
Analysis and pattern detection on large amounts of annotated sport motion data
using standard SQL

Janez Perš,
Stanislav Kovǎcič

Faculty of Electrical Engineering
University of Ljubljana

Tržǎska 25, SI-1000 Ljubljana, Slovenia
{janez.pers}@fe.uni-lj.si

Goran Vǔckovič
Faculty of Sports

University of Ljubljana
Gortanova 22, SI-1000 Ljubljana, Slovenia

Abstract

This paper proposes a inexpensive and flexible way to
analyze large amounts of sport motion data, which are gen-
erated by automated motion tracking methods and comple-
mented with manual annotations. A database, obtained by
tracking and annotating over 100 squash plays was used.
The goal was to find a way to automatically detect certain
kinds of play, activities, certain predefined scenarios and
to generate various statistics about these activities – with-
out hard-coding them in the executable code. We found that
SQL-enabled databases provide a flexible and scalable so-
lution to this problem. The examples of actual SQL queries
for sport analysis are presented in the paper along with
short tutorial on particular aspects of SQL language, which
were exploited in our solution.

1. Introduction

The development in automated people tracking technol-
ogy in the last decade has resulted in applications where
large amounts of data can be generated with significantly
less manual work than ever before [11, 12, 13]. One of
such examples is the computer vision based tracking on
sport videos, where, if certain conditions are met, computer
tracks athletes with very little user intervention [14]. Such
data can be used inperformance analysis[10], giving sport
community the feedback on player and team performance.

Years ago, analysis of sport matches was almost entirely
manual, and the ability to gather certain kinds of data (like
motion trajectories) was severely limited [7]. Before the in-
troduction of automatic methods into the sports video anal-
ysis, every piece of information had to be entered into the
computer by hand [3], and therefore manual annotations
generated relatively small amounts of data.

However, by introducing the computer vision based pro-
cessing of videos, the amount of data may increase dramat-
ically. Widely used video standards (PAL, NTSC) assume
frame rates of 25 or 30 video frames per second, and com-

puter vision based tracking methods usually processeach
captured video framefor the greatest reliability. Therefore,
in case of standard PAL videos, motion data of players is
available at intervals of 40 milliseconds, and users have the
ability to provide their manual annotations at the same tem-
poral resolution, if they wish to. Computer user interfaces
with integrated video players provide automatic synchro-
nization of videos to the user annotations and therefore en-
able users to enter the annotations with much less effort.
Additionally, modern desktop personal computers can cal-
culate derived parameters (such as player velocity, acceler-
ation and path length) with neglible computational cost.

As a consequence, the use of video based analysis
techniques, coupled with computer vision based automatic
tracking results in large amounts of output data. The prob-
lem is not limited only to video analysis. Alternative means
of obtaining player motion data (e.g. radio waves-based
localization) may provide even higher position sampling
rates.

In the case of our research, 22 squash matches were
recorded, which resulted in 140 GB of compressed
(Motion-JPEG) video data. After automated tracking, man-
ual annotation and automatic calculation of the derived pa-
rameters (e.g. velocity, distance), which took only several
man-months, the resulting 1 Gigabyte of data was entered
into Microsoft Access database.

In the remainder of the paper, the motivation for ap-
proaching the problem by using SQL enabled database en-
gine is described. Next, short discussion on related work in
the field of performance analysis is provided. Since we use
SQL queries in a slightly unconventional way, we continue
with short tutorial on some aspects of SQL syntax, used in
majority of our queries. Finally, we present an example of
actual source data and a few of actual SQL queries used to
detect certain sequences of player activities and the corre-
sponding statistics.

2 Motivation

Extracting relevant information from such large amount
of data is a challenging task. For simple analysis, vari-
ous spreadsheet packages (e.g. Microsoft Excel) may be
used. However, when there is a large number of sam-
ples (matches, plays), such analysis may involve significant
amount of manual work. Furthermore, users who are not fa-
miliar with advanced scripting capabilities of such packages
will usually have no other option than to manually select all
the required operations for each sample (e.g. one squash
play) repeatedly, significantly increasing the possibility of
human error and leaving behind only very coarse audit trail.

2.1 Why SQL?

For advanced analysis, spreadsheet tools may not be ade-
quate at all. As an illustration, let us present a few problems
that may appear during the course of research on squash
play:

• Detection of simple activities under certain conditions,
e.g. ”How many times player A used stroke of type X
in the particular region of the court? “

• Detection of complex scenarios, e.g. ”How many
times player A used stroke of type X, as a response
to stroke of type Y by player B, and finished the point
in the part of the court Z? “

• Analysis of other measurements e.g. ”What were the
players measured parameters (e.g. velocity), when per-
forming using certain type of stroke or executing cer-
tain scenario? “

In our case, the types of player strokes and other ac-
tivities have been entered as manual annotations and the
rest of the data has been calculated from the tracking re-
sults. It is obvious that these problems could be solved
easily by hard-coding appropriate detection algorithms in
any of the widely used general-purpose programming lan-
guages. However, such a solution would have some signifi-
cant drawbacks:

• Any addition of the new functionality (such as new
type of activity, scenario or statistics) would require
intervention of original developer, which can be costly
and time consuming.

• Alternatively, a protocol would have to be devised for
users to define new functionality, along with the ap-
propriate user interface. This can be both costly to de-
velop, time consuming in terms of user training, and
can ultimately lead to similar limitations as described
above, this time in the protocol or user interface.

The above limitations are particularly severe when such
a tool is used in sports-related research, where researchers
tend to define, validate and confirm or reject numerous

hypotheses. Inclusion of program developers (essentially,
general-purpose programmers) in this iterative loop along
with numerous code modifications may be prohibitely ex-
pensive and impractical.

To overcome these problems, we decided to use a
database engine with SQL interface capabilities. This way,
any analysis of data is represented in a form of SQL query,
and application for sport data analysis could consist simply
of user friendly graphical user interface (GUI) and a set of
SQL queries, which could be easily configured at runtime,
without a need for original developer. In our research, we
eventually scrapped the idea of an application altogether,
due to availability of user-friendly interfaces for SQL en-
gines (for example Microsoft Access).

3 Related work

The problem, described in this paper is distantly related
to the large and well developed field ofdata mining, with
one significant difference. Data mining aims to discover
implicit, previously unknown, and potentially useful infor-
mation from data [8], whereas we tried to detect and ana-
lyze well defined scenarios and player activities using stan-
dardized database interface language (SQL), and leave the
process of actual knowledge discovery to scientists of the
particular field - in our case, sport scientists.

Early researchers in the field of performance analysis re-
lied heavily relying on optical methods of data comparison,
such as transparencies [7]. To derive additional informa-
tion from the manually entered data, (such as the length of
intervals between certain annotations), custom applications
were written for this task [3, 9].

In last few years, more generally oriented commercial
packages gained popularity in the field of sport performance
analysis. Authors used for example Theme software pack-
age, developed by Pattern Vision, which can be used for
temporal pattern analysis [5]. Another popular tool which
is used in performance analysis is Noldus Observer Pro [4].

4 Brief SQL tutorial

In this section we will present some very specific uses of
SQL language. The examples, presented here, were tested
in Microsoft Access 2003, which is a commercial product
and can be obtained as part of the Microsoft Office 2003
suite of tools. However, many free (and much more power-
ful) SQL database engines are are also available today, such
as MySQL or PostgreSQL. The examples throughout this
paper would need only minor modifications to be used with
other products.

We will not explain the process of entering SQL queries
into the software – for details regarding the process of en-
tering data and the use of SQL queries in particular prod-
uct, reader should refer to the product documentation or one
of many internet sources [1, 2]. Readers who would like
smoother introduction into SQL language or have further

interest in SQL are advised to consult one of many intro-
ductory books on this topic, such as [6] or [15].

4.1 Database structure

SQL databases consist of one or multiple tables, which
have a few columns and (usually) large number of rows.
The columns and tables are named, while rows are not.
Sometimes each row is assigned unique number (a key),
which is helpful when a need to address individual rows
arises.

A typical table used in sport performance analysis would
have a column representing time of the measurement, two
columns with X and Y positions per each player and one or
more columns for different types of annotations. It would
have as many rows as there are consecutive measurements
in the particular data set.

To illustrate the results of SQL queries presented later in
the text, we will start with a simplified table namedRaw,
with the contents as shown in Table 1.

Table 1. The contents of the table Raw
Seconds Velocity Region Event
0 1.1 R01 A
1 1.5 R01
2 1.2 R01 A
3 0.8 R02
4 0.6 R01 B
5 0.5 R02 A
6 0.2 R02 B

This particular table contains the time of each measure-
ment, velocity of a single player, the label of the region of
the court where the player was present during the measure-
ment (for which we assume that they have been derived
from player positions in advance) and the manual annota-
tions, which are of only two types: event A or event B.
Some of the rows do not contain manual annotations, which
is frequently the case when tracking methods with high tem-
poral resolution are used (e.g. computer vision at 25 frames
per second).

4.2 Basic analysis

The key to any analysis using SQL language is the
SELECT statement. The structure of basicSELECT state-
ments may look very similar to natural language description
of a problem. The reason for this is thenon-proceduralna-
ture of SQL language – the queries tell SQLwhat the user
needs, nothowto obtain it. Let’s start with a simple listing:

Problem 4.1 Show all columns except velocity, for all the
measurements where the player was in region R01.

SELECT Seconds, Region, Event FROM Raw
WHERE Region=’R01’;

The structure of this simple SQL query is as follows: the
list, immediately following theSELECT keyword specifies
which columns need to be extracted from the source table.
The name of the data source (tableRaw) immediately fol-
lows theFROM keyword, and the text following theWHERE
keyword describes the conditions that individual rows have
to fulfill to be displayed. Most of the SQL queries in this
paper will have those three basic elements. In addition to
displaying data from the tables, SQL can be used to do more
powerful analysis:

Problem 4.2 Count all the events of type B in the table
Raw.

SELECT COUNT(*) FROM Raw WHERE
Event=’B’;

Problem 4.3 Calculate the average velocity for all the
measurements where the event of type A was annotated and
player was in the region R01.

SELECT AVG(Velocity) FROM Raw WHERE
(Region=’R01’) and (Event=’A’);

The last example is based on the functionAVG, which
calculates the average value of a particular column (which
was previously filtered through the conditions following the
WHERE keyword, of course).

4.3 Purging data

As illustrated in Table 1, manually annotated data often
does not contain annotations in every row of the table. As
an obvious consequence, two annotations can be separated
by an arbitrary number of empty cells, which makes pattern
detection in SQL impossible. To solve this problem, tables
can be preprocessed using various criteria, to remove rows
which are not needed for the particular kind of analysis.

Let us create new table, namedProcessed, which will
contain purged data. For this purpose a new type of
command is used:

CREATE TABLE Processed (ID
AutoIncrement, Seconds float, Velocity
Float, Region text, Event text);

The table is initialized to hold all the columns of the ta-
ble Raw, plus the new column namedID. This column will
serve as a tool for relative addressing of the rows in the pat-
tern detection step. It is sufficient to know that this special
column, declared asAutoIncrementcontains integer values
which are incremented by one at each row in the table.

Let us fill this new table,Processed, with the data from
the tableRaw, filtering out all the rows that do not contain
any value in theEventcolumn:

INSERT INTO Processed (Seconds,
Velocity, Region, Event) SELECT
Seconds, Velocity, Region, Event FROM
Raw WHERE Event IS NOT NULL;

The contents of the tableProcessedafter the execution
of this command is shown in Table 2.

Table 2. The contents of the table Processed
ID Seconds Velocity Region Event
1 0 1.1 R01 A
2 2 1.2 R01 A
3 4 0.6 R01 B
4 5 0.5 R02 A
5 6 0.2 R02 B

It can be seen that the second table now contains only
those rows from the tableRaw that had non-emptyEvent
cells. It can be also seen that theSecondscolumn now con-
tains non-contiguous blocks of numbers, while theID col-
umn contains linearly increasing integer values.

4.4 Detecting patterns

After the purging step, theProcessedtable can be ana-
lyzed further to reveal any known temporal patterns in any
of the columns. Since we purged the original data with the
intent to discard empty cells in theEventcolumn, we may
proceed with detection of the particular sequence of events.

For this purpose, advanced form ofSELECT query can
be used.

SELECT t1.ID, t1.Seconds, t1.Event
FROM Processed AS t1 INNER JOIN
Processed AS t2 ON t1.ID+1=t2.ID WHERE
(t1.Event=’A’) and (t2.Event=’B’);

The query containsINNER JOIN commands and table
aliases, which we will not describe in detail. The query is
made up of the following parts:

• TwoAS keywords, specifying that the single tablePro-
cessedshould be assigned two aliases,t1 andt2. As a
consequence, individual columns can be addressed by
referring to either of those two aliases and a column
name, separated by a dot.

• TheON statement, where the temporal constraint is de-
fined. In our case, it specifies that for each row pro-
cessed, the tablest1 and t2 should have ID numbers
for exactly value of 1 apart. This in fact causes the
database to compare two consecutive rows in the table,
but could be generalized to specify different kind of
constraints, including larger intervals between rows.

• Slightly more complicatedWHERE part, where the con-
dition for the contents of the two rows being compared
is specified. In our case, it specifies that the tablet1
should contain the annotation A in itsEventfield, and
that the tablet2 should have the annotation B in its
Eventfield. Together with theON statement that effec-
tively means that the query looks for the temporal se-
quence A,B through the whole table. Again, this con-
dition can be generalized as well.

• Slightly expandedSELECT part, where the columns
which should be printed when all the conditions are
met are named.

It is possible to link together more conditions, for exam-
ple to detect longer temporal patterns in data. This can be
accomplished by nesting severalINNER JOIN statements.

Such type of query can be easily adapted to perform
more advanced analysis on the detected patterns. For ex-
ample:

Problem 4.4 Calculate the average value of velocities at
the points where the pattern A,B in the was detected in the
Eventcolumn.

SELECT AVG(t1.Velocity) FROM Processed
AS t1 INNER JOIN Processed AS t2 ON
t1.ID+1=t2.ID WHERE (t1.Event=’A’) and
(t2.Event=’B’);

The query above calculates the average over the veloci-
ties for each row where event A was present, but only those
rows when it was present as a start of sequence A,B are in-
cluded in the calculation.

It can be seen that many different detectors can be built
using different combinations of data purging andINNER
JOIN statements. With properly formatted input data it
would be possible to do the following:

• Detect and count the transitions between different re-
gions of the court. Analyze other player parameters
(e.g. velocity, direction) when such transition is de-
tected - in the same query.

• Detect and count the transitions between different ve-
locity classes. Detect interesting patterns in motion
(e.g. changes of direction).

• Measure intervals between the specified activities.

• Make complex queries which would detect and ob-
serve patterns which span multiple columns.

5 SQL in squash match analysis

The approach described in previous section has been
extensively used to process numeric data from 22 squash
matches. First, digitized videos have been processed off-
line in two passes by the operator-supervised computer vi-
sion based tracking application. In the first pass, opera-
tor manually selected both players, started the automatic
tracker and supervised the tracking process. Interventions
were rare and the tracker easily processed up to 20 frames
per second. In this pass, the software recorded the time
and position of both players. In the second pass, operator
manually annotated the video using a set of buttons on the
application’s user interface. He switched the play mode be-
tween passive phase and rallies and noted each stroke of
any of the players by clicking on the appropriate button.

When the stroke was recorded, the program stopped and
allowed the operator to precisely click on the ball at the
moment when hit by a racket. Then operator selected ap-
proximate height of the ball and chose two additional event
descriptions. In this phase, the basic information about the
recorded event (annotation), racket position and additional
info was recorded. After completing the tracking and anno-
tation process, motion data was smoothed, and finally, sev-
eral derived parameters were calculated both from of player
motion data and annotation data. Data for each squash play
was exported to tab separated file and loaded into the Mi-
crosoft Access database. Each play was represented as one
table in the database.

5.1 Data format

Table 3 shows short excerpt from one of the tables. To
preserve clarity, only motion data for the first player are
shown. The eight rightmost columns are reserved for anno-
tation data, some of which was derived automatically (re-
gion of the court, for example). Table 4 explains the con-
tents of the individual columns in the each table. The sym-
bol TableName in queries denotes the name of the table for
which the statistics is calculated.

Table 4. Column contents legend.

Column Meaning
Frames Number of video frames from the play start

Seconds Elapsed time from the play start [s]
X X player coordinate [m]
Y Y player coordinate [m]
V Player velocity [m/s]

Acc Player acceleration [m/s2]
Dist Cumulative path length [m]

DiffDist Differential of path length[m]
Rally Rally or passive phase [R or P]

Region Region of the court where the player was
Event Major annotation mark - type of the stroke

Descr1 2nd annotation mark (let, stroke, error...)
Descr2 3rd annotation mark (forehand, backhand)

Event X X stroke coordinate [m]
Event Y Y stroke coordinate [m]

EventRegion Stroke region of the court

5.2 Sample SQL queries

In this section, we will present some of the problems that
have been solved constructing the appropriate SQL query
on the data, presented in Table 3.

Problem 5.1 What was the cumulative duration of rallies
and passive phases of the play (at 25 frames/measurements
per second)?

SELECT Rally, COUNT(*)/25 AS
RallySeconds FROM TableName GROUP BY
Rally;

Problem 5.2 How many rallies and passive phases are
there in particular play?

SELECT DISTINCT t2.Rally, Count(*)
AS NumPhases FROM TableName AS
t1 INNER JOIN TableName AS t2
ON t1.Frames+1=t2.Frames WHERE
((t1.Rally=’R’) AND (t2.Rally=’P’))
OR ((t1.Rally=’P’) AND (t2.Rally=’R’))
GROUP BY t2.Rally;

Note - we are actually counting changes between rallies
and passive phases in this query, that’s whyINNER JOIN
is needed.

Problem 5.3 What is the average velocity of a player
during the rallies and during the passive phases?

SELECT Rally, Avg(V) AS AverageVelocity
FROM TableName GROUP BY Rally ;

Problem 5.4 Generate a table of all rallies, calcu-
late their durations, calculate player path lengths in each
of the rallies and calculate average velocities for each rally.

This problem requires purging of the unnecessary data
and creation of a temporary table named TableRallies:

INSERT INTO TableRallies (Rally,
Seconds, Dist) SELECT DISTINCT t2.Rally
AS Rally, t2.Seconds AS Seconds,
t2.Dist AS Dist, FROM TableName
AS t1 INNER JOIN TableName AS t2
ON t1.Frames+1=t2.Frames WHERE
((t1.Rally=’R’) AND (t2.Rally=’P’))
OR ((t1.Rally=’P’) AND (t2.Rally=’R’));

In the second step, statistics can be generated from the
intermediate table named TableRallies, which includes
integer key named ID:

SELECT DISTINCT t1.Rally,
(t2.Seconds-t1.Seconds) AS
RallyDuration, (t2.Dist-t1.Dist)
AS PathLength, (t2.Dist-t1.Dist)
/ (t2.Seconds-t1.Seconds) AS
AverageVelocity FROM TableRallies AS
t1 INNER JOIN TableRallies AS t2 ON
t1.ID+1=t2.ID WHERE (t1.Rally=’R’);

6 Conclusion

We have presented a flexible way to analyze annotated
motion data without the need for writing custom applica-
tions in general purpose languages. There is no doubt that

Table 3. Excerpt from a source data - raw output from tracking and annotating application.
Frames Seconds X Y V VClass Acc Dist DiffDist Rally Region Event Descr1 Descr2 EventX EventY EventRegion
2750 110 7.38 2.11 0.84 walk -5.3 125.13 0.0336 R R22 0 0
2751 110.04 7.38 2.09 0.62 walk -5.54 125.15 0.0247 R R22 0 0
2752 110.08 7.37 2.07 0.4 walk -5.37 125.17 0.0161 R R22 0 0
2753 110.12 7.37 2.06 0.23 walk -4.26 125.18 0.0093 R R22 LL1 R b 7.36 1.07 R29
2754 110.16 7.37 2.06 0.17 walk -1.69 125.19 0.0066 R R22 0 0
2755 110.2 7.38 2.05 0.26 walk 2.24 125.2 0.0102 R R22 0 0
2756 110.24 7.39 2.04 0.32 walk 1.71 125.21 0.0129 R R22 0 0
2757 110.28 7.4 2.04 0.26 walk -1.61 125.22 0.0104 R R22 0 0
2758 110.32 7.41 2.05 0.23 walk -0.65 125.23 0.0093 R R22 0 0
2759 110.36 7.4 2.07 0.56 walk 8.05 125.25 0.0222 R R22 0 0
2760 110.4 7.4 2.11 0.81 walk 6.38 125.28 0.0324 R R22 0 0
2761 110.44 7.41 2.14 0.87 walk 1.53 125.32 0.0349 R R22 0 0
2762 110.48 7.44 2.17 0.95 walk 1.97 125.36 0.038 R R22 0 0
2763 110.52 7.47 2.19 1.01 walk 1.59 125.4 0.0406 R R22 0 0
2764 110.56 7.5 2.21 0.84 walk -4.29 125.43 0.0337 R R22 0 0
2765 110.6 7.51 2.23 0.71 walk -3.29 125.46 0.0284 R R22 0 0
2766 110.64 7.51 2.27 0.84 walk 3.21 125.49 0.0336 R R22 0 0
2767 110.68 7.53 2.3 0.96 walk 3.1 125.53 0.0385 R R22 0 0
2768 110.72 7.57 2.33 1.26 walk 7.46 125.58 0.0505 R R22 0 0
2769 110.76 7.63 2.35 1.6 jogging 8.5 125.65 0.0641 R R22 0 0
2770 110.8 7.69 2.37 1.59 jogging -0.18 125.71 0.0638 R R22 0 0
2771 110.84 7.73 2.4 1.26 walk -8.42 125.76 0.0503 R R22 0 0
2772 110.88 7.75 2.44 1.05 walk -5.09 125.8 0.0422 R R22 0 0
2773 110.92 7.75 2.49 1.23 walk 4.32 125.85 0.0491 R R22 0 0
2774 110.96 7.73 2.54 1.41 jogging 4.54 125.91 0.0564 R R22 0 0
2775 111 7.7 2.59 1.44 jogging 0.73 125.96 0.0575 R R22 0 0

such task could be achieved by hard-coding the appropriate
queries in the general purpose language, however, besides
flexibility, the use of SQL gives this approach platform in-
dependence and scalability. We are convinced that such ap-
proach will make even more sense in a future in various
applications beyond the sport domain (e.g. surveillance),
when tracking algorithms will be even more powerful and
will produce a massive flow of motion measurements and
perhaps automated annotations. The natural choice for stor-
ing such data will be large databases, and natural interface
for various kind of motion and behavior analysis would be
the queries written in SQL language.

Limitations of SQL language are reflected in limita-
tions of such approach as well. One of the weaknesses of
standard SQL is the inter-row processing, which requires
one INNER JOIN per each inter-row comparison. The
queries get increasingly complicated and time consuming as
the number of conditions in definition of pattern increases.
Nevertheless, we extensively used the Microsoft Access
database this way, and more powerful database engines may
offer additional non-standard extensions which may resolve
those limitations.

Acknowledgement

Authors wish to thank Marko Pavlišič for helpful hints
regarding advanced features of SQL language.

References

[1] Access 2000 tutorial. http://www.fgcu.edu/
support/office2000/access/.

[2] Mysql tutorial. http://dev.mysql.com/doc/
mysql/en/tutorial.html.

[3] A. Ali and M. Farrally. A computer-video aided time motion
analysis technique for match analysis.The Journal of Sports
Medicine and Physical Fitness, 31(1):82–88, March 1991.

[4] D. Bishop. Performance analysis: What is per-
formance analysis, and how can it be integrated

within the coaching process to benefit perfor-
mance? http://www.pponline.co.uk/encyc/
performance-analysis.html.

[5] A. Borrie, G. K. Jonsson, and M. S. Magnusson. Temporal
pattern analysis and its applicability in sport: an explanation
and exemplar data.Journal of Sports Sciences, 20(10):845–
852, 2002.

[6] D. Dicken and K. Thompson.Learn SQL in a weekend.
Premier Press, 2002.

[7] W. S. Erdmann. Gathering of kinematic data of sport event
by televising the whole pitch and track. In R. Rodano, ed-
itor, Proceedings of 10th ISBS symposium, pages 159–162.
International Society of Biomechanics in Sports, 1992.

[8] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowl-
edge discovery in databases: An overview.AI Magazine,
pages 57–70, Fall 1992.

[9] M. Hughes, F. I. M., and N. P. A video-system for the quanti-
tative motion analysis of athletes in competitive sport.Jour-
nal of Human Movement Studies, 17:217–221, 1989.

[10] M. D. Hughes and R. M. Bartlett. The use of performance
indicators in performance analysis.Journal of Sports Sci-
ences, 20(10):739–754, 2002.

[11] S. S. Intille and A. F. Bobick. Visual tracking using closed-
worlds. InProceedings of the Fifth International Conference
on Computer Vision ICCV ’95, pages 672–678, MIT, Cam-
bridge, MA, June 20-23 1995.

[12] C. J. Needham and R. D. Boyle. Tracking multiple sports
players through occlusion, congestion and scale. In12th
British Machine Vision Conference, BMVC01, pages 93–
102, Manchester, UK, September 2001.

[13] J. Peřs, M. Bon, S. Kovǎcič, M. Šibila, and B. Dězman. Ob-
servation and analysis of large-scale human motion.Human
Movement Science, 21:295–311, 2002.

[14] J. Peřs, G. Vǔckovič, S. Kovǎcič, and B. Dězman. A low-
cost real-time tracker of live sport events.ISPA 2001: Pro-
ceedings of the 2nd international symposium on image and
signal processing and analysis in conjunction with 23nd
int’l conference on information technology interfaces, Pula,
pages 362–365, June 19-21,2003.

[15] R. Plew and R. Stephens.Teach Yourself SQL in 21 Days.
Sams, 2002.

