledge increases, but only due to increase in number of stored feature vectors. Already
acquired feature vectors remain unchanged.

It is evident that an efficient mechanism to disseminate knowledge (e.g. mechanism for distri-
bution of feature vectors) across the network is needed, as the complexity of this problem increases
exponentially with the number of nodes.

2.1 Hierarchical encoding structure

Hierarchy is fundamental principle on which our feature encoding is based. We require that the
primary node (the visual sensor that has originally seen the unknown object) retains complete infor-
mation about the object (e.g. unmodified feature vector). Its neighbors receive less detailed, more
abstract information, which, in general, requires less storage space and less transmission capac-
ity. This way, the amount of data transmitted across or stored in the network can be significantly
reduced.

Specifically, for an object recognition task such structure requires that the feature vectors x,
which are passed across the network, fulfill the four major requirements.

Requirement 1 (Abstraction): There exists a mapping f : xn 7→ xn+1, 0 < n ≤ M , which
translates level n feature vector xn into higher, more abstract level (n + 1) feature vector xn+1,
without access to the acquired image. M denotes maximum level of abstraction.

This requirement assumes that the primary node extracts level 0 feature vectors, x0, directly
from the acquired image. Its direct neighbors receive level 1 feature vectors, x1, their neighbors
receive level 2 feature vectors, x2, and so on. The mapping f : xn 7→ xn+1 is done on each
of the nodes before transmitting the feature vectors xn+1 to its neighbors, until the maximum
level of abstraction is reached. From this point on, feature vectors are forwarded unchanged.
Maximum level of abstraction can be recognition method dependent (e.g. at some point it may
become impossible to further reduce the dimensionality of the feature vector). Other important
consideration in selecting M is network transmission overhead – from certain point on reduction in
features does not meaningfully reduce the length of the network packets.

Requirement 2 (Storage): If I(x) is the storage space required for the feature vector x in bits,
then it should hold that: I(xn) ≥ I(xn+1). If this requirement is not fulfilled (in a significant way,
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e.g. the required storage space on the level n + 1 has to be significantly smaller), the hierarchical
encoding scheme does not provide any improvements in the terms of network traffic and storage
requirements.

Requirement 3 (Existence of metric): There exists a metric dn(xn
1 , xn

2 ), which provides a
measure of similarity between two feature vectors xn

1 and xn
2 of the same level n.

The existence of the metric is essential both for the object recognition itself and for the hi-
erarchical feature encoding scheme. The distance dn(xn

1 , xn
2 ), when compared to the threshold T ,

determines if the objects are similar, dn(xn
1 , xn

2 ) ≤ T , or not, dn(xn
1 , xn

2 ) > T .
Requirement 4 (Convergence): Given two vectors xn

1 and xn
2 which are similar, dn(xn

1 , xn
2 ) ≤

T , the corresponding vectors on the next level n + 1 should be at least as similar as the vectors on
the previous level, dn+1(xn+1

1 , xn+1
2 ) ≤ dn(xn

1 , xn
2 ). If this requirement is violated, then the higher

level features cannot be used to route the network queries, since it is possible, that at some point,
the higher level feature xn+1 is above the threshold, while the lower level feature xn is below the
threshold. Given the object recognition algorithm in Section 2.3, that would cause a node with
feature xn+1 blocking the access to the node which may have matching features xn.

2.2 Propagation of feature vectors

For a moment, let us assume that the primary node has acquired an image of a new object and has
already discovered that the observed object has not been seen before. Equivalently, we may assume
that the network is in learning-only mode.

First, feature vector is extracted and random identification number (ID) is generated and at-
tached to the feature vector. Assuming proper length (e.g. 32 bits), an ID can safely be assumed
to be unique for reasonably-sized network. The actual procedure of a feature extraction depends
on the recognition method used. The extracted vector is then stored locally and marked as being
level 0 vector, x0. Then, using the mapping f : xn 7→ xn+1, the next level feature vector x1 is
prepared, assigned the same ID and broadcasted to all direct neighbors of the primary node. Each
receiving node attaches a tag to the received vector, which uniquely determines the origin of the
feature vector. Due to Requirement 2, the level 1 feature vectors x1 require less storage space than
the vectors x0.

The process of applying the mapping f : xn 7→ xn+1 is repeated on each node, until every node
has at least some information about the object seen by the primary node. Communication between
nodes and unique IDs ensure that the nodes refuse to accept any duplicated feature vectors.

2.3 Object recognition

The task of object recognition may be performed concurrently with learning (e.g. the network tries
to recognize the object before proceeding with learning). For now, let us assume that the network is
in recognition-only mode. The algorithm for object recognition is presented as Algorithm 1. Again,
we call the node that has acquired the image the primary node.

As it can be seen, the Algorithm 1 is recursive in its nature. In the recognition phase, the
primary node generates network query packet, if the object has not been seen locally, but it has
been seen by any of the other nodes. Query packet contains unmodified level 0 features of an
unknown object, and is transmitted to those primary node’s neighbors, which provided matching
features. Upon receiving the query packet, every node runs the Algorithm 1 from the Line 2 on.
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Algorithm 1 : Object recognition

Input: Image
Output: Object correspondence
1: Extract object features.
2: // Local search
3: for All levels in the local storage do
4: Apply the mapping f : xn 7→ xn+1 and calculate the next level feature xn+1 from xn.
5: Compare xn+1 with all the vectors of level n + 1 from the local storage.
6: if No match is found then
7: Terminate the search, object is unknown. Optionally, proceed with learning.
8: else if Match is found on the level 0 then
9: Object has been seen locally.

10: else
11: // Some other node might have seen the object.
12: // Proceed with network search.
13: for All matching vectors do
14: Examine tags, attached to the locally stored matching feature vector.
15: Forward level 0 features of the unknown object to the neighbor, who provided locally

stored matching feature vector.
16: // Upon receiving forwarded features, neighboring nodes start from Line 2 of the

Algorithm 1.
17: end for
18: end if
19: end for

Neighboring nodes process forwarded features of an unknown object in the exactly same way,
as if they would acquire the image of an unknown object by themselves. On each node the result
of the processing is either:

• The object is unknown (if there is no local match). This result is not reported to the primary
node.

• The object is known (match on level 0 is found). This result is reported to the primary node.

• The object might have been seen by the network (match found on one of the higher levels).

The effect of this algorithm is that, during the recognition phase, features of an unknown object
in the unmodified form (level 0 features) are forwarded from node to node along the trail, left by the
propagated feature vectors in the learning phase. If the primary node does not receive any replies
from the other nodes, the object is unknown to the network. The efficiency of this approach stems
from the fact that features are forwarded only in the direction, where there is a possibility that the
object has been seen.

3 Examples

Our hierarchical feature encoding framework does not rely on particular object recognition method.
It only provides the requirements, which enable any recognition method to be implemented in
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a distributed way. To be able to illustrate the performance of our approach, we selected three
extremely simple recognition methods. The first two methods, template matching and histogram
matching, are trivial and provided for illustrative purposes only. The third one, principal component
analysis (PCA), is widely used in many object recognition tasks. Nevertheless, we use PCA in its
simplest form. In the following section we illustrate the appropriate mappings fn and the metrics
dn, for which these three simple methods fulfill the stated requirements and can be therefore used
in our framework. Therefore, the recognition performance of our hierarchical feature distribution
scheme is expected to be exactly the same than with simpler feature distribution schemes.

3.1 Template matching

Let us limit the discussion to the simplest form of template matching – direct comparison of two
images of the same dimensions. In this case, the feature vector, representing the object, simply
contains pixels values of the original image. Following the Requirement 1, we can define the mapping
f : xn 7→ xn+1 as simple subsampling operation, which reduces image dimensions by calculating 2×2
pixels averages. It is obvious that the Requirement 2 is fulfilled, as the resulting image dimensions
are halved and both the image and the corresponding feature vector require only a quarter of the
original storage space.

The metric, dn(xn
1 , xn

2 ), could be (1 − γn+1
2 ), where γn is normalized cross-correlation between

the subsampled images [15]. It is easy to show that the Requirement 4 holds. The situation is
presented in Figure 1.
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Figure 1: Mapping f : xn 7→ xn+1 in the case of template matching.

Let us use metric dn to compare two images that are nearly identical (for the sake of simplicity,
let us assume that every pixel has value of a), except for the one pixel in image An, which has value
a + ǫ1 and one pixel in image Bn, which has value a + ǫ2. The original images An and Bn have
dimensions m × m and the resized images An+1 and Bn+1 have the dimensions m/2 × m/2. The
metric dn is then
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dn(xn
A, xn

B) = dn(An, Bn) = 1 − γn+1
2

γn =

∑m

i,j
[An(i,j)−An(i,j)]·[Bn(i,j)−Bn(i,j)]

√

∑m

i,j
[An(i,j)−An(i,j)]2·

∑m

i,j
[Bn(i,j)−Bn(i,j)]2

,

(1)

where An and Bn are mean values of the An and Bn, respectively. The distances dn, dn+1, . . . , dM

are equal to 0, until both images are subsampled to a single pixel, where the metric dn does not
make sense. Since the metric dn cannot increase with the increasing n, the Requirement 4 is fulfilled.
We did not make any assumptions about the value of ǫ1 and ǫ2. Similar derivation could be done
for different spatial arrangements of ǫ1 and ǫ2. Therefore, we can expect that the Requirement 4 is
fulfilled regardless of the contents of images An and Bn.

3.2 Histogram matching

Intensity and color histograms are a compact representation of an object. Although in practice [12]
high dimensional histograms are used, we will limit ourselves to usage of one-dimensional intensity
histograms.

Intensity histogram for an 8-bit image may contain up to 256 bins. Each bin contains a nor-
malized count of image pixels within certain range of grey levels. Accordingly, the elements of
feature vectors are simply normalized histogram bin counts. Following the Requirement 1, we can
define the mapping f : xn 7→ xn+1 as an operation that combines adjoining bins, giving the coarser
representation of original image. Again, it is obvious that the Requirement 2 is fulfilled, since lower
number of bins requires less storage space.

The metric, dn(xn
1 , xn

2 ), could be simply the Hellinger distance [12] between the histograms:

dn(xn
A, xn

B) =
√

1 − ρ(hn
A, hn

B), (2)

where dn(xn
A, xn

B) is the distance between the feature vectors, xn
A and xn

B, ρ(hn
A, hn

B) is Bhattacharyya
coefficient, ρ(hn

A, hn
B) =

∑p
i=1

√

hn
iAhn

iB, p is number of bins, which is the same for both histograms,
and hn

iA and hn
iB are normalized bin values for i-th bin in histograms hn

A and hn
B, respectively.

Given the similar example than in previous section, let us assume that image Bn contains only
pixels with value of a, and image An has one pixel with value of a+ ǫ, with the rest of pixels having
value of a. The corresponding histograms of images An and Bn are shown in the first column of
Figure 2. Histogram for image An contains two non-zero bins, a and a + ǫ, whereas histogram for
image Bn contains only one, a.

The distance dn(xn
A, xn

B) for each level n can be calculated as follows. For level 0, where 256-bin
histogram is used, the distance is:

d0(x0
A, x0

B) =
√

1 − ρ(h0
A, h0

B) =

=

√

1 − (
√

m·(m−1)
m·m

· m·m
m·m

+
√

1
m·m

· 0
m·m

+ · · ·)

d0(x0
A, x0

B) =

√

1 −
√

m2
−1

m2 ,

(3)

where m is the dimension of the original (square) images, x0
A, x0

B and h0
A, h0

B are level 0 feature
vectors and level 0 histograms, respectively. It can be seen that the distance d0 is greater than 0.
After performing mapping f , we have two possible scenarios. If the bins a and a + ǫ are adjoining
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Figure 2: Mapping f : xn 7→ xn+1 in the case of histogram matching.
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bins, the newly calculated histogram hn+1
A will contain only one non-zero bin with the value 1

and it will be the same as histogram hn+1
B , so the distance

√

1 − ρ(hn+1
A , hn+1

B ) will be 0. In the
other scenario, the bins are not adjoining and the mapping f will has no effect on the distance
√

1 − ρ(hn+1
A , hn+1

B ), which remains greater than 0. Therefore, the Requirement 4 is fulfilled.

3.3 Principal component analysis

Principal component analysis (PCA) is a vector space transform, which reduces the multidimen-
sional data sets to lower dimensions without significant loss of information. In our case, we deal
with the simplest variant of the PCA, which means that the eigenvectors are obtained in advance,
and remain fixed through the learning and recognition phase.

PCA transforms the data to a new coordinate system in which basis vectors follow modes of
greatest variance in data [22]. In essence, properly constructed feature vectors contain feature values,
which are already ordered by decreasing importance in terms of reconstruction of the original data.

This opens up a possibility of the mapping function f : xn 7→ xn+1, which can be defined as
dropping the certain number of features of lowest importance from the feature vector. Again, it is
obvious that the Requirement 2 holds.

Considering the metric dn(xn
1 , xn

2 ), the Euclidean distance is commonly used when comparing
PCA-based feature vectors. It is easy to show that the Requirement 4 holds as well, if the Euclidean
distance is used.
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Figure 3: Mapping f : xn 7→ xn+1 in the case of PCA-based feature vectors. Image A and B in
original feature space (left) and image A and B in transformed feature space (right).
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Ignoring one of the dimensions from the Euclidean space never increases the distance between
the two points, as illustrated in Figure 3. At most, the distance remains the same. The distance
dn is always equal to or larger than any of the distances |b1 − a1| or |b2 − a2|. This holds also for
high-dimensional cases. That means, regardless of the order of features, the distance will always
decrease with decreased dimensionality of the feature vectors, and the Requirement 4 is fulfilled.

4 Experiments and results

To test our concept of efficient feature distribution scheme, we designed a distributed network
simulator. It runs on a standard desktop computer and is written in Matlab. The simulator deals
only with the application layer of the network communication. This means that it ignores some
network-related phenomena, such as network delays and limitations in network bandwidth.

A VSN node in the simulator is represented as an object with feature vector storage, inbound and
outbound network packet buffers, image buffer and temporary processing storage. We do not impose
any restrictions on node processing capabilities and we do not limit the amount of network traffic
in any way. However, the simulator measures both the amount of traffic transmitted between the
nodes and the number of nodes (hops) over which the traffic is transmitted. The size of packets can
be defined by user and does not necessary correspond to the actual size of Matlab data structures,
which are used to store the data in the simulator. This allows for accurate measurement of network
load, which would otherwise be distorted due to redundant nature of some Matlab data structures.

The simulator can accept any structure of the simulated network, however, the routing algorithm
has to be supplied as well. To get good insight into conditions in the network, we limited our testing
only to the rectangular, 4-connected grid networks. In such case, a simple and deterministic routing
algorithm can be used. Our simulator supports several types of network packets. Some packet types
are transmitted only node to node, and processed before the data is passed along (for example,
feature packets during the learning and query packets during the recognition), while others are
routed through multiple nodes with the help of the routing algorithm (for example, query answer
packets, which are sent by node which finds level 0 match to the primary node).

The simulator allows us to inject any type of network packet to any point in the network. It
also allows injection of new image to any node in the network. Image processing, feature extraction,
feature processing and feature comparison are integral parts of the simulation. For example, to
test the object recognition, we inject an image into particular node, wait until the network activity
subsides, and read the result of recognition from the same node.

4.1 Feature distribution methods

In our experiments we tested three types of feature distribution methods:

• Method, denoted ”naive 1” corresponds to the scenario, where captured visual information is
stored locally and each task of finding an object has to be broadcasted across the network,
for each new image acquired. Such method of distribution requires little or no network traffic
during the learning phase, however, it produces large transmissions of data in the recognition
phase.

• Method, denoted ”naive 2” corresponds to the scenario, where captured visual information
from each sensor is distributed to all nodes for local storage. Detection of similar objects is
then performed locally by each sensor as new images are acquired. Opposite from the first
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method, this feature distribution method produces large transmissions of data during the
learning phase and requires very little or no traffic during the recognition phase.

• Method, denoted ”hierarchical”, which is essentially a feature distribution method proposed
in this paper.

4.2 Database

We used standard COIL-20 database, which consists of images of 20 different objects; each one is
rotated with 5 degree angle interval, corresponding to 72 images per object. That sums up to 1,440
images for the whole database [16]. The limitations of this database are numerous and obvious.
However, we are not interested in object recognition performance of the three very simple object
recognition methods we used (template matching, histogram matching and PCA) on a very limited
database. Instead, the simplicity of both the chosen methods and the database allowed us to focus
on the comparison between the three feature distribution methods, outlined above, and spend less
time dealing with the recognition-related issues that are not the focus of our current work.

4.3 Our implementation of object recognition methods

In our implementation of template matching, the maximum number of levels M was set to 5, which
resulted in minimum image dimensions of 4×4 pixels at level n = 5. The reason for this is that
we encountered significant rounding errors when 2×2 images were used (the features, which were
essentially image pixels, were stored as unsigned 8-bit values).

In our implementation of histogram matching, first 10 bins (out of 256) were set to zero im-
mediately after level 0 features were extracted from image. This was done to decrease the effect
of the black background in the images from COIL-20 database, which dominated the histogram
comparison if unmodified histograms were used.

During the testing of the PCA-based recognition, only odd-numbered object orientations were
used. The even-numbered orientations were used to build a PCA subspace before the recognition
phase. This subspace was used both for learning and recognition.

4.4 Network setup

For experiments, we used a network, consisting of 99 nodes, arranged to a 11×9 rectangular grid.
Each of the nodes, except those on the network boundaries, was connected to its four immediate
neighbors. Same experiment could be run with different network topology, however, rectangular
grid allows simple routing algorithms to be used and provides best insight into network operation.

4.5 Experimental setup

The experiment was divided into two separate phases. In the first phase, only learning was per-
formed. Twenty nodes, evenly distributed through the network, were injected with images of the
twenty different objects from the database. Those images corresponded to the zero orientation in the
COIL-20 database. Next, the simulation cycle was started, and, after the network traffic stopped,
the statistics on network load (number of hops and the total network traffic) was examined.

In the second phase, only recognition (testing) was performed. A pseudo-random sequence was
used to choose any image from the database and any node from the network. The image was injected
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into the chosen node, and the simulation cycle was started. After the network activity stopped, the
result of the recognition was read from the same node, and the statistics on false positives (FP) and
false negatives (FN) was updated. The process of injecting the random image to a random node
was repeated 5,000 times, and the statistics on the network load (number of hops and the total
network traffic) was examined again.

Both phases were performed nine times, once for each combination of object recognition methods
and feature distribution methods. In each of the nine trials, same pseudo-random sequence was
used in the recognition testing, to ensure that the results can be compared between the different
combination of methods.

5 Results

The results are shown in Table 1. It can be seen that recognition rates (number of false positives
and false negatives) are exactly the same for all feature distribution methods. This is not surprising,
since the fulfillment of the Requirements 1–4 guarantees that the recognition performance will not
decrease if the hierarchical feature vector distribution scheme is used. Therefore, all feature vector
distribution methods are equivalent in that respect, which we expected.

Recognition Distribution Learning Recognition Total Recognition rate
method method Hops Traffic Hops Traffic Hops Traffic FP FN

Template
Naive 1 0 0 1,398,789 20,172 M 1,398,789 20,172 M 14% 23%
Naive 2 12,280 56 M 0 0 12,280 56 M 14% 23%
Hierarchical 12,280 816 K 534,524 6,658 M 546,804 6,659 M 14% 23%

Histogram
Naive 1 0 0 1,472,740 2,536 M 1,472,740 2,536 M 26% 29%
Naive 2 12,280 7 M 0 0 12,280 7 M 26% 29%
Hierarchical 12,280 505 K 723,381 1,0634 M 735,661 1,064 M 26% 29%

PCA
Naive 1 0 0 1,404,649 5,055 M 1,404,649 5,055 M 15% 22%
Naive 2 12,280 14 M 0 0 12,280 14 M 15% 22%
Hierarchical 12,280 870 K 554,256 1,676 M 554,415 1,676 M 15% 22%

Table 1: Experimental results for each combination of recognition methods and feature distribution
methods. In the Traffic columns, plain numbers represent the number of bytes transferred, while K
denotes kilobytes, and M denotes megabytes. FP and FN denote the percentage of false positives
and false negatives, respectively.

It can also be seen that, regardless of the recognition method used, the proposed hierarchical
feature distribution scheme results in far lower total network traffic load than the ”naive 1” method,
while the ”naive 2” method shows the lowest total numbers. The totals for ”naive 2” method are
somewhat non-representative, since that method makes the heaviest use of the network during the
training, and we trained the network with 20 images, while testing it with 5,000 images.

Phase-by-phase (learning-recognition) comparison of the network traffic shows that our proposed
hierarchical method significantly outperforms ”naive 2” method during learning and ”naive 1”
method during recognition. Essentially, while those two methods represent the extreme ends of the
network load spectrum (one with high traffic during the learning, and other with high traffic during
the recognition), our methods utilizes the network resources in a more balanced way. If the learning
and recognition would be performed on each object, our method would significantly outperform
both naive feature distribution methods.
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The number of hops for hierarchical feature vector distribution scheme for different recognition
methods shows an interesting phenomenon. The recognition methods with lower number of false
positives (PCA and template matching) generate lower number of packets (which is reflected in
lower number of hops). This is easily explained by the nature of the hierarchical feature distribution
scheme and verified by visual inspection of network traffic animation. Large number of false positives
at higher levels of abstraction n causes larger number of forwarded queries during the recognition
phase – essentially, larger number of stray query packets, which diverge from optimum query path,
appears. These packets are forwarded for a hop or two, and disappear when they reach nodes
with sufficiently detailed features, which show the nodes that the packets do not match the stored
features and should be dropped.

6 Conclusion

The paper focuses on important conceptual problem of mapping object recognition methods to
VSNs, specifically on the issue of knowledge propagation. We propose hierarchical feature distri-
bution scheme, which guarantees visibility of any feature vector from any node of the network with
only a fraction of the network load the full distribution of feature vectors would cause.

In this study, extremely simple object recognition methods were used. For these methods we can
be reasonably sure that they satisfy the full set of requirements of our feature distribution method,
which results in unchanged performance when they are used in our hierarchical framework. However,
the real challenge lies in adaptation of state-of-the art recognition methods to such distributed
framework. It is unlikely that the requirements of our scheme would be fulfilled in general for those
methods. However, even if those requirements are satisfied most of the time and only for reasonable
input data (e.g. natural images), we expect that use of such methods in our hierarchical scheme
would result in only a minor decrease in recognition performance. This is the future focus of our
research.
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