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Abstract—In this paper we propose a framework of hierar- of digitized visual data, some type of high-end hardware is
chical feature distribution for object matching in a network of usually needed. In terms of network topology, this leads to a

visual sensors. In our approach we hierarchically distribute the  giar network structure — a powerful processing unit and one
information in such a way that each individual node maintains
or more sensors (cameras).

only a small amount of information about the objects seen by ) .
the network. Nevertheless, this amount is sufficient to efficienty ~ Such a structure has some advantages, such as the simplicity

route queries through the network without any degradation of of the routing. A conceptual problem of such a centralized
the matching performance. A set of requirements that have to approach is that it is not scalable, i.e., it does not scath wi
be fulfilled by the object-matching method to be used in such e nymper of sensors used. When additional nodes are added
a framework is defined. We provide examples of mapping four ) . .
well-known, object-matching methods to a hierarchical feature- to such a configuration, the central process_or becomes a majo
distribution scheme. The proposed approach was tested on a bottleneck. In some cases, the number of visual sensors may g
standard COIL-100 image database and in a basic surveillance into the hundreds (for example, the London Congestion Gharg
scenario using our own distributed network simulator. The results monitoring system consists of more than 200 cameras). It is
show that the amount of data transmitted through the network obvious that the requirements for transmitting and prdogss
can be significantly reduced in comparison to naive feature- the data in such a lar t dinalv |
distribution schemes such as flooding. ] ge Sysiem are.Corres_por_l Ingly large.
For systems like this, a decentralized, distributed stmect
is a natural choice. Distributed systems do not rely on a
single central processor, but rather each node takes aver it
share of the processing load. The transport of data may be
|. INTRODUCTION based on hop-by-hop routing, which means that the node

N the past decade, digital cameras have become ubiquito®fly knows how to reach its immediate neighbors, while the
I and in the past few years a noticeable trend towarlfsk of reaching the final destination requires the pasdicom

the use of smart cameras has emerged. Furthermore, vifHnany nodes. This means that computer-vision algorithms
developments in the field of sensor networks, networks BRvE to be mapped to thistributed environmentvhich is a
smart cameras (visual-sensor networks — VSNs) have becdthg!lenge on its own. _

a hot topic of research. The use of smart cameras includés suc!" this paper we deal with a fundamental task in computer
diverse areas as surveillance, traffic or environmentalitmen ViSion: the detection and matching of objects. In this task,
ing, analyses of sporting events and ambient intelligeGe. visual sensors (cameras) acquire images, which are theh use
the other hand, we have witnessed rapidly decreasing prié@Extract the knowledge needed to perform the object match-

for the associated hardware, which has allowed the deploym&'9 at some later time. In a distributed network structure,
of different types of digital cameras in “smart” objects fofowledge about the detected objects has to be somehow
personal use, i.e., mobile phones. available to all the nodes in the network.

In comparison to other types of sensors, cameras providel NS can be trivially done byflooding the network with
large amounts of digital data. Whenever a large number gformation, in the hope that the knowledge will reach each
cameras is used together, e.g., in a typical VSN, the prableﬁ‘f‘d every node in the network and, th.erefore, the matching ca
of data transmission and automatic data processing are §§-done locally. Conversely, information can be storedlipca

nificantly amplified. The automatic processing of visualada®l @ Sensing node; however, establishing a correspondence

is the task of computer vision, which deals with extractingétween the same object, observed by different nodes at
fferent times, would require flooding as well. We aim to find

the useful information from images and video sequences. X
Since computer-vision algorithms operate on large amourtdradeoff between these two extremes — a method which does
not require the distribution of all the data to each and every

Manuscript received February 31, 2011; revised February2811 and node, but still provides a means to obtain a correspondence

February 31, 2011; accepted February 31, 2011. Date ofqaiigh February between the same ObJeCtS seen by different cameras.
31, 2011, date of current version February 31, 2011. Thikwars supported

by research program P2-0095 and research grant 1000-@238160th by the Ol:Ir approach IS tO. dlstnbu.te the visual knowledge hier-
Slovenian Research Agency. archically. Complete information about the object (e.g., a
The authors are with the Faculty of Electrical Engineeridgjversity of complete set of feature vectors) is stored in a node that
Ljubljana, Tiza&8ka 25, SI-1000 Slovenia (e-mail: vildana.sulic@fe.ursilj . . .
janez.pers@fe.uni-lj.si) has captured the original image of an object. All the other
Digital Object Identifier 10.2222/TCSVT.2011.1111111 nodes receive less-detailed (more abstract) visual irdGom

Index Terms—computer vision, distributed systems, object
matching, visual-sensor networks.



2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,OL. XX, NO. YY, FEBRUARY 2011

(e.g., less-descriptive feature vectors). Since, in ganarore networks. By emphasizing the unique characteristics of ¥SN
abstract visual information requires less storage spack auch as the resource requirements, local processingtimesal-
less transmission capacity, significant savings in thgbeets performance, precise location and orientation infornmgtio
are possible. The abstract visual information is only used time synchronization, data storage and autonomous camera
efficiently route the network queries when a correspondencellaboration, they also provide research directions ilN§S
between objects has to be established (e.g., in the matchirigey divide the research directions into several areasabig
phase). In this way, the efficient transmission of informiati processing algorithms (problems related to camera célilora
in the matching phase is achieved as well. However, duriagd research related to object detection, tracking, anb- hig
propagation some information is inevitably lost due to aldevel vision processing), wireless networking (networkblpr
straction. To achieve an identical matching performandg orems related to real-time data communication, cameralzolla
complete information (e.g., full feature vectors) is usedthe oration and route selection), sensor management, hardware
matching. To make this possible, the matching method hasachitecture for VSNs (energy consumption, platforms and
fulfill certain requirements. testbeds) and middleware (which bridges the gap between the
The major contribution of this work is a hierarchical featur application and the low-level network structure).
distribution scheme for object matching that allows therdis ~ We divide our overview into the three categories that are the
bution of reduced feature vectors without any degradation imost relevant to our work. In the first category, we explore
the matching performance. We also define four requiremetite relevant achievements in the deployment of computer
(abstraction, storage, existence of a metric, convergeioce vision on embedded systems. In the second category, we
the matching method to be used in the proposed scheme anesent publications regarding the efficient transmisbn
provide an algorithm for the efficient routing of the networklata between nodes, and in the last category, we present
queries during the matching. relevant research that deals with the problems that otigina
The remainder of the paper is organized as follows. In Seitem the distributed nature of visual-sensor networks.
tion[Ilwe present an overview of the related work. Seclidh I Embedded computer-vision systemsiith the widespread
introduces the concept of a hierarchical, feature-distidm use of digital cameras, the prevalence of wireless conrigcti
scheme, mathematically formulates a set of requirements and the integration of visual sensors into objects for pebko
proposes algorithms for efficient feature distribution aligt use (like mobile phones or PDAs), the technology of visual-
tributed object matching. Four basic object-matching mesh sensor networks has become widespread [7]. We expect that
are analyzed and shown to fulfill the stated requirements tine prevalent implementation of the networked visual seimso
Section[TV, and in Section]V the experiments and results tfe future will be in the form of an embedded computer-vision
tests in an application-layer, distributed-network siatal are system. Embedded systems impose significant constraints on
reported. Section VI provides our conclusions and futurekwo the choice of computer-vision and pattern-recognitioroalg
rithms in VSNs. Due to limited resources, the choice of
algorithms used in embedded systems reflects mainly those
constraints. For example, Tessestsal. [8] proposed a radi-
Visual-sensor networks (VSNs) are the meeting point of tweally simplified foreground-detection algorithm, Bramper
different technologies. On one side there is the distributet al. [9] used basic background modelling for a traffic-
sensor approach, which puts significant constraints on therveillance task and Quaritseh al. [10] suggested the use
available processing power and the network’s transmissiofi the computationally inexpensive CamShift algorithm for
capabilities. On the other side, there are image-proogssid object tracking. Wanget al. [11] and Flecket al. [12] used
computer-vision algorithms, which are both computatitynaladapted object-tracking algorithms to reduce the computa-
and data intensive. Therefore, the main issues in visusese tional load on the embedded system. On the other hand, Arth
networks revolve around the task of achieving the maximuand Bischof [[13] used a state-of-the-art approach to object
performance on hardware with limited capabilities. recognition; however, they proposed a hybrid solution, iehe
In this section we present an overview of the relevaebmputationally intensive training is done off-line on aneo
publications. A few review papers on wireless, multimediaentional PC and the recognition is performed on an embedded
sensor networks, such as by Miseaal. [1] or by Akyildiz camera using a nearest-neighbor search. In this work we are
et al. [2], can be found in the literature. The latest devekaced with a similar problem (object recognition), but doe t
opments in multi-camera networks are presented by Aghajdre integral nature of our solution all the processing needs
and Cavallaro[[3], while a special issue on Distributed Smap be done on the camera nodes. According to the taxonomy
Camerad[4] provides an overview of the trends and chalengd Soro and Heinzelmari [6], the above work, including our
in the field of distributed smart cameras. Chafial. [5] own, belongs to the area of signal-processing algorithms fo
highlighted the challenging issues and opportunities suai- embedded systems.
sensor networks. Major research issues in VSNs, such ag&fficient data transmission. One of the major issues
camera coverage, network-architecture design, energyeawin visual-sensor networks is dealing with an efficient data
data processing and communication, are discussed in th@nsmission between the nodes. The transmission of visual
same survey. Soro and Heinzelman [6] go one step furtheformation usually requires a large bandwidth and, there-
and also address other aspects of VSNs. They focus fone, a specifically tailored optimization of the distribdt
the low-power and low-complexity aspects of visual-senseensor topologies is very desirable. The research into- data

Il. RELATED WORK
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transmission techniques in visual-sensor networks can lbe, co-training of classifiers on neighboring cameras. By
roughly grouped into three problem areas [5]. First, there éxchanging homographies between the camera views they
a need for efficient image- and video-transmission methodse able to reduce the amount of transmitted data. Karakaya
for transmission over a single hop, such as byetal. [14], and Qi [31] perform target detection and counting using a
Lee et al. [15] or Lecuireet al. [16]. The motivation behind certainty map. They achieve a reduction in the amount of
their work is similar to ours: to transmit visual informatio transmitted information by using local processing and the
as efficiently as possible and, if needed, to degrade the defficient propagation of data through the network. Patk
in a predictable way. Our research differs in the nature ef tlal. [32] build distributed look-up tables from camera viewing
transmitted data since we transmit visual object featuit@siw angles that are distributed across the network. Such taiées
are then used for efficient routing; however, the core pplesi used to select a subset of cameras that is likely to carry out a
are related. Techniques that explicitly deal with multphoparticular task most effectively. Similarly, our work addses
transmission strategies were proposed, for example, by \ti¢ problem of distributing object features for distrilulite
and Abouzeid [[17] and multi-path transmission techniquebject matching. However, to forward network queries agros
were used by Charféet al. [18]. Our work addresses multi- many hops, our framework relies only on the information
hop transmission differently, by examining the contents @bout a node’s direct neighbors, while the tables proposed
data packets for similarities with already transmittedadatby Parket al. are global in nature. Yangt al. [33] perform
Therefore, it provides a mechanism for the efficient mutph object recognition in distributed VSNs. They use the local
transmission of pattern-recognition problems, in patéicéor extraction of features, random projection and the properti
distributed object matching. of chosen image features to significantly reduce the amount

Distributed nature. The next major issue in visual-sensoof information to be transmitted. In contrast to our work,
networks is their distributed nature. Computer-visionoalgthey assume a star network topology with a single, high-
rithms have to be either adapted or totally rebuilt to deglwered base station and allow no communications between
with the specifics of distributed networks. Two major arefis the cameras. Nevertheless, in many aspécts [32][and [33] are
research can be identified here. The first deals with dig&tbu the most closely related work to our own. Our framework
calibration algorithms. Different approaches to the caliion provides an implicit routing of network queries to the semso
in distributed systems are proposed, such as by Simmbnghat are most likely to provide an answer. On the other hand,
al. [19], by Devarajan and Radké [20], and by Sinha ant exploits certain properties of the distributed featutes
Pollefeys [21]. In [[22] Chenget al. use a vision graph to minimize the amount of transmitted data.
calibrate the cameras. Once the temporal and spatialoetati Nevertheless, there is comparatively little research @ th
between the nodes in the network are known, possibilitiesnceptual issues associated with VSNs — a significantgoorti
for other tasks, such as multi-view recognition, are opeof the related work deals with narrowly defined problems,
For example, Kirishimaet al. [23] propose a framework for with implementations often tied to specific hardware. Our
multi-view gesture recognition based on distributed imageork aims to address the conceptual problem of information
processing. Zhangt al. [24] deal with the key challenges propagation in sensor networks, which is particulary adute
for a multi-camera surveillance system, where each cameiaualsensor networks. In that respect, it provides benefits for
unit should share its information through the centralizathd implementations on embedded systems, and provides a way
fusion sensor. Our framework does not explicitly deal witto distribute the information in distributed systems in g,
multi-view recognition or distributed calibration; howesy
those approaches can be used to extend the framework Wiy A HIERARCHICAL FEATURE-DISTRIBUTION SCHEME
such a functionality. FOR OBJECT MATCHING

The other major area of research is the efficient propaga- ,
tion of knowledge, which is also the central theme of odt Problem formulation
work. This issue has been studied by many authors. lhlerA nodein a VSN is an object that consist of a visual sensor,
[25] investigated the conceptual problems of inference & local memory, a central processing unit and one or more
distributed sensor networks and $ukt al. [26] presented connections to the other network nodes. The computational
some conceptual ideas for using hierarchy to distributelgtta and communication resources of such a node are usually
in VSNs more efficiently. Patriciet al. [27] applied a multi- known, but limited. Its primary task is the acquisition of
agent framework to a VSN to control the capture parametersinfages via its visual sensor and the processing of those
a surveillance system and Gilbert and Bowden [28] presentietages according to a particular task, which may involve
a system for the incremental, scalable, inter-camera itfgck communications with other nodes in the VSN. In our case,
of objects. In the work of Chanet al. [29] a camera network that task isobject matching— each seen object is matched
system can estimate its topology and auto-organize its o&gainst all the available objefg#aturesto establish whether a
activities according to the content of the scene and thettaskparticular object has been seen before. In the VSN, a single
be undertaken. This is achieved by using custom encodimgpde does not have all the relevant features to make such a
which reduces the amount of information that has to kecision. The features, belonging to the objects seen by the
transmitted across the network. [n_[22] Chesteal. achieve a other network nodes reside in the local memory of those nodes
reduction in the amount of information by distributing “feee  If a particular node wants to match a previously seen object,
digests” across the network. Leistner al. [30] use the on- all the features from the network have to be requested for
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Fig. 1. lllustration of a network state during the featuistibution process, Fig. 2. Illustration of the four requirements. As the featuegtorsx; and
with “P" denoting the primary node. (a) When features are ifhisted by x, are propagated through the network, they are transformetebynapping
flooding, each node receives an exact copy of the originaufeavector r on each hop. The required storage spsogrey area) decreases after each
(black). (b) When a hierarchical distribution scheme is utigginodes receive hop, along with the distancé between the two feature vectors.
progressively less-detailed (more abstract) feature ve@¢shades of grey).

while preserving matching performance, we propose four

a comparison. In this way, a distributed feature Comparlscr)c[:]quirements that have to be fulfilled by any object-matghin

rgsul_ts in a non-negligible amount c.’f net_work trgﬁlc. Ourrnethod to be considered for use in the proposed hierarchical
aim is to reduce that amount of traffic whifgeserving the

matching performance scheme. Given that the infor_mation about the object is dtore
as a feature vectat, the requirements are as follows (Fig. 2):
Requirement 1 (Abstraction): There exists a mapping
B. Distributed object matching f:x™ — x(»+tD) 0 < n < N, which translates a levet

We define distributed object matching as followgren the feature vectox ™ 1i§1to a higher, more abstract, level ¢ 1)
acquired image of an object, find all the images of visualfgature vectox"*). N denotes the h!ghest(lt?vel of(aJtr)ls)trac-
similar objects that have been acquired by any of the nodt@n. In other words, using the mapping: x'™ — x"*%,

on any previous occasioin general, object matching consistdVhich translates a particular feature vector into a morérads
of the following two phases: feature vector, the dimensionality of the feature vectwrs i

» Learning phase: the compact representation (model) rgf_jrlaged. . hat th . d
the object is extracted from one or more images and Is requirement assumes that the primary node extracts

stored. We assume that such a compact representafiorcVel 0 feature vectorx'?), directly from the acquired
is in the form of a feature vector Image. Its direct neighbors receive more abstract level 1
« Matching phase: the same combact representation Offgﬁture vectorsx(!), their neighbors receive level 2 feature

. . . 2 ing - x(™ (n+1)
object (a feature vector, in our case) is extracted fropfCtors, x=, and so on. The mapping : x X
the newly acquired image. This vector is compared 8 done on each of the nodes before transmitting the feature

: . (n+1) i i i
the feature vectors stored during the learning phase \{8Ct0r5>_c . fo the nelghbors, un_tll the highest level of
straction is reached. From this point on, the featureovect

obtain a correspondence with one of the learned objec@. . ;
o . L are forwarded unchanged. The maximum level of abstraction
In prmmp_le, the entire network can be flc_)oded V_V'th IMag&an pe matching-method dependent (e.g., at some point it may
;jattz;\]_or object fea’_[ures whenl(ejvgr ?j'nte'vt\)/ Lm(;igge IS ?}Cqu';%a'come impossible to further reduce the dimensionalithhef t
n this way, every image would be distributed 1o €ach nodg, ;.o vector). Another important consideration wheectel
which constitutes an extremely wasteful use of network reia N is the network-transmission overhead — from a certain
sources. In f[he next section we propose a scheme that av gﬁ]t on the reduction in features does not meaningfullyiced
the dIStI’.Ibutlon of .complete feature vectors through a hov e length of the network packets. Requirement 1 is negssar
hierarchical encoding scheme. to build a hierarchical feature structure. If the mappjhdoes
not exist, a hierarchy cannot be achieved.

C. The hierarchical encoding structure Requirement 2 (Storage):If S(x) is the storage space

Our hierarchical encoding scheme is based on a hierarchitgfiuired for the feature vector in bits, then it should hold
reduction of feature vectors. We require that thémary that: S(X(n)) = S(X(nfl))- . . _ .
node (the visual sensor that has originally seen the unknown!f this requirement is not fulfilled, the hierarchical enaugl
object) retains the complete information about the objeq).( Scheme does not provide any improvements in terms of
an unmodified feature vector). Its neighbors receive leddetwork traffic and data storage.
detailed, more abstract information, which generally gy~ Requirement 3 (Existence of a metric): There exists
less storage and transmission capacity. In this way, theiatoa metric d (x{" x{"), which provides a measure of the
of data transmitted across, or stored in the network, can $igilarity between two feature vectonsﬁ”) and xé”) of the
significantly reduced. This principle is illustrated in Hifj same leveln.

Such a structure inevitably leads to a loss of information The existence of the metric is essential, both for the ob-
at the point when the features are transformed to their legget matching itself and for the hierarchical feature-efing
detailed representations. In general, this leads to a dseri@ scheme. The distancé(™ (x§”>,xg">), when compared to
the matching performance. To reduce the amount of traffitie thresholdl’, determines whether the objects aieilar,
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d™ (" x{M) < T, or not, d™ (x{™ ,x{"™) > T. If the ensure that the nodes refuse to accept any duplicated deatur
metric does not exist, then a comparison between the objeetstors.
cannot be obtained.
Requirement 4 (Convergence)Given two vectorsx(l”) and _ _
xé") that are similard<")(x§”),xg")) < T, the corresponding E- Object matching
vectors on the next level + 1 should be at least as similar as The task of object matching may be performed Concurrenﬂy
the vectors on the previous level(" ™) (x{"*" x7"*V) < with learning (e.g., the network tries to match the objedote
d(")(xgn),xy))- proceeding with the learning). For now, let us assume that
The fourth requirement guarantees the following: whenevéite network is in matching-only mode. The algorithm for
the comparison between the feature vecmﬁg) and xé”) object matching is presented in Algoritioh 1. During object
results in a distancd(™ above the threshold’, we can be matching we call the node that has acquired the image the
sure that there will be no match between the same featupeerying nodeThe Algorithm[1 is recursive in its nature. In
vector5x§m) and xé’”) on any of the lowers < n) levels.
This has an important consequence for the matching phasgjorithm 1 : Object matching
when searching for the match across the network. The seafghyt: Image
can be terminated early in the directions where there are @tput: Object correspondence
possibilities of finding a match. A violation of Requiremeht 1. Exiract object features(©®).
would cause a node with the featut&”) to block access to . // Local search
the node that may have the matching featw%, given that 5. for Al levels in the local storagelo
m<n. 4. Apply the mappingf : x(™ — x(*+1) and calculate
Any matching method that fulfills the stated requirements the next level feature(™*+1 from x(™.
can be implemented hierarchically. However, due to Requires.  Comparex(+1) with all the vectors of leveh +1 from
ment 4, the matching performance of the chosen matching  the |ocal storage.
method would remain exactly the same in the hierarchical. it No match is foundhen

implementation. It is possible, nevertheless, to implentea 7. Terminate the search, object is unknown. Optionally,
matching method in such a framework, even if it violates proceed with learning.
Requirement 4. In this case, the matching performance woulg  g|se if Match is found on the level then
drop in proportion to the ratio of feature vectatsfor which . Object has been seen locally.
the method would violate the requirement. The consequengg g|se
would be an increase in the number of cases where a preyj- /I Some other node might have seen the object.
ously observed and known object would be declared unknows. // Proceed with network search.
by the network. 13: for All matching vectorsdo
14: Examine tags, attached to the locally stored match-
D. The propagation of feature vectors ing feature vector. .
15: Forward level O features of the unknown object to
Let us assume that the primary node has acquired an image the neighbor, who provided locally stored match-
of a new object and has already discovered that the observed ing feature vector.
object has not been seen before. Equivalently, we may assupge /I Upon receiving forwarded features, neighboring
that the network is in learning-only mode. nodes start from Line 2 of the Algorithrfil] 1.
First, the feature vector is extracted and a urfigigenti- ;. end for

fication number (ID) is generated and attached to the featwyg end if
vector. The actual procedure of feature extraction depends 19: end for
the matching method used. The extracted vector is thendstore
locally and marked as being a level 0 vectof?). Then, using

the mappingf : x(") — x("*+1) the next level feature vector
x(1) is prepared, assigned the same ID and broadcasted”
all the direct neighbors of the primary node. Each receivi
node attaches a tag to the received vector, which uniqu
determines the origin of the feature vector. Due to Requérgm
2, the level 1 feature vectors'!) require less storage spac
than the vectorsc(?). The process of applying the mappin

f:x(™ — x(»*t1) and broadcasting to the node’s neighbor

is repeated on each receiving node, until every node has eaqture vectars on some higher level. Upon receiving theyjue

leastsomeinformation about the object seen by the primarQaCk?t’ eve.ry node runs the Algorittith 1 from the Line 2 on.
node. Communications between the nodes and the unique IDglelghborlng nodes process the forwarded feature vectors of
an unknown object in the exactly same way, as if they would

1For example, generated from the appropriate hardware faer{$uch as acquire the Image of an unknown leef?t b_y themselves. On
a MAC address) and the sequential number of the acquired image. each node the result of the processing is either:

the matching phase, the querying node generates a network
yery packet, if the object has not been seen locally (no
atch on level 0), but it has been seen by any of the other
des (match on other, higher levels). A match means that
two feature vectors are similar on the same level. The query
acket, generated by the querying node, contains unmodified
evel O feature vectors of an unknown object, and is trartehit
those querying node’s neighbors, which provided matghin
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« The object is unknown (if there is no local match). This  node is off-line. In this case the matching performance
result is not reported to the querying node (the node that would decrease.

originally saw an object). _ ‘Obviously, our framework imposes a trade-off between rout-
« The object is known (a match on level 0 is found). Thifhg efficiency and fault-tolerance. The appropriate baganc
result is reported to the querying node. between the two would need a systematic treatment and,

« The object might have been seen by the netwpdséible therefore, is beyond the scope of this paper.
match found on one of the higher levels).

The effect of this algorithm is that, during the matching IV. ILLUSTRATIVE EXAMPLES

phase, the feature vectors of an unknown object in the unmodQur hierarchical feature-encoding framework does not rely
ified form (level O feature vectors) are forwarded from noule on any particular object-matching method. It only sets the
node along the trail left by the propagated feature vectors fequirements that enable a given matching method to be
the learning phase. If the querying node does not receive amplemented in a distributed way. To be able to illustrate
replies from the other nodes inraasonable amount of time the performance of our approach, we selected four matching
the object is unknown to the network. A reasonable amount gfethods. These are principal component analysis (PCA), 2D
time in this context is network and application dependemt. Haar transform, template matching, and histogram matching
theory, the querying node should wait for at least double thg the following sections we illustrate the apg)ropriate map
amount of time that a packet needs to reach the most distgmgsf - x(™) — x(n+1) gnd the metricsi<”)(x1” xé")), for

node in the network. A more efficient solution could be tuhich these four methods fulfill the stated requirements.
introduce a hop-counter to each feature vector, to enakle th

calculation of more accurate timeout values at the queryirAg Methods based on orthogonal projection and Euclidean

nodes. . distance
The efficiency of our approach stems from the fact that the ) ) ) i i
All the methods described in this section use Euclidean

feature vectors are only forwarded in a direction whereeher hei ; 4 in thi
is a possibility that the object has been seen (according {t@nce as their metric and in this respect they share some
of the properties regarding the use in our framework.

Requirement 4). L h :
1) Principal component analysis and 2D Haar transform:
PCA (also known as the Karhunen#we transform) is a
F. Self-organization and fault-tolerance vector-space transform that reduces multidimensional siets
) o to lower dimensions, while minimizing the loss of informa-
Other desirable properties in visual-sensor networks &gn. This is achieved by finding a linear basis of reduced
self-organization and fault-tolerance. The proposedanéi-  4imensionality for the data (a set of eigenvectors) in witieh
cal feature-distribution scheme is essentially a higlelleself- \ariance in the data is a maximuf [34]. In our case, we obtain
organizing mechanism. As described above, the routing @ eigenvectors in advance, and they remain fixed throdghou
the query packets during the matching phase depends on e learning and matching phase.
information stored in the network during the learning. This The Haar transform is a linear transformation into the
may provide a certain degree of fault-tolerance, as follows subspace of Haar functions (Haar wavelets). In our case,

« In the case of a node malfunction during the learninghe 2D Haar transform was used and the feature vectors
the feature vectors will be simply propagated around ityere obtained by unwrapping the transformation result into
provided that there are alternative connections availabke column vector.

« Inthe case that a non-primary node enters an off-line stateRequirement 1: With PCA, properly constructed feature
after learning, the matching process may be significantyectors contain feature values that are already ordered by
disrupted due to the disruption in the routing of thelecreasing importance in terms of the reconstruction of the
guery packets. The seriousness of the disruption may téginal data. This opens up the possibility of the mapping
reduced if we allow the nodes to accept duplicate featufienction f : x(™) — x(**1) which can be defined as dropping
vectors in the learning phase. These duplicate featuaecertain number of features with the lowest importance from
vectors would provide multiple alternative directions fothe feature vector. The same mapping was also used for the
the routing of query packets if one of the node’s neighbotdaar feature vectors, and in this case it results in the dngpp
goes off-line. of the features that correspond to the highest frequendies o

« In the case that a primary node goes off-line aftehe Haar wavelets.
learning, the match on level 0 cannot be provided and Requirement 2: It is fulfilled, since dropping any number
no result is reported to the querying node. This could # dimensions from the feature vector decreases the rehuire
alleviated by modifying the feature distribution schemestorage space.
by requiring that all the primary nodes distribute level Requirement 3: Considering the metriel(m(xg”),xg”)),

0 feature vectors to their immediate neighbors. In thihe Euclidean distance is used when comparing PCA-based or
way the robustness could be increased at the expenseéHahr-based feature vectors.

the efficiency. Another way of increasing the robustness Requirement 4: It is easy to show that Requirement 4 holds
would be to allow the nodes with level 1 feature vectoras well, if the Euclidean distance is used. Ignoring one of
to provide answers to the querying node if the primarthe dimensions from the Euclidean space never increases the
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distance between the two points. At most, the distance rsnai Requirement 1: We can define the mapping : x(™ —
the same. This also holds for high-dimensional cases. That+!) as an operation that combines adjoining bins, giving a
means, regardless of the order of the features, the distacoarser representation of the original image.
will always decrease with the decreased dimensionalitheft Requirement 2: Since a smaller number of bins requires
feature vectors, and Requirement 4 is fulfilled. less storage space, Requirement 2 is fulfilled.
2) Template matchingTemplate matching is a global ob- Requirement 3: The metric d(”)(xg”),xén)) can be the
ject representation that uses the instance of an objectHallinger distance[[35] between the histograms:
template, to search for the same (or similar) object in the
image. For the sake of clarity we limit ourselves to a direct 4™ (x4, x%") = /1 — p(h§{?, %), 3)
comparison of two images of the same dimensions. In this () (o) ()Y )
case, the feature vector contains pixel values of the arigifVhere d ((§‘A ’XB()) is the distance between the feature
image. vectors, x'1) and x, p(h{”,h{") is the Bhattacharyya
Requirement 1: We can define the mapping : x(™ — coeﬁicient,p(hf;”),hg)) — Zf_l ,/hgz)hgg_ Note that there
x("+1) as a simple subsampling operafloimat reduces the are other possible choices for the mettje.g., the Chi-square
image dimensions by calculatirlyx 2 pixels averages. This distance or the histogram-intersection-based distdrge [3
is only one possibility. Nevertheless: other convolutienriels, Requirement 4: Let us assume that we have two images

such as Gaussian, could be used. A and B(™ with the corresponding histogranis;” and

Requirement 2: The resulting image dimensions arg,(m) | ot X%), %™ and h(;), '™ pe the leveln feature
halved, both the image and the corresponding feature Vec\'}Brctors and IeveILBhistograms ang(n-‘rl) <D andp )
require only a quarter of the original storage space ar;ﬁn A 7B A

Requirement 2 is fulfilled ¢+1) be the feature vectors and the level- 1 histograms,
. N , n) _(n ively. Si he following i lity holds:
Requirement 3: We can define the metrig(™ (xg >,x; )) respectively. Since the following inequality holds

as the Euclidean distance between the feature vectors. d™ (xff),xg’)) > d("“)(xf“),xg“)), 4)
Requirement 4: Let us use metrial™ to compare two (n) 4 (n) (n+1) 5 (n+1)

. - : 1—p(hy’,h > 1—p(h h

imagesA(™ and B(™. The original imagesA(™ and B(™ o oy f;)) - Wﬁg Aty - )

have the dimensiong x k& and the resized imaged("+1) plhy’ hg”) < plhy ™ h ),

and B(+1) have the dimensionk/2 x k/2. Letx\\”, x"), Requirement 4 is fulfilled. The proof can be found in Ap-
x0T, x{+Y pe the leveln and (n + 1) feature vectors, pendix(B.
respectively. Since the following inequality holds:

g™ (X?)’Xg)) > d(nﬂ)(xxﬁl)?xgﬂ)) V. EXPERIMENTS AND RESULTS

k

)

In our experiments we tested three types fehture-
distribution methods

e Miood—at—maten COrresponds to the scenario where the

x>

DO T (AM(i, ) — BM(i, 5))>2

. captured visual information is stored locally and each
k/2 k2 N TR task of finding an object has to be broadcasted across

= (A0 (6, ) = B (i, )2, 1) the network by flooding, for each new image acquired.
i=1 j=1

Such a method of distribution requires little or no network
Requirement 4 is fulfilled. The proof can be found in Ap- traffic during the learning phase; however, it produces a
pendix[A. large amount of data transmitted in the matching phase.
e Miood—at—learn COrresponds to the scenario where the

captured visual information from each sensor is dis-

B. Histogram matching tributed to all the nodes for local storage. Again, flooding

Let I be an image. The intensity histogram with bins is used for this purpose. The detection of similar objects
h, = {h;};_, sampled within the imagé, is defined as: is then performed locally by each sensor as new images
are acquired. In contrast to the first method, this feature-

hi = fi Y Si(p(w)), ) a

distribution method produces a large amount of data

i o i i transmitted during the learning phase and requires very
whereu = (z,y) denotes a pixel within the image regidn little or no traffic during the matching phase.

d;(+) is the Kronecker delta function positioned at histogram Miier, the feature-distribution method proposed in this
bin ¢+ and p(u) € {1...P} denotes the histogram bin index paper.

associatgq with the intensity of e}tjpixel at Iocatiarapdfh Is We used the standard COIL-100 database that consists of
gigoggr?tl:izilnnsg gozitrar:;?;;; Tc%i']:tlg; ?n; Eac?xz;ztc;a:ﬁ:: images of 100 different objects; each one is rotated by a 5-
i . ge p aegree angle interval, corresponding to 72 images per bbjec
certain range of grey levels. ACCO.rdeIY' the elem_entshef tThis sums up to 7,200 images for the whole database [37]. We
feature vectors are simply normalized histogram bin COunts‘nave chosen the éOIL—lOO database since the view variations

2Note that image resizing can be implemented as a special calse Biar represent p035|ble points of failure for the teSte_d mag;h'n
transform; here we follow a traditional formulation with a gohution kernel. methods. We expected that there would be a certain amount of

uelU
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matching failures, which is important for a complete evitira except those on the network boundaries, was connected to
of the proposed feature-distribution scheme. its four immediate neighbors; however, a similar experimen
Four basic object-matching methods, template matchinmuld be run with a different network topology.
histogram matching, PCA and 2D Haar transform, were used
for our testing of the different feature-distribution meds. For
the template matching, the maximum number of levélsvas
set to 5, which resulted in minimum image dimensions e#i4  Several experiments were performed to evaluate the network
pixels at the leveh = 5. The reason for this is that we encounperformance of different feature-distribution methodse Tirst
tered significant rounding errors whex 2 images were used (learning) phase measured the performance of the network
(the features, which were essentially image pixels, wenedt during learning. Twenty nodes (primary nodes), evenly dis-
as unsigned 8-bit values). For the histogram matching, the fitributed through the network, were injected with 100 images
10 bins (out of 256) were set to zero immediately after thef the 100 different objects from the database. Those images
level O features were extracted from the image. This was doe@responded to the zero orientation of objects in the COIL-
to decrease the effect of the black background in the imagh30 database. In this instance, 20 nodes among a total of 99
from the COIL-100 database, which dominated the histogramedes received images. The situation is shown in [Fig] 3(a).
comparison if unmodified histograms were used. The PQOMXext, the simulation cycle was started, and, after the netwo
projection space was built beforehand using only everythigHraffic stopped, the statistics on the network load (the remb
object orientation. The remaining images were then used afhops, the total network traffic per sample) and the stasist
the matching. The Haar transformation matrix was calcdlaten processing load were examined.
beforehand. The matching accuracy was measured in terms ofhe second (matching) phase measured the performance of
false positives (FPs) and false negatives (FNs). A FP oedurthe network during the matching. A pseudo-random sequence
when the distance between the feature vectors of two differevas used to choose an image from the database. Images used
objects was lower than a threshold and a FN occurred in the learning and in the building of the PCA subspace were
when the distance between feature vectors correspondingexeluded from the database for this step. A pseudo-random
the same object was higher th@h Additionally, the number sequence was also used to choose any node from the network.
of computations required to perform the mappingsand The chosen image was injected into the chosen node, and

B. Evaluation of the network performance

calculate the metricd was measured. the simulation cycle was started. After the network adtivit
stopped, the result of the matching was read from the same
A. Simulator node, and the statistics on the FPs, FNs and processing load

To test the proposed concept of a hierarchical featuré@ere updated. The process of injecting a random image at
distribution scheme, we designed a distributed networlusimd random node was repeated 5,000 times, and the overall
lator. It runs on a standard desktop computer and is writien$tatistics were recorded. Therefore, the object matchiag w
Matlab. The simulator deals only with the application layeiested with 5,000 images.
of the network communication. This means that it ignores Both phases were performed 12 times, once for each com-
network-related phenomena, such as network delays and lifination of object-matching methods and feature-distidiou
tations in the network bandwidth. The simulator measures tAethods. In each of the 12 trials, the same pseudo-random se-
amount of traffic transmitted between the nodes, the numbsifence was used in the matching to ensure that the results can
of nodes (hops) over which the traffic is transmitted and tie compared between the different combinations of methods.
processing load due to the invocation of the mapgfiramd the ~ The results for both phases are shown in Table I. We can see
metric d, as described in Requirements 1 and 4, respectivelpat in comparison tMgood—at—match @Nd Maood —at—learn:

The simulator can accept a network with any structuré)e proposediy;., results in a far lower network-traffic load
however, the routing algorithm has to be provided as well. Bnd number of hops-per-sample. Moreovkl;.. achieves
get a good insight into the situation in the network, we ledit equal matching rates to both flood methods, despite the
our testing to just the rectangular, 4-connected grid neksvo data reduction that occurs iNl,i... The reason is that the
Each node is assigned a two-dimensional address, whicHulillment of Requirement 4 guarantees that the matching
directly related to the node’s location in the rectangulad.g performance will not decrease with the application of the
In this way, each node can easily determine the direction lerarchical feature-vector distribution scheme. In teispect
which a particular packet should be forwarded. all the feature-vector distribution methods are equivialeven

The simulator allows us to inject any type of network packéhough our hierarchical method does not distribute fultdea
at any point in the network. It also allows the injection of aectors.
new image at any node in the network. Image processing,During the learnindMagod—at—match Makes no use of the
feature extraction, feature processing and feature casgrar network (all the feature vectors are stored locally). Tferee
are integral parts of the simulation. For example, to test tithe results forMasod—at—matecn @Mount to zero hops and no
object matching, we inject an image into a particular nod# atraffic. On the other hand, the traffic drastically increases
wait until the network activity ends. Then we read the resutluring the matching (matching phase), when this feature-
of the matching from the same node. distribution method is used. In the matching phasg,;,

For the experiments, we used a network consisting of @itperformsMgood—at—maten IN terms of both network-traffic
nodes, arranged in a XB rectangular grid. Each of the nodesload and number of hops-per-sample. On the other hand,
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TABLE |
EXPERIMENTAL RESULTS FOR EACH COMBINATION OF MATCHING METH®S AND FEATURE-DISTRIBUTION METHODS

Matching | Distribution Learning Matching Matching rate
method method Hops Traffic Hops Traffic | Total traffi¢ | FPS" FNs™
[ savrlele] [ skfg:;lée] [ sa.'nlzple] [ f;glt;li] [Mbytes]
Mfood—at—match 0 0 398 4132 20660 22%  22%
Template | Mgood—at—learn 614 2855 0 0 285 22%  22%
Mhjer 614 41 279 2228 11144 22% 22%
Mfood—at—match 0 0 432 521 2605 27%  28%
Histogram | Mgood—at—learn 614 363 0 0 36 27% 28%
Mhuier 614 25 309 273 1367 27% 28%
Mfood—at—match 0 0 381 1036 5180 19%  22%
PCA Mfood—at—learn 614 719 0 0 72 19% 22%
Mhier 614 44 243 486 2434 19% 22%
Mfood—at—match 0 0 376 1036 5180 18% 21%
Haar 2D Mfood—at—learn 614 719 0 0 72 18%  21%
Mhjer 614 44 251 536 2684 18% 21%

* Note that total traffic depends on the number of samples usésibhised on 100 learning and 5,000 testing samples.
™ FPs and FNs denote the percentage of false positives amdrfatsatives, respectively.

TABLE Il
COMPUTATIONAL COST FOR EACH COMBINATION OF MATCHING METHODSAND FEATURE-DISTRIBUTION METHODS

Matching | Distribution Feature extraction Mapping f Metric d
method method Learning Matching Matching
[ eperationsy [M] [Mw]
sample* sample sample
+ X + X + X + X \[**
Mifood—at—match 0 0 0 0 1.6384 1.6384 0.0001
Template | Mggod—at—learn 0 0 0 0 0 0 1.6384 1.6384 0.0001
Mhuier 0.0999 0.0333 102.50 34.167 | 3.7994 3.7994 0.0065
Mifood—at—match 0 0 0 0 0.0256 0.0256 0.0257
Histogram | Mgaood—at—learn 16384 256 0 0 0 0 0.0256 0.0256 0.0257
Mhier 0.0023 0 1.4795 0 0.1475 0.1475 0.1538
Mifood—at—match 0 0 0 0 0.0512 0.0512 0.0001
PCA Mfiood—at—learn 8.4-106 8.4.106 0 0 0 0 0.0512 0.0512 0.0001
Mhier 0 0 0 0 0.2715 0.2715 0.0059
Mfood—at—match 0 0 0 0 0.0512 0.0512 0.0001
Haar 2D | Maood—at—learn | 8.4-10%  8.4.10° 0 0 0 0 0.0512 0.0512 0.0001
Mujer 0 0 0 0 0.2911 0.2911 0.0063

* Cost of extracting features from a single COIL-100 imagepltgion 128 x 128 pixels. The cost of conversion from color to gray-scale image

is not included.
“ The number of square roots corresponds to the direct impletimmtaf the proposed metricd without any optimization. For actual
implementation, optimized variants could be used.

Mifood—at—1earn Makes no use of the network during then this respect, since the dropping of features requires no
matching, while it makes the heaviest use in the learning@hadditional computation. The proposed hierarchical featur
(each and every node in the network has to receive a compldistribution scheme also increases the number of opegation
feature vector). Again, th®l;., outperformsMgooq—at—1earn  PEr Sample during the matching in comparison to the flood-
during the learning phase. Note that the total traffic dependased distribution methods, since calculations of the imetr
on the number of samples used. It is provided for illusteativi(™ are needed along the route of the query packet.

purposes only and it is based on 100 learning and 5,000 gestin Finally, the results depend on the maximum level of abstrac-

samples. tion as well. To obtain the results presented in TaHles I[@nd |
Table[l shows the computational cost in the number efe did not limit the maximum level of abstraction, except
operations (additions, multiplications and square rotduda- for the template matching, as documented at the beginning
tions) per each phase of our experiment. The cost of featurethis section. To examine the influence of the maximum
extraction does not depend on the distribution method afevel of abstraction, the experiments were repeated byingry
is specified as the number of operations to extract a featdingss parameter. The traffic during the learning phase irsgea
vector from a single COIL-100 database image. It is clealr thahen more descriptive features were used (less abstragtisn
in some cases the proposed hierarchical feature-distiibutallowed); however, the traffic and the number of hops during
scheme requires an additional computation of the mappittge matching phase decreased. This behavior is in line with
f:x(™ — x(»+1) during the learning phase. The matchingxpectations — more descriptive feature vectors cause more
methods based on an orthogonal projection have an advanttg#fic when distributed, but enable greater accuracy of the
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routing in the matching phase. density of primary nodes, both the number of hops and the

To summarize, a phase-by-phase (learning — matching) coamount of network traffic decreases significantly, whép.,
parison of the network traffic shows that our propo3éd.., is used. The reason for such behavior is that queries are
significantly outperformaMgood—at—1earn during the learning forwarded only in directions in which possible matches can
and Mgood—at—maten during the matching. Essentially, whilebe found. This means that no queries will be sent to the nodes
those two methods represent the extreme ends of the netwdhat did not observe any of the new objects and therefore
load spectrum (one with high traffic during the learning, andid not originate any feature vectors. For example, comside
other with high traffic during the matching), our method cathe situation shown in Fid. 3(e), where all the new objects
utilize the network resources in a balanced way. have been seen by a single primary node. Every feature vector

The three described feature-distribution schemes alléw ddlistributed by our method points to that single node, anth eac
ferent trade-offs between several variables of interestud- query will be routed to that node only or dropped along the
ing, but not limited to, the amount of data stored on the npdegay. If there were two such primary nodes (Hig. B(d)), every
the computational cost, and the network load. These vasabtjuery would have been routed, at most, in two directions.
depend on multiple factors, e.g., the size of the networ, tisince the placement of primary nodes influences the average
number of learning samples, the number of primary nodestwork distance over which the data is transmitted, it is
the discriminatory power of the chosen matching method awctkar that it increases the total amount of traffic. However,
the maximum level of abstraction in the caseMf;... For the influence of the placement of the primary nodes is less
example, in addition to the network load, thdy, also significant than the effect of reducing the actual number of
reduces the storage cost in comparisonM@ood—_at—1earn-  Primary nodes.
On the other handMy;, may not be the best choice if Note that one could modify the geneidgood—at—match
we know that the number of learning samples will be lowo perform better in this test. Primary nodes could broadcas
Such an example would be a surveillance task in an offieesmall amount of data which would indicate that they are
area with limited access and permanent staff. In this case,possession of learning samples. This would improve the
Mifood—at—learn Would outperform the proposed distributiorefficiency of the routing ifMaood—at—maten DY restricting the
scheme in terms of overall performance. With a larger numbgossible directions of the flooding. However, the purpose of
of learning samples the performance Mfiooq—at—1carn Will  this experiment is also to demonstrate that such a mechanism
quickly deteriorate in terms of total traffic and the reqdireis implicitly provided by the proposedly;.., illustrating its
storage space (because Withiood—at—1carn €VEry node needs self-organizing capabilities.
to store all the information about every observed objetts |  The increasing efficiency of our method when the number
up to the engineer to pick the most appropriate approach fsfrprimary nodes is reduced has an important practical conse
the particular application. guence. In real-life scenarios we can expect that the ptiopor

of primary nodesn comparison to the total number of nodes
C. Effect of the number of primary nodes in the network will be relatively small. Those nodes consist
of cameras that are expected to encounter new objects. In

To evaluate how the number and distribution of nodes thﬁutany cases, where the network of cameras covers a large area,

receive original imag.e.s in the Iearning phase (primary B)).dethere are only a feventry pointswhere unknown objects may
affect the network efficiency, the experiment from the poesi enter the observed area. For example, if a large, multegtor

section V\_/asthrepeat_ed. Tthe tnumf:a_ler t(r)1f |nJect§d Imc’:ljgde_S_t;/;I;;:lSt uﬁding is covered by such a network, only cameras thaticove
Same as in the previous tests, while the number and diSubuly, o onirances to the building would encounter new people

of the primary ”Oqe§ was va.tried (gs shown in Elg. 3): entering the building. All the other cameras would discover

phase (ratio of 10:99, Fid. 3(b)), _ ‘network, and would not perform learning. In this situatioa w
« 4 nodes are injected with 25 images each in the leariggpect that a hierarchical feature distribution in suchtaaek
phase (ratio of 4:99, Fig. 3(c)), would be even more efficient. For this reason, we performed

« 2 nodes are injected with 50 images each in the leamiggyreliminary test in a basic surveillance scenario as well.
phase (ratio of 2:99, Fig. 3(d)),

« 1 node is injected with 100 images in the learning phase
(ratio of 1:99, Fig[ 3(@)). D. Test in a basic surveillance scenario

The results are shown in Tablellll. We see that during A preliminary test was performed to evaluate the perfor-
the learning phase the number of hops does not change withnce of the proposed framework in a slightly more realistic
the different ratios of the primary nodes. On the other hansi;enario. A dataset, consisting of 226 different image®of f
the network traffic increases slightly with a lower densify gpersons and two cars, was acquired. A few images from the
primary nodes, regardless of which feature-distributithod dataset are shown in Figl 4. The images were taken outdoors,
is used. Nevertheless, the network traffic is significardlydr from different viewpoints. They were cropped manually and
whenMy;e, is used in comparison lg,0q_at_1earm- DUring  therefore include only the objects of interest and relative
the matching phase we see that the number of hops amall patches of the background. A synthetic scenario was
the amount of network traffic remain almost constant whetevised to test the framework, as follows. The scenario as-
Miood—at—match 1S Used. On the other hand, with a decreasirgumes that there exists a network of 99 4-connected cameras
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(a) Ratio 20:99 (b) Ratio 10:99 (c) Ratio 4:99 (d) Ratio 2:99 (e) Ratio 1:99

Fig. 3. Different distributions of primary nodes. Black distorrespond to nodes that have received images duringiegammiimary nodes, and white discs
correspond to all the others. The network consists of 99 si0igs. (a)—(e) show the same network with a decreasing nuoflgimary nodes.

TABLE Ill
EFFECT OF THE NUMBER OF THE PRIMARY NODES

Matching | Ratio Learning phase Matching phase
method Hops [ ] Traffic [X2les | Hops [ ] Traffic [ £2tes |
Mﬂoodfatflearn Mhier Mﬂoodfatflearn Mhier Mﬂoodfatfmatch Mhier Mﬂoodfatfmatch Mhier

20:99 614 614 2855 41 398 279 4132 2228
10:99 614 614 2855 41 398 258 4132 1894

Template 4:99 614 614 2855 42 397 209 4132 1118
2:99 614 614 2855 43 387 156 4132 425
1:99 614 614 2855 43 369 116 4132 81
20:99 614 614 363 25 432 309 521 273
10:99 614 614 363 25 436 292 521 231

Histogram | 4:99 614 614 363 26 432 244 521 140
2:99 614 614 363 27 420 189 521 54
1:99 614 614 363 29 398 145 520 11
20:99 614 614 719 44 381 243 1036 486
10:99 614 614 719 44 381 225 1036 412

PCA 4:99 614 614 719 45 380 189 1036 267
2:99 614 614 719 47 371 139 1036 104
1:99 614 614 719 51 355 102 1036 21
20:99 614 614 719 44 376 251 1036 536
10:99 614 614 719 44 377 232 1036 455

Haar 2D 4:99 614 614 719 45 375 187 1036 280
2:99 614 614 719 47 367 135 1036 107
1:99 614 614 719 51 352 98 1036 21

in the same arrangement as in the previous experiments, now
covering the building and the neighboring area, including a
parking lot. There are six cameras covering the three ergsan

two are covering the entrance to the parking lot, two are g——
covering the front entrance, and two are covering the backJ h
entrance to the building. The experiment followed the basic ‘
structure described in Sectidn_V-B. In the leaming phasl% . 4. Several representative images from the surveill@iataset, one per
two persons appear at the front entrance, two at the b ct.

entrance and two cars appear at the parking-lot entrange. Si
images of those six objects were injected at the correspgndi

nodes according to this scenario. In the matching phase, \adttors we propose a set of requirements regarding akistract
the objects appear randomly throughout the building and #grage space, similarity metric and convergence. Thinket
surroundings 1,500 times. Histogram matching was usedeas tbquirements has to be fulfilled by the object-matching meth
matching method. The results are presented in Table IV ajdorder for it to be used in our framework. Our framework
are consistent with experiments on the COIL-100 databaseis based on a hierarchical encoding of the visual knowledge,
where the node that originally captures the visual knowdedg
VI. CONCLUSION retains complete information about the object. All the othe
This paper focuses on an important conceptual problemmddes in the network receive less-detailed (more abstract)
mapping object-matching methods to VSNSs, specifically thasual knowledge: in our case, shorter feature vectorss&he
issue of knowledge storage and propagation. We proposédeature vectors are then used for the routing of queries only
hierarchical, feature-distribution scheme that guaesitthe to those nodes that have complete feature vectors available
visibility of any feature vector from any node in the networkheir local storage. In this way, a final decision on the idgnt
with only a fraction of the network load that the full distri-of the known objects is made using complete feature vectors.
bution of feature vectors would cause. To achieve the sa®a the other hand, queries travelling in the directions wher
matching performance as with the full distribution of featu there are no matching feature vectors are dropped along the
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TABLE IV
PRELIMINARY EXPERIMENTAL RESULTS IN A BASIC SURVEILLANCE SENARIO

Matching | Distribution Learning Matching Matching rate
method method Hops Traffic Hops Traffic | Total traffic | FPS* FNs™
[ savrlele] [ sk:gfpelsc] [ sa.'nlzple] [ :’:g:;;] [Mbytes]
Mfood—at—match 0 0 273 519 778 25%  22%
Histogram | Mgaood—at—learn 614 363 0 0 2 25%  22%
Mhujer 614 25 54 80 120 25% 22%

* Note that total traffic depends on the number of samples usésiblised on 6 learning and 1,500 testing samples.
™ FPs and FNs denote the percentage of false positives amdrfatmtives, respectively.

way. To show the performance of our approach, which aimslierarchical, feature-distribution scheme. An altereatap-
reduce the amount of traffic transmitted, while still pregmy proach would be the introduction efipernode$23] or fusion

the matching performance, four object-matching methode wesensorg24] into the network structure. The task of such nodes
selected. For these methods we prove that they satisfy thre favould be to aggregate the information from spatially ralate
requirements of our feature-distribution method. The pemal nodes. In addition to those issues, the future challenge lie
distribution was compared with two flood-feature distribns in mapping state-of-the-art matching and recognition mesh
using our network simulator. The proposed hierarchicalfea to such a distributed framework. When using the proposed
distribution outperformed both flood-based feature distri scheme with state-of-the-art matching methods it may also
tions, without any degradation in the matching performanceappen that the requirements of our scheme would not be
Nevertheless, both the flood-based distribution methoddea fulfilled in general However, even if those requirements are
interpreted as two extreme operating points of the hiefeath satisfied most of the timewe expect that the use of such
feature-distribution metho@lg,0q—at—1carn CaAN be seen as amethods in our hierarchical scheme would result in only a
variant of My, with a maximum abstraction level of = 0 minor decrease in the matching performance. This will be the
(no abstraction allowed), andlg,oq_at—matecn €aN be inter- focus of our future research.

preted as a case O, with a mappingf : x(™ — 0, and

a metricd(”)(xgn),xg”)) =0,n > 0. My can be positioned

between these two extrema by varying its parameters, such

as the maximum level of abstraction and the amount of APPENDIXA
discarded information at each hop. In future, we plan toystudPROOF OF THEREQUIREMENT 4 FOR TEMPLATE MATCHING
different operating points of the proposed hierarchicatdee- WHEN USING EUCLIDEAN DISTANCE

distribution scheme.

Four object-matching methods that have been used to il-Let us assume that we have two imagés” and B(™
lustrate the performance of a hierarchical feature-distion }’x'éh l?éme”hsc')%‘;k x k. Requirement 4 is fulfilled if the next
scheme might not work on real-life object images. Never- q y '

theless, those methods also form the foundation of many

state-of-the-art algorithms. For example, PCA is widelgdis d™ (x§, %Gy > dm T Y <),

and can be applied to various kinds of features. Histograms k&

are widely used for color matching and also form the basis ZZ(AW(Z'J) — B(™(i,5))2

of other advanced image features, such as SIET [38] and =1 =1

HOG [39] descriptors. Therefore, our hierarchical feature YRS

distribution scheme can be directly applied to severalestat S (A1 (G, ) — Be+1 (i, )2,

of-the-art matching methods with little or no adaptation. -

Our experimental setup assumed a single view of an object. ko k
Nevertheless, the proposed framework could be extended to ~ ) " (4™ (i, j) - B™(i,5))*

a multi-view case as well. Assuming spatially calibrated an i=1 j=1

temporally synchronized cameras, additional spatio-tealp k/2 k/2

information about the observed object could be distributed > (AT (G 5) — BMTD (i, 4))2, (5)
along with the feature vectors. Using this additional infer i=1 j=1

tion, each individual node could establish a spatio-temlpor

correspondence between a locally observed object and th (n) _(n) _(n+1) _(n+1)
features distributed by other node(s). Based on this cor%\f%erexf‘  Xp', Xy, X are the leveh andn + 1

: . . . f8ature vectors, respectively.
spondence, a common identity could be assigned to multip P y

; . . . he leveln + 1 feature vectors are obtained using the map-
views of a same object. In this way the network would b“"Bing £, which in our case is a simple subsampling operation

a more complex, distributed, multi-view representatioranf that reduces the image dimensions by calculafing2 pixels
object, while still preserving the advantages of the pregdps averages. The inequalit{](5) with the superscripfon both
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sides) omitted can be rewritten as
k/2 k/2

SO A@i-1,2j - 1) - B2i—1,2j — 1))’

13

andn + 1 omitted and introducings = £ (we assume that
there is always an even number of bins), the inequality can be
rewritten as

K
i=1 j=1 \/—
higi—1yah(2i— haiaha;
F(A(2i = 1,2)) — B(2i — 1,25))? Zl( (2i-1ah@i-1)B + 2iah2iB)
+(A(2i,25 — 1) — B(2i,2§ — 1))? K
+(A(23,25) — B(2i,25))°] <> Vheimna+ heia)(h@ioys + hais). (9)
AL A@i— 1,25 — 1) + A@2i — 1,2) -
1 — 1,4 — t— 1,47 . . .
2 ZZ K 1 The inequality [(D) holds, if
i=1 j=1
N A(2i,2) — 1) + A(24,2) \/h(2i71)Ah(2i—1)B + \/hQiAhQiB
n < V/(h@i—1ya + h2ia)(h@i-1yB + h2is), (10)
B <3(2i —1,2j — 1) + B(2i — 1,2j) where(i =1,...,K). Fori =1
4
hiahis + v/ haah
| B(2i.2j-1) + B(2i.2)) ? © Vi £ Vhaahas
4 : < \/(h1A + hoa)(hi + h2B),
. . . hiahis + 27/ hiahig\/h2ahop + haah
The inequality [(B) is always satisfied if fgf,j = 1,..., &) m <13(h i hlA)z: +22 2? atep
>~ 1A 2A 1B 2B ),
. . . . 2
(A(20-1,2j -1) - B(2i - 1,25 — 1)) ) hiahip +2v/hi1ahig\/ h2ah2p + haahap
+(A(2i - 1,2j) - B(2i - 1,2j)) < hiahip + hiah2p + h2ahig + haahas,
. . . . 2
+(A(2,25 - 1) - B(2i,2 — 1)2) 2y/hiahig\/haoahop < hiahop + haahis,
A(2i,25) — B(2i,25 2
) - B ) 0< (V/hiahap — \/haahiz) (1)

- [A(m — 1,25 — 1) + A(2i — 1,25) + A(24,25 — 1) + A(2i,25)
= 4

where hia,hoa,hip,hop are histogram bins and are always
hia,h2a,h1B,haB

> 0. The inequality holds sinced <

B(2i — 1,25 — 1) + B(2i — 1,25) + B(2i,2j — 1) + B(2i, 2]')]2
1 .

Introducingz; = A(2i — 1,25 — 1) — B(2i —1,2j — 1), 29 =

A(2i—1,2§)—B(2i—1,2§), x5 = A(2i,2j—1)—B(2i,2j—1),
x4 = A(2i,25)— B(24,2j) the inequality for an arbitrary term
(i,4) can be rewritten as follows [1]
X1 +CC2—|—.’,E3—|—I4 2
1 ). O
To prove that inequality[{7) is satisfied, we may use Jensen’s
inequality for the mean, which states th#(f(z)) > [3]
f(E(z)), wheref is any convex function — a square function

in our case. Using Jensen’s inequality it is obvious that

af + a3 +af + ] > (

B(f(x)) = 4 S and f(B(x)) = (femgmingz g
which implies that Requirement 4 is fulfilled. 6]
APPENDIXB 7]
PROOF OF THEREQUIREMENT 4 FOR HISTOGRAM
MATCHING WHEN USING HELLINGER DISTANCE (8]
Let us assume that we have two imagtg) and B(") with
the corresponding _histograrh%” andhg‘ . Requirement 4 is [9]
fulfilled if the next inequality holds:
dW G xg)) = dEE <), @) )
VI= oG B = (1= pn D n D),
P 1GY) < p(h Y RG), [11]
wherex'[”, x{7, x( D x1+Y are the leveln and n + 1
(n+1) [12]

feature vectors, respectively, amﬁf), hg), h(j“), hyg

are the level ann + 1 histograms, respectively.
Feature vectors and leveh-1 histograms are obtained using

the mappingf, which combines adjoining bins. Substitutind13]

p(B5 RSy with SSF 4 /p 0™ with the superscripts,

(Vhiah2g — \/thhlB)2 always holds. By applying a similar ar-
gument for all; in (@Q) it is obvious that Requirement 4 is fulfilled.
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