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Efficient Feature Distribution for Object Matching
in Visual-Sensor Networks

Vildana Sulíc, Student Member, IEEE,Janez Perš, Member, IEEE,Matej Kristan,Member, IEEE,
and Stanislav Kovǎcič, Member, IEEE

Abstract—In this paper we propose a framework of hierar-
chical feature distribution for object matching in a network of
visual sensors. In our approach we hierarchically distribute the
information in such a way that each individual node maintains
only a small amount of information about the objects seen by
the network. Nevertheless, this amount is sufficient to efficiently
route queries through the network without any degradation of
the matching performance. A set of requirements that have to
be fulfilled by the object-matching method to be used in such
a framework is defined. We provide examples of mapping four
well-known, object-matching methods to a hierarchical feature-
distribution scheme. The proposed approach was tested on a
standard COIL-100 image database and in a basic surveillance
scenario using our own distributed network simulator. The results
show that the amount of data transmitted through the network
can be significantly reduced in comparison to naive feature-
distribution schemes such as flooding.

Index Terms—computer vision, distributed systems, object
matching, visual-sensor networks.

I. I NTRODUCTION

I N the past decade, digital cameras have become ubiquitous,
and in the past few years a noticeable trend towards

the use of smart cameras has emerged. Furthermore, with
developments in the field of sensor networks, networks of
smart cameras (visual-sensor networks – VSNs) have become
a hot topic of research. The use of smart cameras includes such
diverse areas as surveillance, traffic or environmental monitor-
ing, analyses of sporting events and ambient intelligence.On
the other hand, we have witnessed rapidly decreasing prices
for the associated hardware, which has allowed the deployment
of different types of digital cameras in “smart” objects for
personal use, i.e., mobile phones.

In comparison to other types of sensors, cameras provide
large amounts of digital data. Whenever a large number of
cameras is used together, e.g., in a typical VSN, the problems
of data transmission and automatic data processing are sig-
nificantly amplified. The automatic processing of visual data
is the task of computer vision, which deals with extracting
the useful information from images and video sequences.
Since computer-vision algorithms operate on large amounts
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of digitized visual data, some type of high-end hardware is
usually needed. In terms of network topology, this leads to a
star network structure – a powerful processing unit and one
or more sensors (cameras).

Such a structure has some advantages, such as the simplicity
of the routing. A conceptual problem of such a centralized
approach is that it is not scalable, i.e., it does not scale with
the number of sensors used. When additional nodes are added
to such a configuration, the central processor becomes a major
bottleneck. In some cases, the number of visual sensors may go
into the hundreds (for example, the London Congestion Charge
monitoring system consists of more than 200 cameras). It is
obvious that the requirements for transmitting and processing
the data in such a large system are correspondingly large.

For systems like this, a decentralized, distributed structure
is a natural choice. Distributed systems do not rely on a
single central processor, but rather each node takes over its
share of the processing load. The transport of data may be
based on hop-by-hop routing, which means that the node
only knows how to reach its immediate neighbors, while the
task of reaching the final destination requires the participation
of many nodes. This means that computer-vision algorithms
have to be mapped to thedistributed environment, which is a
challenge on its own.

In this paper we deal with a fundamental task in computer
vision: the detection and matching of objects. In this task,
visual sensors (cameras) acquire images, which are then used
to extract the knowledge needed to perform the object match-
ing at some later time. In a distributed network structure,
knowledge about the detected objects has to be somehow
available to all the nodes in the network.

This can be trivially done byflooding the network with
information, in the hope that the knowledge will reach each
and every node in the network and, therefore, the matching can
be done locally. Conversely, information can be stored locally
on a sensing node; however, establishing a correspondence
between the same object, observed by different nodes at
different times, would require flooding as well. We aim to find
a tradeoff between these two extremes – a method which does
not require the distribution of all the data to each and every
node, but still provides a means to obtain a correspondence
between the same objects seen by different cameras.

Our approach is to distribute the visual knowledge hier-
archically. Complete information about the object (e.g., a
complete set of feature vectors) is stored in a node that
has captured the original image of an object. All the other
nodes receive less-detailed (more abstract) visual information
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(e.g., less-descriptive feature vectors). Since, in general, more
abstract visual information requires less storage space and
less transmission capacity, significant savings in that respect
are possible. The abstract visual information is only used to
efficiently route the network queries when a correspondence
between objects has to be established (e.g., in the matching
phase). In this way, the efficient transmission of information
in the matching phase is achieved as well. However, during
propagation some information is inevitably lost due to ab-
straction. To achieve an identical matching performance only
complete information (e.g., full feature vectors) is used for the
matching. To make this possible, the matching method has to
fulfill certain requirements.

The major contribution of this work is a hierarchical feature-
distribution scheme for object matching that allows the distri-
bution of reduced feature vectors without any degradation in
the matching performance. We also define four requirements
(abstraction, storage, existence of a metric, convergence) for
the matching method to be used in the proposed scheme and
provide an algorithm for the efficient routing of the network
queries during the matching.

The remainder of the paper is organized as follows. In Sec-
tion II we present an overview of the related work. Section III
introduces the concept of a hierarchical, feature-distribution
scheme, mathematically formulates a set of requirements and
proposes algorithms for efficient feature distribution anddis-
tributed object matching. Four basic object-matching methods
are analyzed and shown to fulfill the stated requirements in
Section IV, and in Section V the experiments and results of
tests in an application-layer, distributed-network simulator are
reported. Section VI provides our conclusions and future work.

II. RELATED WORK

Visual-sensor networks (VSNs) are the meeting point of two
different technologies. On one side there is the distributed
sensor approach, which puts significant constraints on the
available processing power and the network’s transmission
capabilities. On the other side, there are image-processing and
computer-vision algorithms, which are both computationally
and data intensive. Therefore, the main issues in visual-sensor
networks revolve around the task of achieving the maximum
performance on hardware with limited capabilities.

In this section we present an overview of the relevant
publications. A few review papers on wireless, multimedia,
sensor networks, such as by Misraet al. [1] or by Akyildiz
et al. [2], can be found in the literature. The latest devel-
opments in multi-camera networks are presented by Aghajan
and Cavallaro [3], while a special issue on Distributed Smart
Cameras [4] provides an overview of the trends and challenges
in the field of distributed smart cameras. Charfiet al. [5]
highlighted the challenging issues and opportunities in visual-
sensor networks. Major research issues in VSNs, such as
camera coverage, network-architecture design, energy-aware
data processing and communication, are discussed in the
same survey. Soro and Heinzelman [6] go one step further,
and also address other aspects of VSNs. They focus on
the low-power and low-complexity aspects of visual-sensor

networks. By emphasizing the unique characteristics of VSNs,
such as the resource requirements, local processing, real-time
performance, precise location and orientation information,
time synchronization, data storage and autonomous camera
collaboration, they also provide research directions in VSNs.
They divide the research directions into several areas: signal-
processing algorithms (problems related to camera calibration
and research related to object detection, tracking, and high-
level vision processing), wireless networking (network prob-
lems related to real-time data communication, camera collab-
oration and route selection), sensor management, hardware
architecture for VSNs (energy consumption, platforms and
testbeds) and middleware (which bridges the gap between the
application and the low-level network structure).

We divide our overview into the three categories that are the
most relevant to our work. In the first category, we explore
the relevant achievements in the deployment of computer
vision on embedded systems. In the second category, we
present publications regarding the efficient transmissionof
data between nodes, and in the last category, we present
relevant research that deals with the problems that originate
from the distributed nature of visual-sensor networks.

Embedded computer-vision systems.With the widespread
use of digital cameras, the prevalence of wireless connectivity
and the integration of visual sensors into objects for personal
use (like mobile phones or PDAs), the technology of visual-
sensor networks has become widespread [7]. We expect that
the prevalent implementation of the networked visual sensor in
the future will be in the form of an embedded computer-vision
system. Embedded systems impose significant constraints on
the choice of computer-vision and pattern-recognition algo-
rithms in VSNs. Due to limited resources, the choice of
algorithms used in embedded systems reflects mainly those
constraints. For example, Tessenset al. [8] proposed a radi-
cally simplified foreground-detection algorithm, Bramberger
et al. [9] used basic background modelling for a traffic-
surveillance task and Quaritschet al. [10] suggested the use
of the computationally inexpensive CamShift algorithm for
object tracking. Wanget al. [11] and Flecket al. [12] used
adapted object-tracking algorithms to reduce the computa-
tional load on the embedded system. On the other hand, Arth
and Bischof [13] used a state-of-the-art approach to object
recognition; however, they proposed a hybrid solution, where
computationally intensive training is done off-line on a con-
ventional PC and the recognition is performed on an embedded
camera using a nearest-neighbor search. In this work we are
faced with a similar problem (object recognition), but due to
the integral nature of our solution all the processing needs
to be done on the camera nodes. According to the taxonomy
of Soro and Heinzelman [6], the above work, including our
own, belongs to the area of signal-processing algorithms for
embedded systems.

Efficient data transmission. One of the major issues
in visual-sensor networks is dealing with an efficient data
transmission between the nodes. The transmission of visual
information usually requires a large bandwidth and, there-
fore, a specifically tailored optimization of the distributed
sensor topologies is very desirable. The research into data-
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transmission techniques in visual-sensor networks can be
roughly grouped into three problem areas [5]. First, there is
a need for efficient image- and video-transmission methods
for transmission over a single hop, such as by Yuet al. [14],
Lee et al. [15] or Lecuireet al. [16]. The motivation behind
their work is similar to ours: to transmit visual information
as efficiently as possible and, if needed, to degrade the data
in a predictable way. Our research differs in the nature of the
transmitted data since we transmit visual object features which
are then used for efficient routing; however, the core principles
are related. Techniques that explicitly deal with multi-hop
transmission strategies were proposed, for example, by Wu
and Abouzeid [17] and multi-path transmission techniques
were used by Charfiet al. [18]. Our work addresses multi-
hop transmission differently, by examining the contents of
data packets for similarities with already transmitted data.
Therefore, it provides a mechanism for the efficient multi-hop
transmission of pattern-recognition problems, in particular for
distributed object matching.

Distributed nature. The next major issue in visual-sensor
networks is their distributed nature. Computer-vision algo-
rithms have to be either adapted or totally rebuilt to deal
with the specifics of distributed networks. Two major areas of
research can be identified here. The first deals with distributed
calibration algorithms. Different approaches to the calibration
in distributed systems are proposed, such as by Simmonset
al. [19], by Devarajan and Radke [20], and by Sinha and
Pollefeys [21]. In [22] Chenget al. use a vision graph to
calibrate the cameras. Once the temporal and spatial relations
between the nodes in the network are known, possibilities
for other tasks, such as multi-view recognition, are open.
For example, Kirishimaet al. [23] propose a framework for
multi-view gesture recognition based on distributed image
processing. Zhanget al. [24] deal with the key challenges
for a multi-camera surveillance system, where each camera
unit should share its information through the centralized data-
fusion sensor. Our framework does not explicitly deal with
multi-view recognition or distributed calibration; however,
those approaches can be used to extend the framework with
such a functionality.

The other major area of research is the efficient propaga-
tion of knowledge, which is also the central theme of our
work. This issue has been studied by many authors. Ihler
[25] investigated the conceptual problems of inference in
distributed sensor networks and Sulić et al. [26] presented
some conceptual ideas for using hierarchy to distribute thedata
in VSNs more efficiently. Patricioet al. [27] applied a multi-
agent framework to a VSN to control the capture parameters of
a surveillance system and Gilbert and Bowden [28] presented
a system for the incremental, scalable, inter-camera tracking
of objects. In the work of Changet al. [29] a camera network
system can estimate its topology and auto-organize its own
activities according to the content of the scene and the taskto
be undertaken. This is achieved by using custom encoding,
which reduces the amount of information that has to be
transmitted across the network. In [22] Chenget al. achieve a
reduction in the amount of information by distributing “feature
digests” across the network. Leistneret al. [30] use the on-

line, co-training of classifiers on neighboring cameras. By
exchanging homographies between the camera views they
are able to reduce the amount of transmitted data. Karakaya
and Qi [31] perform target detection and counting using a
certainty map. They achieve a reduction in the amount of
transmitted information by using local processing and the
efficient propagation of data through the network. Parket
al. [32] build distributed look-up tables from camera viewing
angles that are distributed across the network. Such tablesare
used to select a subset of cameras that is likely to carry out a
particular task most effectively. Similarly, our work addresses
the problem of distributing object features for distributed
object matching. However, to forward network queries across
many hops, our framework relies only on the information
about a node’s direct neighbors, while the tables proposed
by Parket al. are global in nature. Yanget al. [33] perform
object recognition in distributed VSNs. They use the local
extraction of features, random projection and the properties
of chosen image features to significantly reduce the amount
of information to be transmitted. In contrast to our work,
they assume a star network topology with a single, high-
powered base station and allow no communications between
the cameras. Nevertheless, in many aspects [32] and [33] are
the most closely related work to our own. Our framework
provides an implicit routing of network queries to the sensors
that are most likely to provide an answer. On the other hand,
it exploits certain properties of the distributed featuresto
minimize the amount of transmitted data.

Nevertheless, there is comparatively little research on the
conceptual issues associated with VSNs – a significant portion
of the related work deals with narrowly defined problems,
with implementations often tied to specific hardware. Our
work aims to address the conceptual problem of information
propagation in sensor networks, which is particulary acutein
visual-sensor networks. In that respect, it provides benefits for
implementations on embedded systems, and provides a way
to distribute the information in distributed systems in general.

III. A HIERARCHICAL FEATURE-DISTRIBUTION SCHEME

FOR OBJECT MATCHING

A. Problem formulation

A nodein a VSN is an object that consist of a visual sensor,
a local memory, a central processing unit and one or more
connections to the other network nodes. The computational
and communication resources of such a node are usually
known, but limited. Its primary task is the acquisition of
images via its visual sensor and the processing of those
images according to a particular task, which may involve
communications with other nodes in the VSN. In our case,
that task isobject matching– each seen object is matched
against all the available objectfeaturesto establish whether a
particular object has been seen before. In the VSN, a single
node does not have all the relevant features to make such a
decision. The features, belonging to the objects seen by the
other network nodes reside in the local memory of those nodes.
If a particular node wants to match a previously seen object,
all the features from the network have to be requested for
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(b)

Fig. 1. Illustration of a network state during the feature-distribution process,
with “P” denoting the primary node. (a) When features are distributed by
flooding, each node receives an exact copy of the original feature vector
(black). (b) When a hierarchical distribution scheme is used,the nodes receive
progressively less-detailed (more abstract) feature vectors (shades of grey).

a comparison. In this way, a distributed feature comparison
results in a non-negligible amount of network traffic. Our
aim is to reduce that amount of traffic whilepreserving the
matching performance.

B. Distributed object matching

We define distributed object matching as follows:given the
acquired image of an object, find all the images of visually
similar objects that have been acquired by any of the nodes
on any previous occasion.In general, object matching consists
of the following two phases:

• Learning phase: the compact representation (model) of
the object is extracted from one or more images and
stored. We assume that such a compact representation
is in the form of a feature vector.

• Matching phase: the same compact representation of an
object (a feature vector, in our case) is extracted from
the newly acquired image. This vector is compared to
the feature vectors stored during the learning phase to
obtain a correspondence with one of the learned objects.

In principle, the entire network can be flooded with image
data or object features whenever a new image is acquired.
In this way, every image would be distributed to each node,
which constitutes an extremely wasteful use of network re-
sources. In the next section we propose a scheme that avoids
the distribution of complete feature vectors through a novel
hierarchical encoding scheme.

C. The hierarchical encoding structure

Our hierarchical encoding scheme is based on a hierarchical
reduction of feature vectors. We require that theprimary
node(the visual sensor that has originally seen the unknown
object) retains the complete information about the object (e.g.,
an unmodified feature vector). Its neighbors receive less-
detailed, more abstract information, which generally requires
less storage and transmission capacity. In this way, the amount
of data transmitted across, or stored in the network, can be
significantly reduced. This principle is illustrated in Fig. 1.

Such a structure inevitably leads to a loss of information
at the point when the features are transformed to their less-
detailed representations. In general, this leads to a decrease in
the matching performance. To reduce the amount of traffic,
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Fig. 2. Illustration of the four requirements. As the featurevectorsx1 and
x2 are propagated through the network, they are transformed by the mapping
f on each hop. The required storage spaceS (grey area) decreases after each
hop, along with the distanced between the two feature vectors.

while preserving matching performance, we propose four
requirements that have to be fulfilled by any object-matching
method to be considered for use in the proposed hierarchical
scheme. Given that the information about the object is stored
as a feature vectorx, the requirements are as follows (Fig. 2):

Requirement 1 (Abstraction): There exists a mapping
f : x(n) 7→ x

(n+1), 0 < n ≤ N , which translates a leveln
feature vectorx(n) into a higher, more abstract, level (n+ 1)
feature vectorx(n+1). N denotes the highest level of abstrac-
tion. In other words, using the mappingf : x(n) 7→ x

(n+1),
which translates a particular feature vector into a more abstract
feature vector, the dimensionality of the feature vectors is
reduced.

This requirement assumes that the primary node extracts
a level 0 feature vector,x(0), directly from the acquired
image. Its direct neighbors receive more abstract level 1
feature vectors,x(1), their neighbors receive level 2 feature
vectors,x(2), and so on. The mappingf : x(n) 7→ x

(n+1)

is done on each of the nodes before transmitting the feature
vectors x(n+1) to the neighbors, until the highest level of
abstraction is reached. From this point on, the feature vectors
are forwarded unchanged. The maximum level of abstraction
can be matching-method dependent (e.g., at some point it may
become impossible to further reduce the dimensionality of the
feature vector). Another important consideration when select-
ing N is the network-transmission overhead – from a certain
point on the reduction in features does not meaningfully reduce
the length of the network packets. Requirement 1 is necessary
to build a hierarchical feature structure. If the mappingf does
not exist, a hierarchy cannot be achieved.

Requirement 2 (Storage): If S(x) is the storage space
required for the feature vectorx in bits, then it should hold
that:S(x(n)) ≥ S(x(n+1)).

If this requirement is not fulfilled, the hierarchical encoding
scheme does not provide any improvements in terms of
network traffic and data storage.

Requirement 3 (Existence of a metric): There exists
a metric d(n)(x(n)

1 ,x
(n)
2 ), which provides a measure of the

similarity between two feature vectorsx(n)
1 and x

(n)
2 of the

same leveln.
The existence of the metric is essential, both for the ob-

ject matching itself and for the hierarchical feature-encoding
scheme. The distanced(n)(x(n)

1 ,x
(n)
2 ), when compared to

the thresholdT , determines whether the objects aresimilar,
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d(n)(x
(n)
1 ,x

(n)
2 ) ≤ T , or not, d(n)(x(n)

1 ,x
(n)
2 ) > T . If the

metric does not exist, then a comparison between the objects
cannot be obtained.

Requirement 4 (Convergence):Given two vectorsx(n)
1 and

x
(n)
2 that are similar,d(n)(x(n)

1 ,x
(n)
2 ) ≤ T , the corresponding

vectors on the next leveln+ 1 should be at least as similar as
the vectors on the previous level,d(n+1)(x

(n+1)
1 ,x

(n+1)
2 ) ≤

d(n)(x
(n)
1 ,x

(n)
2 ).

The fourth requirement guarantees the following: whenever
the comparison between the feature vectorsx

(n)
1 and x

(n)
2

results in a distanced(n) above the thresholdT , we can be
sure that there will be no match between the same feature
vectorsx(m)

1 andx
(m)
2 on any of the lower (m < n) levels.

This has an important consequence for the matching phase,
when searching for the match across the network. The search
can be terminated early in the directions where there are no
possibilities of finding a match. A violation of Requirement4
would cause a node with the featurex(n) to block access to
the node that may have the matching featuresx

(m), given that
m < n.

Any matching method that fulfills the stated requirements
can be implemented hierarchically. However, due to Require-
ment 4, the matching performance of the chosen matching
method would remain exactly the same in the hierarchical
implementation. It is possible, nevertheless, to implement the
matching method in such a framework, even if it violates
Requirement 4. In this case, the matching performance would
drop in proportion to the ratio of feature vectorsx for which
the method would violate the requirement. The consequence
would be an increase in the number of cases where a previ-
ously observed and known object would be declared unknown
by the network.

D. The propagation of feature vectors

Let us assume that the primary node has acquired an image
of a new object and has already discovered that the observed
object has not been seen before. Equivalently, we may assume
that the network is in learning-only mode.

First, the feature vector is extracted and a unique1 identi-
fication number (ID) is generated and attached to the feature
vector. The actual procedure of feature extraction dependson
the matching method used. The extracted vector is then stored
locally and marked as being a level 0 vector,x

(0). Then, using
the mappingf : x(n) 7→ x

(n+1), the next level feature vector
x
(1) is prepared, assigned the same ID and broadcasted to

all the direct neighbors of the primary node. Each receiving
node attaches a tag to the received vector, which uniquely
determines the origin of the feature vector. Due to Requirement
2, the level 1 feature vectorsx(1) require less storage space
than the vectorsx(0). The process of applying the mapping
f : x(n) 7→ x

(n+1) and broadcasting to the node’s neighbors
is repeated on each receiving node, until every node has at
leastsomeinformation about the object seen by the primary
node. Communications between the nodes and the unique IDs

1For example, generated from the appropriate hardware identifier (such as
a MAC address) and the sequential number of the acquired image.

ensure that the nodes refuse to accept any duplicated feature
vectors.

E. Object matching

The task of object matching may be performed concurrently
with learning (e.g., the network tries to match the object before
proceeding with the learning). For now, let us assume that
the network is in matching-only mode. The algorithm for
object matching is presented in Algorithm 1. During object
matching we call the node that has acquired the image the
querying node. The Algorithm 1 is recursive in its nature. In

Algorithm 1 : Object matching
Input: Image
Output: Object correspondence

1: Extract object featuresx(0).
2: // Local search
3: for All levels in the local storagedo
4: Apply the mappingf : x(n) 7→ x

(n+1) and calculate
the next level featurex(n+1) from x

(n).
5: Comparex(n+1) with all the vectors of leveln+1 from

the local storage.
6: if No match is foundthen
7: Terminate the search, object is unknown. Optionally,

proceed with learning.
8: else if Match is found on the level 0then
9: Object has been seen locally.

10: else
11: // Some other node might have seen the object.
12: // Proceed with network search.
13: for All matching vectorsdo
14: Examine tags, attached to the locally stored match-

ing feature vector.
15: Forward level 0 features of the unknown object to

the neighbor, who provided locally stored match-
ing feature vector.

16: // Upon receiving forwarded features, neighboring
nodes start from Line 2 of the Algorithm 1.

17: end for
18: end if
19: end for

the matching phase, the querying node generates a network
query packet, if the object has not been seen locally (no
match on level 0), but it has been seen by any of the other
nodes (match on other, higher levels). A match means that
two feature vectors are similar on the same level. The query
packet, generated by the querying node, contains unmodified
level 0 feature vectors of an unknown object, and is transmitted
to those querying node’s neighbors, which provided matching
feature vectors on some higher level. Upon receiving the query
packet, every node runs the Algorithm 1 from the Line 2 on.

Neighboring nodes process the forwarded feature vectors of
an unknown object in the exactly same way, as if they would
acquire the image of an unknown object by themselves. On
each node the result of the processing is either:
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• The object is unknown (if there is no local match). This
result is not reported to the querying node (the node that
originally saw an object).

• The object is known (a match on level 0 is found). This
result is reported to the querying node.

• The object might have been seen by the network (possible
match found on one of the higher levels).

The effect of this algorithm is that, during the matching
phase, the feature vectors of an unknown object in the unmod-
ified form (level 0 feature vectors) are forwarded from node to
node along the trail left by the propagated feature vectors in
the learning phase. If the querying node does not receive any
replies from the other nodes in areasonable amount of time,
the object is unknown to the network. A reasonable amount of
time in this context is network and application dependent. In
theory, the querying node should wait for at least double the
amount of time that a packet needs to reach the most distant
node in the network. A more efficient solution could be to
introduce a hop-counter to each feature vector, to enable the
calculation of more accurate timeout values at the querying
nodes.

The efficiency of our approach stems from the fact that the
feature vectors are only forwarded in a direction where there
is a possibility that the object has been seen (according to
Requirement 4).

F. Self-organization and fault-tolerance

Other desirable properties in visual-sensor networks are
self-organization and fault-tolerance. The proposed hierarchi-
cal feature-distribution scheme is essentially a high-level, self-
organizing mechanism. As described above, the routing of
the query packets during the matching phase depends on the
information stored in the network during the learning. This
may provide a certain degree of fault-tolerance, as follows.

• In the case of a node malfunction during the learning,
the feature vectors will be simply propagated around it,
provided that there are alternative connections available.

• In the case that a non-primary node enters an off-line state
after learning, the matching process may be significantly
disrupted due to the disruption in the routing of the
query packets. The seriousness of the disruption may be
reduced if we allow the nodes to accept duplicate feature
vectors in the learning phase. These duplicate feature
vectors would provide multiple alternative directions for
the routing of query packets if one of the node’s neighbors
goes off-line.

• In the case that a primary node goes off-line after
learning, the match on level 0 cannot be provided and
no result is reported to the querying node. This could be
alleviated by modifying the feature distribution scheme,
by requiring that all the primary nodes distribute level
0 feature vectors to their immediate neighbors. In this
way the robustness could be increased at the expense of
the efficiency. Another way of increasing the robustness
would be to allow the nodes with level 1 feature vectors
to provide answers to the querying node if the primary

node is off-line. In this case the matching performance
would decrease.

Obviously, our framework imposes a trade-off between rout-
ing efficiency and fault-tolerance. The appropriate balance
between the two would need a systematic treatment and,
therefore, is beyond the scope of this paper.

IV. I LLUSTRATIVE EXAMPLES

Our hierarchical feature-encoding framework does not rely
on any particular object-matching method. It only sets the
requirements that enable a given matching method to be
implemented in a distributed way. To be able to illustrate
the performance of our approach, we selected four matching
methods. These are principal component analysis (PCA), 2D
Haar transform, template matching, and histogram matching.
In the following sections we illustrate the appropriate map-
pingsf : x(n) 7→ x

(n+1) and the metricsd(n)(x(n)
1 ,x

(n)
2 ), for

which these four methods fulfill the stated requirements.

A. Methods based on orthogonal projection and Euclidean
distance

All the methods described in this section use Euclidean
distance as their metric and in this respect they share some
of the properties regarding the use in our framework.

1) Principal component analysis and 2D Haar transform:
PCA (also known as the Karhunen-Loéve transform) is a
vector-space transform that reduces multidimensional data sets
to lower dimensions, while minimizing the loss of informa-
tion. This is achieved by finding a linear basis of reduced
dimensionality for the data (a set of eigenvectors) in whichthe
variance in the data is a maximum [34]. In our case, we obtain
the eigenvectors in advance, and they remain fixed throughout
the learning and matching phase.

The Haar transform is a linear transformation into the
subspace of Haar functions (Haar wavelets). In our case,
the 2D Haar transform was used and the feature vectors
were obtained by unwrapping the transformation result into
a column vector.

Requirement 1: With PCA, properly constructed feature
vectors contain feature values that are already ordered by
decreasing importance in terms of the reconstruction of the
original data. This opens up the possibility of the mapping
functionf : x(n) 7→ x

(n+1), which can be defined as dropping
a certain number of features with the lowest importance from
the feature vector. The same mapping was also used for the
Haar feature vectors, and in this case it results in the dropping
of the features that correspond to the highest frequencies of
the Haar wavelets.

Requirement 2: It is fulfilled, since dropping any number
of dimensions from the feature vector decreases the required
storage space.

Requirement 3: Considering the metricd(n)(x(n)
1 ,x

(n)
2 ),

the Euclidean distance is used when comparing PCA-based or
Haar-based feature vectors.

Requirement 4: It is easy to show that Requirement 4 holds
as well, if the Euclidean distance is used. Ignoring one of
the dimensions from the Euclidean space never increases the
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distance between the two points. At most, the distance remains
the same. This also holds for high-dimensional cases. That
means, regardless of the order of the features, the distance
will always decrease with the decreased dimensionality of the
feature vectors, and Requirement 4 is fulfilled.

2) Template matching:Template matching is a global ob-
ject representation that uses the instance of an object, a
template, to search for the same (or similar) object in the
image. For the sake of clarity we limit ourselves to a direct
comparison of two images of the same dimensions. In this
case, the feature vector contains pixel values of the original
image.

Requirement 1: We can define the mappingf : x(n) 7→
x
(n+1) as a simple subsampling operation2 that reduces the

image dimensions by calculating2 × 2 pixels averages. This
is only one possibility. Nevertheless: other convolution kernels,
such as Gaussian, could be used.

Requirement 2: The resulting image dimensions are
halved, both the image and the corresponding feature vector
require only a quarter of the original storage space and
Requirement 2 is fulfilled.

Requirement 3: We can define the metricd(n)(x(n)
1 ,x

(n)
2 )

as the Euclidean distance between the feature vectors.
Requirement 4: Let us use metricd(n) to compare two

imagesA(n) and B(n). The original imagesA(n) and B(n)

have the dimensionsk × k and the resized imagesA(n+1)

andB(n+1) have the dimensionsk/2 × k/2. Let x(n)
A , x(n)

B ,
x
(n+1)
A , x

(n+1)
B be the leveln and (n + 1) feature vectors,

respectively. Since the following inequality holds:

d(n)(x
(n)
A

,x
(n)
B

) ≥ d(n+1)(x
(n+1)
A

,x
(n+1)
B

),
√

√

√

√

k
∑

i=1

k
∑

j=1

(A(n)(i, j)−B(n)(i, j))2

≥

√

√

√

√

k/2
∑

i=1

k/2
∑

j=1

(A(n+1)(i, j)−B(n+1)(i, j))2, (1)

Requirement 4 is fulfilled. The proof can be found in Ap-
pendix A.

B. Histogram matching

Let I be an image. The intensity histogram withP bins
hx = {hi}

P
i=1 sampled within the imageI, is defined as:

hi = fh
∑

u∈U

δi(p(u)), (2)

whereu = (x, y) denotes a pixel within the image regionI.
δi(·) is the Kronecker delta function positioned at histogram
bin i and p(u) ∈ {1...P} denotes the histogram bin index
associated with the intensity of a pixel at locationu andfh is
a normalizing constant such that

∑P
i=1 hi = 1. Each histogram

bin contains a normalized count of image pixels within a
certain range of grey levels. Accordingly, the elements of the
feature vectors are simply normalized histogram bin counts.

2Note that image resizing can be implemented as a special case of the Haar
transform; here we follow a traditional formulation with a convolution kernel.

Requirement 1: We can define the mappingf : x(n) 7→
x
(n+1) as an operation that combines adjoining bins, giving a

coarser representation of the original image.
Requirement 2: Since a smaller number of bins requires

less storage space, Requirement 2 is fulfilled.
Requirement 3: The metric d(n)(x(n)

1 ,x
(n)
2 ) can be the

Hellinger distance [35] between the histograms:

d(n)(x
(n)
A

,x
(n)
B

) =

√

1− ρ(h
(n)
A , h

(n)
B ), (3)

where d(n)(x
(n)
A ,x

(n)
B ) is the distance between the feature

vectors, x(n)
A and x

(n)
B , ρ(h

(n)
A , h

(n)
B ) is the Bhattacharyya

coefficient,ρ(h(n)
A , h

(n)
B ) =

∑P
i=1

√

h
(n)
iA h

(n)
iB . Note that there

are other possible choices for the metricd, e.g., the Chi-square
distance or the histogram-intersection-based distance [36].

Requirement 4: Let us assume that we have two images
A(n) and B(n) with the corresponding histogramsh(n)

A and
h
(n)
B . Let x(n)

A , x
(n)
B and h

(n)
A , h

(n)
B be the leveln feature

vectors and leveln histograms andx(n+1)
A , x(n+1)

B andh(n+1)
A ,

h
(n+1)
B be the feature vectors and the leveln+ 1 histograms,

respectively. Since the following inequality holds:

d(n)(x
(n)
A

,x
(n)
B

) ≥ d(n+1)(x
(n+1)
A

,x
(n+1)
B

),
√

1− ρ(h
(n)
A , h

(n)
B ) ≥

√

1− ρ(h
(n+1)
A , h

(n+1)
B ),

ρ(h
(n)
A , h

(n)
B ) ≤ ρ(h

(n+1)
A , h

(n+1)
B ),

(4)

Requirement 4 is fulfilled. The proof can be found in Ap-
pendix B.

V. EXPERIMENTS AND RESULTS

In our experiments we tested three types offeature-
distribution methods:

• Mflood−at−match corresponds to the scenario where the
captured visual information is stored locally and each
task of finding an object has to be broadcasted across
the network by flooding, for each new image acquired.
Such a method of distribution requires little or no network
traffic during the learning phase; however, it produces a
large amount of data transmitted in the matching phase.

• Mflood−at−learn corresponds to the scenario where the
captured visual information from each sensor is dis-
tributed to all the nodes for local storage. Again, flooding
is used for this purpose. The detection of similar objects
is then performed locally by each sensor as new images
are acquired. In contrast to the first method, this feature-
distribution method produces a large amount of data
transmitted during the learning phase and requires very
little or no traffic during the matching phase.

• Mhier, the feature-distribution method proposed in this
paper.

We used the standard COIL-100 database that consists of
images of 100 different objects; each one is rotated by a 5-
degree angle interval, corresponding to 72 images per object.
This sums up to 7,200 images for the whole database [37]. We
have chosen the COIL-100 database since the view variations
represent possible points of failure for the tested matching
methods. We expected that there would be a certain amount of
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matching failures, which is important for a complete evaluation
of the proposed feature-distribution scheme.

Four basic object-matching methods, template matching,
histogram matching, PCA and 2D Haar transform, were used
for our testing of the different feature-distribution methods. For
the template matching, the maximum number of levelsN was
set to 5, which resulted in minimum image dimensions of 4×4
pixels at the leveln = 5. The reason for this is that we encoun-
tered significant rounding errors when 2×2 images were used
(the features, which were essentially image pixels, were stored
as unsigned 8-bit values). For the histogram matching, the first
10 bins (out of 256) were set to zero immediately after the
level 0 features were extracted from the image. This was done
to decrease the effect of the black background in the images
from the COIL-100 database, which dominated the histogram
comparison if unmodified histograms were used. The PCA
projection space was built beforehand using only every eighth
object orientation. The remaining images were then used in
the matching. The Haar transformation matrix was calculated
beforehand. The matching accuracy was measured in terms of
false positives (FPs) and false negatives (FNs). A FP occurred
when the distance between the feature vectors of two different
objects was lower than a thresholdT and a FN occurred
when the distance between feature vectors corresponding to
the same object was higher thanT . Additionally, the number
of computations required to perform the mappingsf and
calculate the metricsd was measured.

A. Simulator

To test the proposed concept of a hierarchical feature-
distribution scheme, we designed a distributed network simu-
lator. It runs on a standard desktop computer and is written in
Matlab. The simulator deals only with the application layer
of the network communication. This means that it ignores
network-related phenomena, such as network delays and limi-
tations in the network bandwidth. The simulator measures the
amount of traffic transmitted between the nodes, the number
of nodes (hops) over which the traffic is transmitted and the
processing load due to the invocation of the mappingf and the
metric d, as described in Requirements 1 and 4, respectively.

The simulator can accept a network with any structure;
however, the routing algorithm has to be provided as well. To
get a good insight into the situation in the network, we limited
our testing to just the rectangular, 4-connected grid networks.
Each node is assigned a two-dimensional address, which is
directly related to the node’s location in the rectangular grid.
In this way, each node can easily determine the direction in
which a particular packet should be forwarded.

The simulator allows us to inject any type of network packet
at any point in the network. It also allows the injection of a
new image at any node in the network. Image processing,
feature extraction, feature processing and feature comparison
are integral parts of the simulation. For example, to test the
object matching, we inject an image into a particular node and
wait until the network activity ends. Then we read the result
of the matching from the same node.

For the experiments, we used a network consisting of 99
nodes, arranged in a 11×9 rectangular grid. Each of the nodes,

except those on the network boundaries, was connected to
its four immediate neighbors; however, a similar experiment
could be run with a different network topology.

B. Evaluation of the network performance

Several experiments were performed to evaluate the network
performance of different feature-distribution methods. The first
(learning) phase measured the performance of the network
during learning. Twenty nodes (primary nodes), evenly dis-
tributed through the network, were injected with 100 images
of the 100 different objects from the database. Those images
corresponded to the zero orientation of objects in the COIL-
100 database. In this instance, 20 nodes among a total of 99
nodes received images. The situation is shown in Fig. 3(a).
Next, the simulation cycle was started, and, after the network
traffic stopped, the statistics on the network load (the number
of hops, the total network traffic per sample) and the statistics
on processing load were examined.

The second (matching) phase measured the performance of
the network during the matching. A pseudo-random sequence
was used to choose an image from the database. Images used
in the learning and in the building of the PCA subspace were
excluded from the database for this step. A pseudo-random
sequence was also used to choose any node from the network.
The chosen image was injected into the chosen node, and
the simulation cycle was started. After the network activity
stopped, the result of the matching was read from the same
node, and the statistics on the FPs, FNs and processing load
were updated. The process of injecting a random image at
a random node was repeated 5,000 times, and the overall
statistics were recorded. Therefore, the object matching was
tested with 5,000 images.

Both phases were performed 12 times, once for each com-
bination of object-matching methods and feature-distribution
methods. In each of the 12 trials, the same pseudo-random se-
quence was used in the matching to ensure that the results can
be compared between the different combinations of methods.

The results for both phases are shown in Table I. We can see
that in comparison toMflood−at−match and Mflood−at−learn,
the proposedMhier results in a far lower network-traffic load
and number of hops-per-sample. Moreover,Mhier achieves
equal matching rates to both flood methods, despite the
data reduction that occurs inMhier. The reason is that the
fulfillment of Requirement 4 guarantees that the matching
performance will not decrease with the application of the
hierarchical feature-vector distribution scheme. In thisrespect
all the feature-vector distribution methods are equivalent, even
though our hierarchical method does not distribute full feature
vectors.

During the learningMflood−at−match makes no use of the
network (all the feature vectors are stored locally). Therefore,
the results forMflood−at−match amount to zero hops and no
traffic. On the other hand, the traffic drastically increases
during the matching (matching phase), when this feature-
distribution method is used. In the matching phase,Mhier

outperformsMflood−at−match in terms of both network-traffic
load and number of hops-per-sample. On the other hand,
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TABLE I
EXPERIMENTAL RESULTS FOR EACH COMBINATION OF MATCHING METHODS AND FEATURE-DISTRIBUTION METHODS

Matching Distribution Learning Matching Matching rate
method method Hops Traffic Hops Traffic Total traffic* FPs** FNs**

[ 1
sample

] [ kbytes
sample

] [ 1
sample

] [ kbytes
sample

] [Mbytes]

Template
Mflood−at−match 0 0 398 4132 20660 22% 22%
Mflood−at−learn 614 2855 0 0 285 22% 22%
Mhier 614 41 279 2228 11144 22% 22%

Histogram
Mflood−at−match 0 0 432 521 2605 27% 28%
Mflood−at−learn 614 363 0 0 36 27% 28%
Mhier 614 25 309 273 1367 27% 28%

PCA
Mflood−at−match 0 0 381 1036 5180 19% 22%
Mflood−at−learn 614 719 0 0 72 19% 22%
Mhier 614 44 243 486 2434 19% 22%

Haar 2D
Mflood−at−match 0 0 376 1036 5180 18% 21%
Mflood−at−learn 614 719 0 0 72 18% 21%
Mhier 614 44 251 536 2684 18% 21%

* Note that total traffic depends on the number of samples used. Itis based on 100 learning and 5,000 testing samples.
** FPs and FNs denote the percentage of false positives and false negatives, respectively.

TABLE II
COMPUTATIONAL COST FOR EACH COMBINATION OF MATCHING METHODSAND FEATURE-DISTRIBUTION METHODS

Matching Distribution Feature extraction Mappingf Metric d

method method Learning Matching Matching

[ operations
sample∗

] [ 10
6operations
sample

] [ 10
6operations
sample

]

+ × + × + × + ×
√
. ∗∗

Template
Mflood−at−match

0 0
0 0 0 0 1.6384 1.6384 0.0001

Mflood−at−learn 0 0 0 0 1.6384 1.6384 0.0001
Mhier 0.0999 0.0333 102.50 34.167 3.7994 3.7994 0.0065

Histogram
Mflood−at−match

16384 256
0 0 0 0 0.0256 0.0256 0.0257

Mflood−at−learn 0 0 0 0 0.0256 0.0256 0.0257
Mhier 0.0023 0 1.4795 0 0.1475 0.1475 0.1538

PCA
Mflood−at−match

8.4 · 106 8.4 · 106
0 0 0 0 0.0512 0.0512 0.0001

Mflood−at−learn 0 0 0 0 0.0512 0.0512 0.0001
Mhier 0 0 0 0 0.2715 0.2715 0.0059

Haar 2D
Mflood−at−match

8.4 · 106 8.4 · 106
0 0 0 0 0.0512 0.0512 0.0001

Mflood−at−learn 0 0 0 0 0.0512 0.0512 0.0001
Mhier 0 0 0 0 0.2911 0.2911 0.0063

* Cost of extracting features from a single COIL-100 image, resolution 128×128 pixels. The cost of conversion from color to gray-scale image
is not included.

** The number of square roots corresponds to the direct implementation of the proposed metricsd without any optimization. For actual
implementation, optimized variants could be used.

Mflood−at−learn makes no use of the network during the
matching, while it makes the heaviest use in the learning phase
(each and every node in the network has to receive a complete
feature vector). Again, theMhier outperformsMflood−at−learn

during the learning phase. Note that the total traffic depends
on the number of samples used. It is provided for illustrative
purposes only and it is based on 100 learning and 5,000 testing
samples.

Table II shows the computational cost in the number of
operations (additions, multiplications and square root calcula-
tions) per each phase of our experiment. The cost of feature
extraction does not depend on the distribution method and
is specified as the number of operations to extract a feature
vector from a single COIL-100 database image. It is clear that
in some cases the proposed hierarchical feature-distribution
scheme requires an additional computation of the mapping
f : x(n) 7→ x

(n+1) during the learning phase. The matching
methods based on an orthogonal projection have an advantage

in this respect, since the dropping of features requires no
additional computation. The proposed hierarchical feature-
distribution scheme also increases the number of operations
per sample during the matching in comparison to the flood-
based distribution methods, since calculations of the metric
d(n) are needed along the route of the query packet.

Finally, the results depend on the maximum level of abstrac-
tion as well. To obtain the results presented in Tables I and II
we did not limit the maximum level of abstraction, except
for the template matching, as documented at the beginning
of this section. To examine the influence of the maximum
level of abstraction, the experiments were repeated by varying
this parameter. The traffic during the learning phase increased
when more descriptive features were used (less abstractionwas
allowed); however, the traffic and the number of hops during
the matching phase decreased. This behavior is in line with
expectations – more descriptive feature vectors cause more
traffic when distributed, but enable greater accuracy of the
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routing in the matching phase.
To summarize, a phase-by-phase (learning – matching) com-

parison of the network traffic shows that our proposedMhier

significantly outperformsMflood−at−learn during the learning
andMflood−at−match during the matching. Essentially, while
those two methods represent the extreme ends of the network-
load spectrum (one with high traffic during the learning, and
other with high traffic during the matching), our method can
utilize the network resources in a balanced way.

The three described feature-distribution schemes allow dif-
ferent trade-offs between several variables of interest, includ-
ing, but not limited to, the amount of data stored on the nodes,
the computational cost, and the network load. These variables
depend on multiple factors, e.g., the size of the network, the
number of learning samples, the number of primary nodes,
the discriminatory power of the chosen matching method and
the maximum level of abstraction in the case ofMhier. For
example, in addition to the network load, theMhier also
reduces the storage cost in comparison toMflood−at−learn.
On the other hand,Mhier may not be the best choice if
we know that the number of learning samples will be low.
Such an example would be a surveillance task in an office
area with limited access and permanent staff. In this case,
Mflood−at−learn would outperform the proposed distribution
scheme in terms of overall performance. With a larger number
of learning samples the performance ofMflood−at−learn will
quickly deteriorate in terms of total traffic and the required
storage space (because withMflood−at−learn every node needs
to store all the information about every observed object). It is
up to the engineer to pick the most appropriate approach for
the particular application.

C. Effect of the number of primary nodes

To evaluate how the number and distribution of nodes that
receive original images in the learning phase (primary nodes)
affect the network efficiency, the experiment from the previous
section was repeated. The number of injected images was the
same as in the previous tests, while the number and distribution
of the primary nodes was varied (as shown in Fig. 3):

• 10 nodes are injected with 10 images each in the learning
phase (ratio of 10:99, Fig. 3(b)),

• 4 nodes are injected with 25 images each in the learning
phase (ratio of 4:99, Fig. 3(c)),

• 2 nodes are injected with 50 images each in the learning
phase (ratio of 2:99, Fig. 3(d)),

• 1 node is injected with 100 images in the learning phase
(ratio of 1:99, Fig. 3(e)).

The results are shown in Table III. We see that during
the learning phase the number of hops does not change with
the different ratios of the primary nodes. On the other hand,
the network traffic increases slightly with a lower density of
primary nodes, regardless of which feature-distribution method
is used. Nevertheless, the network traffic is significantly lower
whenMhier is used in comparison toMflood−at−learn. During
the matching phase we see that the number of hops and
the amount of network traffic remain almost constant when
Mflood−at−match is used. On the other hand, with a decreasing

density of primary nodes, both the number of hops and the
amount of network traffic decreases significantly, whenMhier

is used. The reason for such behavior is that queries are
forwarded only in directions in which possible matches can
be found. This means that no queries will be sent to the nodes
that did not observe any of the new objects and therefore
did not originate any feature vectors. For example, consider
the situation shown in Fig. 3(e), where all the new objects
have been seen by a single primary node. Every feature vector
distributed by our method points to that single node, and each
query will be routed to that node only or dropped along the
way. If there were two such primary nodes (Fig. 3(d)), every
query would have been routed, at most, in two directions.
Since the placement of primary nodes influences the average
network distance over which the data is transmitted, it is
clear that it increases the total amount of traffic. However,
the influence of the placement of the primary nodes is less
significant than the effect of reducing the actual number of
primary nodes.

Note that one could modify the genericMflood−at−match

to perform better in this test. Primary nodes could broadcast
a small amount of data which would indicate that they are
in possession of learning samples. This would improve the
efficiency of the routing inMflood−at−match by restricting the
possible directions of the flooding. However, the purpose of
this experiment is also to demonstrate that such a mechanism
is implicitly provided by the proposedMhier, illustrating its
self-organizing capabilities.

The increasing efficiency of our method when the number
of primary nodes is reduced has an important practical conse-
quence. In real-life scenarios we can expect that the proportion
of primary nodesin comparison to the total number of nodes
in the network will be relatively small. Those nodes consist
of cameras that are expected to encounter new objects. In
many cases, where the network of cameras covers a large area,
there are only a fewentry pointswhere unknown objects may
enter the observed area. For example, if a large, multi-storey
building is covered by such a network, only cameras that cover
the entrances to the building would encounter new people
entering the building. All the other cameras would discover
that the people they observe have already been seen by the
network, and would not perform learning. In this situation we
expect that a hierarchical feature distribution in such a network
would be even more efficient. For this reason, we performed
a preliminary test in a basic surveillance scenario as well.

D. Test in a basic surveillance scenario

A preliminary test was performed to evaluate the perfor-
mance of the proposed framework in a slightly more realistic
scenario. A dataset, consisting of 226 different images of four
persons and two cars, was acquired. A few images from the
dataset are shown in Fig. 4. The images were taken outdoors,
from different viewpoints. They were cropped manually and
therefore include only the objects of interest and relatively
small patches of the background. A synthetic scenario was
devised to test the framework, as follows. The scenario as-
sumes that there exists a network of 99 4-connected cameras



SULIĆ et al.: EFFICIENT FEATURE DISTRIBUTION FOR OBJECT MATCHING IN VISUAL-SENSOR NETWORKS 11

(a) Ratio 20:99 (b) Ratio 10:99 (c) Ratio 4:99 (d) Ratio 2:99 (e) Ratio 1:99

Fig. 3. Different distributions of primary nodes. Black discs correspond to nodes that have received images during learning, primary nodes, and white discs
correspond to all the others. The network consists of 99 nodes. Figs. (a)–(e) show the same network with a decreasing numberof primary nodes.

TABLE III
EFFECT OF THE NUMBER OF THE PRIMARY NODES

Matching Ratio Learning phase Matching phase
method Hops [ 1

sample
] Traffic [ kbytes

sample
] Hops [ 1

sample
] Traffic [ kbytes

sample
]

Mflood−at−learn Mhier Mflood−at−learn Mhier Mflood−at−match Mhier Mflood−at−match Mhier

Template

20:99 614 614 2855 41 398 279 4132 2228
10:99 614 614 2855 41 398 258 4132 1894
4:99 614 614 2855 42 397 209 4132 1118
2:99 614 614 2855 43 387 156 4132 425
1:99 614 614 2855 43 369 116 4132 81

Histogram

20:99 614 614 363 25 432 309 521 273
10:99 614 614 363 25 436 292 521 231
4:99 614 614 363 26 432 244 521 140
2:99 614 614 363 27 420 189 521 54
1:99 614 614 363 29 398 145 520 11

PCA

20:99 614 614 719 44 381 243 1036 486
10:99 614 614 719 44 381 225 1036 412
4:99 614 614 719 45 380 189 1036 267
2:99 614 614 719 47 371 139 1036 104
1:99 614 614 719 51 355 102 1036 21

Haar 2D

20:99 614 614 719 44 376 251 1036 536
10:99 614 614 719 44 377 232 1036 455
4:99 614 614 719 45 375 187 1036 280
2:99 614 614 719 47 367 135 1036 107
1:99 614 614 719 51 352 98 1036 21

in the same arrangement as in the previous experiments, now
covering the building and the neighboring area, including a
parking lot. There are six cameras covering the three entrances:
two are covering the entrance to the parking lot, two are
covering the front entrance, and two are covering the back
entrance to the building. The experiment followed the basic
structure described in Section V-B. In the learning phase,
two persons appear at the front entrance, two at the back
entrance and two cars appear at the parking-lot entrance. Six
images of those six objects were injected at the corresponding
nodes according to this scenario. In the matching phase, all
the objects appear randomly throughout the building and its
surroundings 1,500 times. Histogram matching was used as the
matching method. The results are presented in Table IV and
are consistent with experiments on the COIL-100 database.

VI. CONCLUSION

This paper focuses on an important conceptual problem of
mapping object-matching methods to VSNs, specifically the
issue of knowledge storage and propagation. We propose a
hierarchical, feature-distribution scheme that guarantees the
visibility of any feature vector from any node in the network
with only a fraction of the network load that the full distri-
bution of feature vectors would cause. To achieve the same
matching performance as with the full distribution of feature

Fig. 4. Several representative images from the surveillancedataset, one per
object.

vectors we propose a set of requirements regarding abstraction,
storage space, similarity metric and convergence. This setof
requirements has to be fulfilled by the object-matching method
in order for it to be used in our framework. Our framework
is based on a hierarchical encoding of the visual knowledge,
where the node that originally captures the visual knowledge
retains complete information about the object. All the other
nodes in the network receive less-detailed (more abstract)
visual knowledge: in our case, shorter feature vectors. These
feature vectors are then used for the routing of queries only
to those nodes that have complete feature vectors availablein
their local storage. In this way, a final decision on the identity
of the known objects is made using complete feature vectors.
On the other hand, queries travelling in the directions where
there are no matching feature vectors are dropped along the
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TABLE IV
PRELIMINARY EXPERIMENTAL RESULTS IN A BASIC SURVEILLANCE SCENARIO

Matching Distribution Learning Matching Matching rate
method method Hops Traffic Hops Traffic Total traffic* FPs** FNs**

[ 1
sample

] [ kbytes
sample

] [ 1
sample

] [ kbytes
sample

] [Mbytes]

Histogram
Mflood−at−match 0 0 273 519 778 25% 22%
Mflood−at−learn 614 363 0 0 2 25% 22%
Mhier 614 25 54 80 120 25% 22%

* Note that total traffic depends on the number of samples used. Itis based on 6 learning and 1,500 testing samples.
** FPs and FNs denote the percentage of false positives and false negatives, respectively.

way. To show the performance of our approach, which aims to
reduce the amount of traffic transmitted, while still preserving
the matching performance, four object-matching methods were
selected. For these methods we prove that they satisfy the four
requirements of our feature-distribution method. The proposed
distribution was compared with two flood-feature distributions
using our network simulator. The proposed hierarchical feature
distribution outperformed both flood-based feature distribu-
tions, without any degradation in the matching performance.
Nevertheless, both the flood-based distribution methods can be
interpreted as two extreme operating points of the hierarchical
feature-distribution method.Mflood−at−learn can be seen as a
variant ofMhier with a maximum abstraction level ofn = 0
(no abstraction allowed), andMflood−at−match can be inter-
preted as a case ofMhier with a mappingf : x(n) 7→ 0, and
a metricd(n)(x(n)

1 ,x
(n)
2 ) = 0, n > 0. Mhier can be positioned

between these two extrema by varying its parameters, such
as the maximum level of abstraction and the amount of
discarded information at each hop. In future, we plan to study
different operating points of the proposed hierarchical feature-
distribution scheme.

Four object-matching methods that have been used to il-
lustrate the performance of a hierarchical feature-distribution
scheme might not work on real-life object images. Never-
theless, those methods also form the foundation of many
state-of-the-art algorithms. For example, PCA is widely used
and can be applied to various kinds of features. Histograms
are widely used for color matching and also form the basis
of other advanced image features, such as SIFT [38] and
HOG [39] descriptors. Therefore, our hierarchical feature-
distribution scheme can be directly applied to several state-
of-the-art matching methods with little or no adaptation.

Our experimental setup assumed a single view of an object.
Nevertheless, the proposed framework could be extended to
a multi-view case as well. Assuming spatially calibrated and
temporally synchronized cameras, additional spatio-temporal
information about the observed object could be distributed
along with the feature vectors. Using this additional informa-
tion, each individual node could establish a spatio-temporal
correspondence between a locally observed object and the
features distributed by other node(s). Based on this corre-
spondence, a common identity could be assigned to multiple
views of a same object. In this way the network would build
a more complex, distributed, multi-view representation ofan
object, while still preserving the advantages of the proposed,

hierarchical, feature-distribution scheme. An alternative ap-
proach would be the introduction ofsupernodes[23] or fusion
sensors[24] into the network structure. The task of such nodes
would be to aggregate the information from spatially related
nodes. In addition to those issues, the future challenge lies
in mapping state-of-the-art matching and recognition methods
to such a distributed framework. When using the proposed
scheme with state-of-the-art matching methods it may also
happen that the requirements of our scheme would not be
fulfilled in general. However, even if those requirements are
satisfiedmost of the time, we expect that the use of such
methods in our hierarchical scheme would result in only a
minor decrease in the matching performance. This will be the
focus of our future research.

APPENDIX A
PROOF OF THEREQUIREMENT 4 FOR TEMPLATE MATCHING

WHEN USING EUCLIDEAN DISTANCE

Let us assume that we have two imagesA(n) and B(n)

with dimensionsk × k. Requirement 4 is fulfilled if the next
inequality holds,

d
(n)(x

(n)
A

,x
(n)
B

) ≥ d
(n+1)(x

(n+1)
A

,x
(n+1)
B

),
√

√

√

√

k
∑

i=1

k
∑

j=1

(A(n)(i, j)−B(n)(i, j))2

≥

√

√

√

√

k/2
∑

i=1

k/2
∑

j=1

(A(n+1)(i, j)−B(n+1)(i, j))2,

k
∑

i=1

k
∑

j=1

(A(n)(i, j)−B
(n)(i, j))2

≥
k/2
∑

i=1

k/2
∑

j=1

(A(n+1)(i, j)−B
(n+1)(i, j))2, (5)

wherex(n)
A , x(n)

B , x(n+1)
A , x(n+1)

B are the leveln andn + 1
feature vectors, respectively.

The leveln+1 feature vectors are obtained using the map-
ping f , which in our case is a simple subsampling operation
that reduces the image dimensions by calculating2× 2 pixels
averages. The inequality (5) with the superscriptn (on both
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sides) omitted can be rewritten as
k/2
∑

i=1

k/2
∑

j=1

[

(A(2i− 1, 2j − 1)−B(2i− 1, 2j − 1))2

+(A(2i− 1, 2j)−B(2i− 1, 2j))2

+(A(2i, 2j − 1)−B(2i, 2j − 1))2

+(A(2i, 2j)−B(2i, 2j))2
]

≥
k/2
∑

i=1

k/2
∑

j=1

[(

A(2i− 1, 2j − 1) +A(2i− 1, 2j)

4

+
A(2i, 2j − 1) +A(2i, 2j)

4

)

−
(

B(2i− 1, 2j − 1) +B(2i− 1, 2j)

4

+
B(2i, 2j−1) +B(2i, 2j)

4

)]2

. (6)

The inequality (6) is always satisfied if for(i, j = 1, . . . , k
2 )

(A(2i− 1, 2j − 1)−B(2i− 1, 2j − 1))2

+(A(2i− 1, 2j)−B(2i− 1, 2j))2

+(A(2i, 2j − 1)−B(2i, 2j − 1))2

+(A(2i, 2j)−B(2i, 2j))2

≥ [
A(2i− 1, 2j − 1) +A(2i− 1, 2j) +A(2i, 2j − 1) +A(2i, 2j)

4

−
B(2i− 1, 2j − 1) +B(2i− 1, 2j) +B(2i, 2j − 1) +B(2i, 2j)

4
]2.

Introducingx1 = A(2i− 1, 2j− 1)−B(2i− 1, 2j− 1), x2 =
A(2i−1, 2j)−B(2i−1, 2j), x3 = A(2i, 2j−1)−B(2i, 2j−1),
x4 = A(2i, 2j)−B(2i, 2j) the inequality for an arbitrary term
(i, j) can be rewritten as follows

x2
1 + x2

2 + x2
3 + x2

4 ≥ (
x1 + x2 + x3 + x4

4
)2. (7)

To prove that inequality (7) is satisfied, we may use Jensen’s
inequality for the mean, which states thatE(f(x)) ≥
f(E(x)), wheref is any convex function – a square function
in our case. Using Jensen’s inequality it is obvious that4 ·

E(f(x)) = 4 ·
x2

1
+x2

2
+x2

3
+x2

4

4 andf(E(x)) = (x1+x2+x3+x4

4 )2,
which implies that Requirement 4 is fulfilled.

APPENDIX B
PROOF OF THEREQUIREMENT 4 FOR HISTOGRAM

MATCHING WHEN USING HELLINGER DISTANCE

Let us assume that we have two imagesA(n) andB(n) with
the corresponding histogramsh(n)

A andh(n)
B . Requirement 4 is

fulfilled if the next inequality holds:

d(n)(x
(n)
A

,x
(n)
B

) ≥ d(n+1)(x
(n+1)
A

,x
(n+1)
B

),
√

1− ρ(h
(n)
A , h

(n)
B ) ≥

√

1− ρ(h
(n+1)
A , h

(n+1)
B ),

ρ(h
(n)
A , h

(n)
B ) ≤ ρ(h

(n+1)
A , h

(n+1)
B ),

(8)

wherex(n)
A , x(n)

B , x(n+1)
A , x(n+1)

B are the leveln and n + 1

feature vectors, respectively, andh(n)
A , h

(n)
B , h

(n+1)
A , h

(n+1)
B

are the leveln an n+ 1 histograms, respectively.
Feature vectors and leveln+1 histograms are obtained using

the mappingf , which combines adjoining bins. Substituting

ρ(h
(n)
A , h

(n)
B ) with

∑P
i=1

√

h
(n)
iA h

(n)
iB , with the superscriptsn

andn + 1 omitted and introducingK = P
2 (we assume that

there is always an even number of bins), the inequality can be
rewritten as

K
∑

i=1

(
√

h(2i−1)Ah(2i−1)B +
√

h2iAh2iB)

≤
K
∑

i=1

√

(h(2i−1)A + h2iA)(h(2i−1)B + h2iB). (9)

The inequality (9) holds, if
√

h(2i−1)Ah(2i−1)B +
√

h2iAh2iB

≤
√

(h(2i−1)A + h2iA)(h(2i−1)B + h2iB), (10)

where(i = 1, . . . ,K). For i = 1
√

h1Ah1B +
√

h2Ah2B

≤
√

(h1A + h2A)(h1B + h2B),

h1Ah1B + 2
√

h1Ah1B

√

h2Ah2B + h2Ah2B

≤ (h1A + h2A)(h1B + h2B),

h1Ah1B + 2
√

h1Ah1B

√

h2Ah2B + h2Ah2B

≤ h1Ah1B + h1Ah2B + h2Ah1B + h2Ah2B ,

2
√

h1Ah1B

√

h2Ah2B ≤ h1Ah2B + h2Ah1B ,

0 ≤ (
√

h1Ah2B −
√

h2Ah1B)
2
, (11)

where h1A, h2A, h1B , h2B are histogram bins and are always
h1A, h2A, h1B , h2B ≥ 0. The inequality holds since0 ≤
(
√
h1Ah2B −

√
h2Ah1B)

2
always holds. By applying a similar ar-

gument for alli in (10) it is obvious that Requirement 4 is fulfilled.
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feature scheme for object recognition in visual sensor networks,” in
ACM/IEEE Int. Conf. Distr. Smart Cameras (ICDSC), 2009.

[27] M. A. Patricio, J. Carbo, O. Perez, J. Garcia, and J. M. Molina, “Multi-
agent framework in visual sensor networks,”EURASIP J. Adv. Sig. Pr.,
2007, article ID 98639, doi:10.1155/2007/98639.

[28] A. Gilbert and R. Bowden, “Incremental, scalable tracking of objects
inter camera,”Comput. Vis. Image Underst., vol. 111, no. 1, pp. 43–58,
2008.

[29] R. Chang, S.-H. Ieng, and R. Benosman, “Auto-organized visual per-
ception using distributed camera network,”Robot. Auton. Syst., vol. 57,
no. 11, pp. 1075–1082, 2009.

[30] C. Leistner, P. Roth, H. Grabner, H. Bischof, A. Starzacher, and
B. Rinner, “Visual on-line learning in distributed camera networks,” in
ACM/IEEE Int. Conf. Distr. Smart Cameras (ICDSC), 2008.

[31] M. Karakaya and H. Qi, “Target detection and counting using a progres-
sive certainty map in distributed visual sensor networks,” in ACM/IEEE
Int. Conf. Distr. Smart Cameras (ICDSC), 2009.

[32] J. Park, P. C. Bhat, and A. C. Kak, “A look-up table based approach
for solving the camera selection problem in large camera networks,” in
Worksh. on Distr. Smart Cameras (in conj. with ACM SenSys), 2006,
pp. 72–77.

[33] A. Y. Yang, S. Maji, C. M. Christoudias, T. Darell, J. Malik, and S. S.
Sastry, “Multiple-view object recognition in band-limiteddistributed
camera networks,” inACM/IEEE Int. Conf. Distr. Smart Cameras
(ICDSC), 2009.

[34] L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik,
“Dimensionality reduction: A comparative review,” Tilburg University,
Tech. Rep. TiCC-TR 2009-005, 2009.
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