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Abstract Dimensionality reduction techniques are

especially important in the context of embedded vision

systems. A promising dimensionality reduction method

for a use in such systems is the random projection.

In this paper we explore the performance of the

random projection method, which can be easily used in

embedded cameras. Random projection is compared to

Principal Component Analysis in the terms of recognition

efficiency on the COIL-20 image data set. Results

show surprisingly good performance of the random

projection in comparison to the principal component

analysis even without explicit orthogonalization or

normalization of transformation subspace. These results

support the use of random projection in our hierarchical

feature-distribution scheme in visual-sensor networks,

where random projection elegantly solves the problem of

shared subspace distribution.

1 Introduction

In visual systems we usually deal with large amounts of

digital image data. Data has to be archived or exchanged

between numerous users and systems [3], consuming

expensive resources, such as storage space or transmission

bandwidth.

In digital imaging the basic unit of image is pixel.

Therefore, an image can be represented as a feature vector,

where each pixel corresponds to one feature value. Even

standard resolution images (e.g., VGA) contain large

number of pixels and therefore the resulting feature vector

representation has usually high dimensionality. In order

to handle real-world data adequately, the dimensionality

needs to be reduced [27]. Using dimensionality reduction

techniques is especially important when data is distributed

across networks with limited bandwidth.

A dimensionality reduction technique that is capable

to reduce the data into a lower-dimensional model, while

preserving the reconstructive or discriminative properties

of the original data can be marked as ideal. However,

in practice information is lost as the dimensionality is

reduced. Therefore, a method which efficiently reduces

dimensionality, while preserving as much as possible

information from the original data is needed. One solution

is to reduce the dimensionality of data by projecting it

onto a lower-dimensional subspace [18].

Dimensionality reduction techniques using linear

transformations have been very popular in determining

the intrinsic dimensionality of the manifold as well as

extracting its principal directions (i.e., basis vectors). The

most famous method in this category is the Principal

Component Analysis (PCA) [11]. PCA (also known

as the Karhunen-Loéve transform) is a vector-space

transform that reduces multidimensional data sets to lower

dimensions while minimizing the loss of information. A

low-dimensional representation of the data is constructed

in such a way that it describes as much of the variance

in the data as possible. This is achieved by finding a

linear basis of reduced dimensionality for the data (a

set of eigenvectors) in which the variance in the data is

maximal [27].

Besides PCA, many other dimensionality reduction

techniques exist. Recently, Random Projection

(RP) [28, 16, 5] has emerged as a powerful method

for reducing dimensionality. The most important property

of the RP method is that it is a general data reduction

method. Unlike PCA, it does not depend on a particular

training data set. Unlike Discrete Cosine Transform (DCT)

or Discrete Fourier Transform (DFT) its basis vectors do

not exhibit particular frequency or phase properties.

In RP, the original high-dimensional data is projected

onto a low-dimensional subspace using a random matrix,

whose columns have unit length. If compared to

other methods, for instance PCA, which compute a

low-dimensional subspace by optimizing certain criteria

(e.g., PCA finds a subspace that maximizes the variance in

the data), RP does not use such criteria, therefore, it is data

independent. Furthermore, it represents a computationally

simple and efficient method that preserves the structure

of the data without significant distortion [11]. There

exist theoretical results supporting that RP preserves for

example volumes and affine distances [19] or the structure

of data (e.g., clustering) [6].

1.1 Motivation

Dimensionality reduction techniques are especially

important in the context of embedded vision systems,

such as smart cameras. The reasons for that are

the specific characteristics and limitations of smart

cameras (i.e., low processing power, limited storage

space and limited network bandwidth) [26]. Processing

of dimensionality reduced data usually requires far

less resources than processing of unmodified data. In

our previous work [24, 25] we proposed a framework
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of hierarchical feature-distribution (HFD) for object

recognition in a network of visual sensors, which utilizes

network in a more balanced way than trivial network

flooding. HFD for visual-sensor networks (VSNs) is based

on hierarchical distribution of the information, where each

individual node retains only a small amount of information

about the objects seen by the network. Nevertheless, this

amount is sufficient to efficiently route queries through

the network without any degradation in the recognition

performance. The amount of data transmitted through the

network can be significantly reduced using our hierarchical

distribution.

One of the methods for image feature extraction used

in our work was PCA. We used the variant of the PCA,

which assumes that the eigenvectors (the subspace) were

obtained in advance. We assumed that each sensor has

an access to the global subspace. However, distribution of

subspace is problem by itself. In practical implementation

this subspace would have to be transmitted to each and

every node in the network, which would cause significant

network traffic. Alternatively, cameras could use fixed

subspace, which is built into the camera at the time of

manufacture or installation.

Therefore, the problem that we are aiming to solve is as

follows. How to distribute common subspace to all cameras

in a network without transmitting large amount of data?

Using RP, there is a possibility that all cameras in

the network recreate exactly the same subspace with

minimum of transmitted information. This is possible, if

pseudorandom generator is used to generate the random

matrix. The only thing that has to be known to each

camera in the network is the pseudorandom state. In

practice, it is sufficient that each camera knows only one

parameter, called seed of the pseudorandom generator.

Since same pseudorandom seed results in exactly the same

pseudorandom sequence, recreation of the same random

matrix in each camera is possible. This means that each

camera in the network projects the input data (images)

through the same random matrix into same subspace.

Therefore, since RP method enables reduction of

data dimensionality, is computationally simple, preserves

the structure of the data and is increasingly used in

distributed visual-sensor networks, we decided to examine

the recognition efficiency of RP and compare it to the

well-known PCA. Other researchers have explored RP

in the context of many applications, but to best of our

knowledge, a detailed comparison to PCA has not been

done in the terms of recognition efficiency. Moreover,

RP can be implemented in many ways, and many of

them are not appropriate for the resource-constrained

embedded cameras. Therefore, our aim is to determine the

performance of RP implementation, which can be directly

used in embedded cameras. Furthermore, we decided to

explore several variant of RP and their effect on recognition

performance. Therefore, our main contribution is extensive

comparison between RP and PCA (our baseline) in terms

of recognition accuracy, in a way that is directly relevant

to use of RP in embedded camera systems and VSNs.

The remainder of this paper is organized as follows.

In the Section 2 we provide theoretical background of

the RP, including selection of the random matrix and its

orthogonalization, and we present different applications of

the RP. Experiments and results of tests are reported and

discussed in the Section 3. Section 4 provides discussion

and conclusion.

2 Random projection

Random projection is a powerful dimension reduction

technique that uses random projection matrices to project

data from high-dimensional subspace to a low-dimensional

subspace [11]. The RP technique has been used for

designing algorithms for problems from a variety of areas,

such as combinatorial optimization, information retrieval

and machine learning [28]. Some theoretical background

of RP and a brief review of its applications is presented

below.

2.1 Background

The main idea of RP is that using a random matrix whose

columns have unit lengths, the original high-dimensional

data is projected onto a lower-dimensional subspace [3]. RP

has been found computationally efficient and a sufficiently

accurate method for dimensionality reduction of highly

dimensional data sets (e.g., [14, 16, 4, 6, 1] just to name

a few).

The concept of RP is as follows: Given a data matrix

X, the dimensionality of data can be reduced by projecting

it onto a lower-dimensional subspace formed by a set of

random vectors [16],

A[m×N ] = R[m×d] ·X[d×N ], (1)

where N is the total number of points, d is the original

dimension, and m is the desired lower dimension. The

central idea of RP is based on the Johnson-Lindenstrauss

lemma (JL lemma) [15]:

Johnson-Lindenstrauss lemma

For any 0 < ε < 1 and any integer n, let k be a positive

integer such that k

k ≥ 4(
ǫ2

2
− ǫ3

3
)−1 lnn. (2)

Then for any set V of n points in R
d, there is a map

f : R
d 7→ R

k such that for all u, v ǫ V [7],

(1−ǫ)‖u−v‖2 ≤ ‖f(u)−f(v)‖2 ≤ (1+ǫ)‖u−v‖2, (3)

where f(u) and f(v) are the projections of u and v.

Using the above lemma, [7] shows that if we perform an

orthogonal projection of n points in a vector space (Rd)

onto a selected lower-dimensional subspace, then distances

between points are preserved (i.e., not distorted more than

a factor of 1± ε), for any 0 < ε < 1. For complete proofs

on the lemma refer to [10, 7]. The JL lemma can be

proven for sparse transformation matrices R as well, for

details see [1, 17, 2].

Selecting the random matrix. The choice of random

matrix R is one of the crucial points of interest.
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An efficient method for dimensionality reduction using

the JL lemma employs a random matrix R, whose elements

are drawn independently and identically distributed (i.i.d.)

from a zero mean, bounded variance distribution [26].

There are many choices for the random matrix. A

random matrix with elements generated by a normal

distribution ri,j ∼ N(0, 1) is one of the simplest in terms

of analysis [28]. The problem of this type of RP is its

computational complexity due to the dense nature of the

projection matrix. Achlioptas [1] suggested the use of

two simpler distributions that generate sparse projection

matrices with elements drawn i.i.d. as:

ri,j =

{

+1 with probability 1
2

−1 with probability 1
2

(4)

or

ri,j =
√

3 ·







+1 with probability 1
6

0 with probability 2
3

−1 with probability 1
6

(5)

Distributions shown in Eq.(4) and (5) reduce

computational time for the calculation of R · X. For the

second distribution, the speedup is threefold because only

one-third of the operations are needed. Authors in [17]

further explored the idea of sparse RP and suggested a

method for achieving a
√

n - fold increase in speedup

with a small penalty in the preservation of the pairwise

distances. In this work, we use the sparse projection

matrix, presented in Eq.(5). Usage of sparse RP in a

distributed environment is presented in [29].

Orthogonalization If the random vectors were

orthogonal, then the similarities between the original

vectors would be preserved under RP [16]. Ideally we

would want the random matrix to be orthogonal but,

unfortunately, orthogonalization is very costly (e.g.,

Gram–Schmidt method has a complexity in the order of

nm2 if m principal eigenvectors of dimension n have to

be determined [21]). The cost of the orthogonalization

defeats the purpose of using RP on resource constrained

embedded cameras. However, Hecht-Nielsen et al. [16, 13]

have noted that in a high-dimensional space, there exist

a much larger number of nearly orthogonal than truly

orthogonal vectors. Therefore, in a high-dimensional space

even random vectors might be sufficiently close enough

to orthogonal to offer a reasonable approximation of the

original vectors [18].

To summarize, RP combines very interesting

characteristics, making it ideal for computer vision.

First, it tackles the “curse of dimensionality” by projecting

the data to a much lower dimensional space. In addition,

problems that deal with large amounts of data can be

tackled more efficiently by operating on fewer data [26].

In contrast to similar dimensionality reduction techniques,

such as PCA, RP is data independent, while still preserving

the structure of the input data. RP can be applied on

various types of data such as text, image, audio, etc.

2.2 Applications

There are several successful applications of RPs to

computer vision problems. Tsagkatakis et al. [26] use RP

for object tracking under variable pose and multi-camera

views. Han et al. [12] used RP and robust linear

discriminant analysis for face recognition. Wright et

al. [30] extended their use by using RP and a novel

l1-norm minimization for face recognition. An insightful

observation shared by many researchers that utilize RP

for computer vision applications, as noted in [30], is that

the choice of features is not as important as the number

of features. This observation could prove to be of great

significance for resource constrained environments such

as embedded vision systems, where elaborate feature

extraction may not be feasible due to the imposed

limitations [26]. Kaski [16] presented experimental results

using RP in the context of a system for organizing textual

documents using Self-Organizing Map (i.e., WEBSOM).

In this case, the results were as good as those obtained

using PCA, and almost as good as those obtained using

the original vectors. Lin and Gunopulos [18] compared

RP and Latent Semantic Indexing (LSI) in the area of

information retrieval. Bingham and Mannila [5] compared

several dimensionality reduction techniques, such as PCA

(based on data covariance matrix), RP and Discrete

Cosine Transform (DCT) on image and text data. Their

results indicate again that RP preserves distances and has

performance comparable to that of PCA while being faster.

Work, which is related to [5] and is focused on using RP for

lossy image compression is presented in [3]. Dasgupta [6]

described experiments on learning mixtures of Gaussians

in high dimensions using RP and PCA. Li et al. [17] used

RP with EM to learn geometric object appearance for

object recognition. Motivated by the results of [6] Fern

and Brodley [8] investigated the application of RP for

clustering high-dimensional data. More recently, Fradkin

and Madigan [9] evaluated RP in the context of supervised

learning. In particular, RP was compared with PCA on

a number of different problems using different machine

learning algorithms. They concluded that although RP

was slightly worse than PCA, its computational advantages

might make it attractive in certain applications.

RP has demonstrated good performance in a number of

applications, yielding results comparable to conventional

dimensionality reduction techniques, such as PCA,

while having much lower computational requirements.

Feasibility of RP for face recognition is also investigated

in [11], where authors compared RPs performance

to the performance of PCA. However, even if theirs

results suggest that RP is comparable to PCA, they used

Gram-Schmidt algorithm for orthogonalization of random

matrix, which is computationally wasteful. In this paper

we do not orthogonalize random matrix since according to

Hecht-Nielsen et al. there exist a much larger number of

nearly orthogonal than truly orthogonal vectors [16, 13].
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3 Experimental analysis

We performed a series of experiments, including both PCA

and RP. The recognition performance of both methods in

terms of percentage of false positives and false negatives

on a standard database was examined.

Experiments were divided in two parts. In the first part

general properties of the RP were tested and compared

to the PCA. In the second part we used RP in the

VSN simulator in conjunction with our hierarchical

feature-distribution (HFD) scheme. In both parts of

experiments, PCA was used as a benchmark. The

experimental protocol was as follows.

3.1 Experimental procedure

Database We have used the standard COIL-20 database,

which consists of images of 20 different objects; each one

is rotated with 5 degree angle interval, corresponding to 72

images per object. That sums up to 1,440 images for the

whole database [22].

Preprocessing Image dimensions were the same for both

methods, i.e., 128×128 pixels. First, the database was

split into two parts of approximately same size. For every

object, every second image was selected for recognition,

and the remaining images were used to built PCA subspace.

Images selected for recognition were transformed into the

PCA and RP subspaces. This way feature vectors for both

methods were obtained. Images that corresponded to zero

orientation of each object and the corresponding features

were used as a reference. This is consistent with the testing

protocol, used in our VSN simulator [25].

Protocol All vector projections have been compared to

the projections of zero orientation images and Euclidean

distance was calculated. If the distance was below the

predefined threshold T , the comparison resulted in a match

between the reference image from the training set and the

tested image. If the match was between images of two

different classes (one class corresponds to all images of

the same object), the number of false positives (FPs) was

increased. If there was no match between the two images

from the same class, number of false negatives (FNs) was

increased. This way, results for a particular threshold T

were obtained. This protocol was conducted separately for

PCA and RP.

The procedure was repeated for a range of thresholds,

which yielded FPs and FNs percentages.

Additionally, to rule out the influence of seed

experiments for RP were repeated ten times with different

seeds of a pseudorandom generator.

All the experiments were conducted several times with

different degrees of dimensionality reduction (i.e., for

subspace dimensions of 512, 256, 128, 64, 32, 16, 8, 4,

2, and 1).

Benchmarking First, performance of the PCA was

tested to obtain reference values for proportion of FPs

and FNs. PCA transforms the data to a new coordinate

system in which basis vectors follow modes of greatest

variance in training data [23]. Therefore, PCA is data

dependent method. Every second image from the COIL-20

database was used to build a PCA subspace in advance.

Properly constructed PCA feature vectors contain feature

values that are ordered by decreasing importance in terms

of the reconstruction quality of the original data.

The results are shown in Figure 1, which depict number

of FPs and FNs in relation to the threshold T . We show

only the results for subspace dimensions of 512, 16 and 1.

3.2 RP

Major portion of experiments were dedicated to the RP

method. We explored the following questions.

• How do results vary with different seeds of used

pseudorandom generator?

• Is transformation vector normalization really necessary?

• Does the method benefit from sorting of the

transformation vectors based on the preserved variance

in data?

Although sorting of the transformation vectors according to

the preserved variance in the data is not common practice

in RP (as it is in the PCA), we are interested if this would

improve recognition performance of RP.

Random projection matrix R was generated following

the suggestion by Achlioptas [1] as defined in Eq.(5).

The maximum dimensions of the matrix were 512×16384

elements. The Mersenne twister [20] was used as

pseudorandom generator. We verified that same seeds

result in same pseudorandom sequences and then

precalculated RP matrices for ten randomly generated

seeds. In practical applications the matrices would be

calculated on the fly on each of the cameras. Similar

as with the PCA, every second image in the database

was transformed to the random subspace. Procedure was

repeated for all ten different RP matrices and Figures 2 –

5 were generated by running tests with different thresholds

T . Results for RP with different random seeds were

compiled to single graphs using boxplots, as seen in

Figures 2 – 5. Finally, the whole procedure was repeated

for the following scenarios.

• RP using normalized vectors (Figure 2).

• RP using non-normalized vectors (Figure 3).

• RP using normalized vectors, sorted according to the

highest preserved variance in data (Figure 4).

• RP using non-normalized vectors, sorted according to

the highest preserved variance in data (Figure 5).

Observing Figures 2 – 5 we can conclude the following:

With 512 feature vectors used there is practically no

difference between the PCA and RP and the scatter around

the median value in the RP results is negligible. When 16

feature vectors are used PCA outperforms RP regardless of

normalization or RP feature vector sorting. In this case,

PCA yields FP/FN rates of 20%, while RP yields FP/FN

rates in 25%− 30% range. Scatter in RP results is slightly

larger but still small at the point of intersection of FPs and
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Figure 1: Recognition rates (FPs and FNs) for PCA depending on the number of features used.
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Figure 2: Recognition rates (FPs and FNs) for RP (normalized feature vectors) depending on the number of features used.
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Figure 3: Recognition rates (FPs and FNs) for RP (non-normalized feature vectors) depending on the number of features used.
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Figure 4: Recognition rates (FPs and FNs) for RP (normalized and sorted feature vectors) depending on the number of features used.
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Figure 5: Recognition rates (FPs and FNs) for RP (non-normalized and sorted feature vectors) depending on the number of features used.

FNs curves. With only one feature vector used performance

of RP deteriorates significantly and scatter is even larger.

It can also be seen that there is no significant difference

if RP vectors are normalized or not. Indeed, if we observe

the length of RP projection vectors, shown in Figure 6

it is obvious that they already have similar lengths. This

is not surprising due to the dimensionality of input data

– each vector has 16384 elements which can take only

three possible values. Therefore, by discarding RP vector

normalization, only scaling factor is introduced into the

transformation.

Figure 8 shows that there are differences in

reconstructive power of individual RP vectors. However,

those differences are too small to have major impact on

method performance. Therefore, this implies that it did

not pay off to sort 512 random vectors according to the

preserved variance.

In contrast, Figure 7 shows that PCA indeed condenses

the information in small number of features.
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3.3 Application to simulator for VSNs

To test the performance of RP in our previously proposed

hierarchical feature-distribution scheme [24, 25], we used a

distributed network simulator. It runs on a standard desktop
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Figure 7: Cumulative variance (PCA) calculated from the

projection through the subspace (every second image).
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Table 1: Experimental results for hierarchical feature-distribution method

Recognition Training Recognition Recognition rate

method Hops Traffic Hops Traffic FPs FNs

[ 1

sample
] [ kbytes

sample
] [ 1

sample
] [ kbytes

sample
]

PCA 614 44 108 342 15% 21%

RP 614 44 160 552 15% 22%

computer and is written in Matlab. The simulator measures

both the amount of traffic transmitted between the nodes

and the number of nodes (hops) over which the traffic is

transmitted.

For the experiments, we used a network consisting of 99

nodes, arranged in a 11×9 rectangular, 4-connected grid.

The simulator for VSNs is used for testing the

hierarchical feature-distribution (HFD) across the network

of visual sensors (cameras). HFD has an important

property. It significantly reduces the amount of transmitted

data in the task of distributed object recognition (e.g.,

recognizing the objects that have been seen by other

cameras in the network). The efficiency of our method

in terms of data transmission is directly related to the

recognition efficiency of the used object recognition

method, as recognition errors significantly increase

amount of transmitted data. In our previous work, we

have established that PCA is appropriate for use in our

HFD scheme, however, distribution of subspace across

the network would be extremely wasteful in terms of

network traffic. If RP is used instead, the only thing that

we have to distribute is the seed of the pseudorandom

generator (maximum eight bytes if Matlab implementation

of Mersenne twister pseudorandom generator is used as

a reference). The HFD method also ensures that the

final decision on the identity of the recognized object is

made using all available features. Therefore, in terms of

recognition accuracy we are not concerned with the lower

performance of RP when small number of features is used.

However, this affects the amount of transmitted data.

Experiment was divided in two phases. The first

(training) phase measured the performance of the network

during training. Twenty nodes, evenly distributed through

the network, were injected with images of the twenty

different objects from the database. Those images

corresponded to the zero orientation in the COIL-20

database. Next, the simulation cycle was started, and, after

the network traffic stopped, the statistics on the network

load (number of hops and the total network traffic per

sample) was examined.

The second (recognition) phase measured the

performance of the network during recognition. A

pseudo-random sequence (same for all tests) was used to

choose any image from the database and any node from

the network. The image was injected into the chosen node,

and the simulation cycle was started. After the network

activity stopped, the result of the recognition was read

from the same node, and the statistics on the FPs and the

FNs was updated. The process of injecting the random

image to a random node was repeated 5,000 times, and

the statistics on the network load (number of hops and

the total network traffic per sample) was recorded. The

results for training and recognition for both PCA and RP

are shown in Table 1.

It can be seen that substitution of PCA with RP

degrades performance of the network. Recognition rate

is almost the same, however, both traffic and number

of hops in the recognition phase are increased due to

the poor performance of RP with small number of

features. However, our method still outperforms naive

feature-distribution schemes, such as flooding by almost

1:2 [25] in terms of network traffic. Additionally, use of

RP does not change performance of the network in training

phase, since the format of data is practical identical for

both PCA and RP. Nevertheless, considering the huge

advantage of RP in distributing the subspace to all cameras,

the RP method seems perfectly fit for the use with our

hierarchical feature-distribution (HFD) scheme [25].

• It is a good substitute for PCA when dimensionality

reduction is needed.

• The combination of HFD and RP still significantly

reduces the amount of traffic across the network, even

though this reduction is not as high as when HFD and

PCA are used.

• A lower recognition rate of RP in comparison to PCA

at same dimensionality does not influence the overall

recognition rate of our simulated network, and the

reduction in network efficiency is relatively small.

4 Discussion and conclusion

Focus of our work was random projection in a context

of possible use in embedded vision systems. RP projects

original high-dimensional data through the random matrix

onto the low-dimensional space. Data in low-dimensional

space consume less resources, which is usually constrained

in embedded systems. RP is data independent, preserves

the structure of the data without significant distortion, is

computationally simple and it does not require distribution

of sharing subspace. On the other hand, while principal

component analysis is known to give good results and has a

lot of useful properties it is also computationally expensive

and require distribution of shared subspace, which results

in consuming more resources in the network. Therefore,

our aim was to determine the performance of the RP

implementation, which could be directly used in embedded

cameras. Some minor modifications of RP (the absence of

7
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row normalization of the random matrix, and additional

sorting of the rows of the random matrix considering

highest variance in the data – as it is in the PCA) and their

effect on the recognition accuracy were systematically

explored. Performance of the RP was compared to the

performance of the PCA in conjunction with recognition

efficiency on the COIL-20 image data set. Results show

surprisingly good performance of the RP in comparison

to the PCA even without explicit orthogonalization

(computationally wasteful) or normalization (important

for preserving similarities in the low-dimensional space)

of transformation subspace. Moreover, in our case even

sorting of feature vectors in accordance to the preserved

variance did not pay off. Our results indicate that RP can

be used with our hierarchical feature-distribution scheme

in visual-sensor networks, where RP can elegantly solve

the problem of shared subspace distribution.
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