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Abstract—Dimensionality reduction is an important issue
in the context of distributed vision systems. Processing of
dimensionality reduced data requires far less network resources
(e.g., storage space, network bandwidth) than processing of
original data. In this paper we explore the performance of
the random projection method for distributed smart cameras.
In our tests, random projection is compared to principal
component analysis in terms of recognition efficiency (i.e.,
object recognition). The results obtained on the COIL-20
image data set show good performance of the random
projection in comparison to the principal component analysis,
which requires distribution of a subspace and therefore
consumes more resources of the network. This indicates that
random projection method can elegantly solve the problem
of subspace distribution in embedded and distributed vision
systems. Moreover, even without explicit orthogonalization or
normalization of random projection transformation subspace,
the method achieves good object recognition efficiency.
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I. INTRODUCTION

Dimensionality reduction techniques are especially
important in the context of embedded vision systems, such
as smart cameras. The reasons for that are the specific
characteristics and limitations of smart cameras (i.e., low
processing power, limited storage space and limited network
bandwidth) [1]. Processing of dimensionality reduced data
usually requires far less scarce resources that are available
in such systems. One of the widely used methods for
dimensionality reduction is Principal Component Analysis
(PCA). PCA (also known as the Karhunen-Loéve transform)
is a vector-space transform that reduces multidimensional
data sets to lower dimensions in a way that low-dimensional
subspace of the data describes as much of the variance in the
data as possible. When PCA is used for object recognition
in the distributed sensor network, each sensor needs an
access to the low-dimensional subspace. However, access
to or distribution of a subspace is a problem by itself.
In practice this subspace would have to be transmitted to
each and every node in the network, which would cause
significant network traffic. Alternatively, cameras could use
fixed subspace, which is built into the camera at the time
of manufacture or installation. Therefore, the question that
we pose is: How to make available common subspace to
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all cameras in a visual-sensor network (VSN, network of
embedded cameras) without transmitting large amount of
data?

Using Random Projection (RP), where original
high-dimensional data is projected onto a low-dimensional
subspace using a random matrix, there is a possibility
that all cameras in the network recreate exactly the same
subspace with minimum of transmitted information. This is
possible, if pseudorandom generator is used to generate the
random matrix. The only information that has to be known
to each camera in the network is the pseudorandom state.
In practice, it is sufficient that each camera knows only
one parameter, called seed of the pseudorandom generator.
Since same seed results in exactly the same pseudorandom
sequence, recreation of the same random matrix in each
camera is possible. This means that each camera in the
network projects the input data (images) through the same
random matrix into the same subspace.

To find out if RP can solve the problem of subspace

distribution, we examine the recognition efficiency of RP
and compare it to the well-known PCA. Other researchers
have explored RP in the context of various applications.
The most closely related works are work by Goel et
al. [2] and work by Fradkin et al. [3]. In the first
work authors investigated the feasibility of the RP for
the face recognition. They performed a large number
of experiments involving PCA. They used Gram-Schmidt
algorithm for orthogonalization of random matrix, which is
computationally demanding, and therefore, less appropriate
for embedded systems. In the second work authors
performed extensive comparison between PCA and RP using
different data set and classification methods, however, they
did not use visual data, which is used in our case.
RP can be implemented in many ways, and not all of
them are appropriate for the resource-constrained embedded
cameras. Thus, we decided to explore different variants of
RP and their effect on recognition performance. For instant,
in standard RP approach, the matrix is normalized and for
this reason we are interested also in recognition performance
of non-normalized vectors. Moreover, we are also interested
in performance of RP, if its transformation vectors are sorted
according to the highest variance in the data, as it is done
in the PCA.
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II. RANDOM PROJECTION

RP has been found computationally efficient and a
sufficiently accurate method for dimensionality reduction of
highly dimensional data sets (e.g.,[1], [4], [5], [6]). The
concept of RP is as follows: Given a data matrix X, the
dimensionality of data can be reduced by projecting it onto
a lower-dimensional subspace formed by a set of random
vectors [4],

e))

where N is the total number of points, d is the original
dimension, and k is the desired lower dimension. The
central idea of RP is based on the Johnson-Lindenstrauss
(JL) lemma [7], which states that if we perform projection
of n points in some high-dimensional space onto a random
O(logn)-dimensional plane, then the distances between
points are preserved (i.e., not distorted more than a factor
of 1+te), forany 0 <e < 1.

Axn) = Rixa) - Xjax vy

Selecting the random matrix An efficient method for
dimensionality reduction based on the JL lemma employs a
random matrix R, whose elements are drawn independently
and identically distributed (i.i.d.) from a zero mean, bounded
variance distribution [1]. There are many choices for the
random matrix. A random matrix with elements generated
by a normal distribution r; ; ~ N (0, 1) is one of the simplest
in terms of analysis [8]. The problem of this type of RP is
its computational complexity due to the dense nature of the
projection matrix. Achlioptas [6] suggested the use of two
simpler distributions that generate sparse projection matrices
with elements drawn i.i.d. as:

- f +1  with probability %
g = { 1 with probability 1 @
or
+1 with probability é
rij=v3-{ 0 with probability 3 (3)
-1 with probability &
Distributions shown in Eq.(2) and (3) reduce

computational time for the calculation of R - X. For
the second distribution, the speedup is threefold because
only one-third of the operations are needed. In this work,
we use the sparse projection matrix, presented in Eq.(3).

Orthogonalization If the random vectors were
orthogonal, then the similarities between the original vectors
would be preserved under RP [4]. Ideally random matrix
should be orthogonal but, unfortunately, orthogonalization
is very costly (e.g., a complexity of Gram—Schmidt method
is O(nm?) if m principal base vectors of dimension n have
to be determined [9]). The cost of the orthogonalization
defeats the purpose of using RP on resource-constrained
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embedded cameras. However, in practice, it seems that
in high-dimensional space, there are far more nearly
orthogonal than truly orthogonal vectors, which is also
shown in [10]. Hence it follows that random vectors
might be sufficiently close enough to orthogonal to offer a
reasonable approximation of the original vectors [11] and
for this reason we decided to use non-orthogonal random
matrix.

III. EXPERIMENTAL ANALYSIS

We performed a series of experiments, including both
PCA and RP. The recognition performance of both
methods in terms of percentage of correctly classified and
misclassified objects on a standard database was examined.

Data We have used the standard COIL-20 database,
which consists of images of 20 different objects; each one
is rotated with 5 degree angle interval, corresponding to 72
images per object. That sums up to 1,440 images for the
whole database [12].

Preprocessing Image dimensions were the same for both
methods, i.e., 128 128 pixels. First, the database was split
into two parts of approximately the same size (training set
and testing set). For every object, every second image was
selected for recognition (testing), and the remaining images
were used to build PCA subspace and for training. Images
selected for recognition were transformed into the PCA and
RP subspaces. This way feature vectors for both methods
were obtained.

Protocol All vector projections from the testing set were
compared to the projections of every second image (training
set) and using Euclidean distance in the RP subspace, the
nearest neighbor was found. If the nearest neighbor was
from the same class (one class corresponds to all images
of the same object), the comparison resulted in a match
between the image from the training set and the tested
image. If the match was found between samples of two
different classes, the number of misclassified was increased.
This protocol was conducted separately for PCA and RP.
Additionally, to rule out the influence of seed selection,
experiments for RP were repeated ten times with different
seeds of a pseudorandom generator. All the experiments
were conducted several times with different degrees of
dimensionality reduction (i.e., for subspace dimensions of
512, 256, 128, 64, 32, 16, 8, 4, 2, and 1).

Benchmarking First, performance of the PCA was
tested to obtain reference values for percentage of correctly
classified and misclassified objects.

Random projection Major portion of experiments were
dedicated to the RP method. We explored the following: how



results vary with different seeds, whether is transformation
vector normalization really necessary, and whether does the
method benefit from selection of the transformation vectors
based on the preserved variance in data (as it is in the PCA).

Random projection matrix R was generated following
the suggestion by Achlioptas [6] as defined in Eq.(3).
The maximum dimensions of the matrix were 512x 16384
elements. The Mersenne twister [13] was used as
pseudorandom generator. First, we checked that equal
seeds result in equal pseudorandom sequences and then
precalculated RP matrices for ten randomly generated
seeds. In practical applications the matrices would be
calculated on the fly on each of the cameras. Similar
as with the PCA, every second image in the database
was transformed to the random subspace. Procedure was
repeated for all ten different RP matrices in combination
of normalized/non-normalized vectors (important for
preserving similarities in the low-dimensional space) and
sorted/unsorted vectors according to the highest preserved
variance in data (as in the PCA). For this reason, a larger
random projection matrix was generated and rows which
modelled the most of the data variance were selected and
therefore, rows were sorted accordingly.
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Figure 1. Length of the rows of the random matrix.

Results Results are shown in Table I. We can see that
even if only 16 feature vectors are used, RP correctly
classifies objects with almost 97% efficiency. Although
PCA correctly classifies objects with 100% it is still
necessary to distribute its (data dependent) subspace. We
can conclude that our results support the use of RP instead
of PCA in embedded systems. First, RP can elegantly solve
the problem of shared subspace distribution. Additionally,
the results show that there is no significant difference if
RP vectors are normalized or not. Indeed, if we observe
the length of RP projection vectors, shown in Figure 1
it is obvious that they already have similar lengths. The
mean length of RP vectors is 128,062 £ 0,7161. This
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Figure 2. Cumulative variance for the PCA and RP calculated from the
projection through the PCA subspace and the random matrix R for the RP.

is not surprising due to the dimensionality of input data
— each vector has 16384 elements which can take only
three possible values (0 and +1). Therefore, by discarding
RP vector normalization, only scaling factor is introduced
into the transformation. The results also show that there
is no significant difference if RP vectors are sorted
according to preserved variance or not. Figure 2 shows
the cumulative variance across individual RP dimensions.
The differences are too small to have significant impact on
method performance. In contrast, same figure shows that
PCA indeed compresses information in small number of
features. We can conclude that the most appropriate RP
subspace for the resource-constrained embedded systems is
non-normalized and unsorted.

IV. DISCUSSION AND CONCLUSION

The focus of our work was random projection and its
potential use in embedded vision systems. RP projects
original high-dimensional data through the random matrix
onto the low-dimensional space. Data in low-dimensional
space consume less resources, which are usually scarce
in embedded systems. RP is data independent, preserves
the structure of the data without significant distortion, is
computationally simple and it does not require distribution
of shared subspace. On the other hand, while PCA is known
to give good results and has a lot of useful properties, it
is also computationally expensive and requires distribution
of shared subspace, which consumes more resources in the
network.

Performance of the RP was compared to the performance
of the PCA in terms of recognition efficiency on the
COIL-20 image data set. Results show good performance

of the RP even without explicit orthogonalization
(computationally demanding) or normalization of
transformation subspace. Moreover, sorting of feature



Table T
EXPERIMENTAL RESULTS FOR DIFFERENT SUBSPACE TYPES AND DEGREES OF DIMENSIONALITY REDUCTION

Number of feature vectors
Subspace type 512 256 128 64 32
T [%] o[%) | T5 (%] o[%] | T [%] o[%] | T° (%] o[%] | T° (%] ol[%]
PCA 100.00 0 | 100.00 0 | 100.00 0 | 100.00 0 | 100.00 0
RP, normalized 99.97 0.059 | 99.93 0.073 | 99.88 0.102 | 99.58 0.254 | 98.92 0.485
RP, non-normalized 99.97 0.059 | 99.93 0.073 | 99.87 0.102 | 99.58 0.254 | 98.93 0.494
RP, non-normalized, sorted | 99.97 0.059 | 99.94 0.072 | 99.88 0.110 | 99.74 0.231 | 98.96 0.431
RP, normalized, sorted 99.97 0.058 | 99.94 0.072 | 99.87 0.122 | 99.74 0.231 | 98.97 0.415
Number of feature vectors
Subspace type 16 8 4 2 1
T [%] o[%) | T5 (%] o[%] | T [%] o[%] | T° (%] o[%] | T° (%] ol[%]
PCA 100.00 0| 99.44 0| 94.44 0| 71.80 0 | 31.80 0
RP, normalized 96.89 0.924 | 87.99 2212 | 61.11 3.657 | 28.94 3.838 | 12.36 2.199
RP, non-normalized 96.92 0.921 | 87.97 2.212 | 61.18 3.703 | 28.96 3.830 | 12.38 2.276
RP, non-normalized, sorted | 96.44 0.541 | 88.29 1.699 | 62.29 4.584 | 29.07 4.388 | 13.90 2.012
RP, normalized, sorted 96.42 0.539 | 88.30 1.665 | 62.29 4.598 | 29.11 4.457 | 13.86 1.916

* T represent percentage of correctly classified objects, and is in the case of RP computed as the average of results across

10 different seeds of a pseudorandom generator.

vectors in accordance to the preserved variance (as it is
in the PCA) did not pay off either. Our results indicate
that RP can be used in embedded systems and distributed
visual-sensor networks, where RP can elegantly solve the
problem of shared subspace distribution.

Our future efforts will also include testing of Fast
Johnson-Lindenstrauss Transform [14], which is known as
method that can generate orthogonal projections with very
low computational complexity.
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