
NOTE: this paper, titled

Towards commoditized smart-camera design

by

Boštjan Murovec, Janez Perš, Rok Mandeljc, Vildana Sulić Kenk and Stanislav

Kovačič.

was published in

 Journal of Systems Architecture, Volume 59, Issue 10 (part A), pages 847-858,

2013.

The version you have downloaded is in pre-print formatting. For the official

version please see the publisher's web site:

http://dx.doi.org/10.1016/j.sysarc.2013.05.010

http://dx.doi.org/10.1016/j.sysarc.2013.05.010

Towards commoditized smart–camera design

Boštjan Murovec∗, Janez Perš, Rok Mandeljc, Vildana Sulić Kenk,
Stanislav Kovačič

University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI–1000

Ljubljana, Slovenia

Abstract

We propose a set of design principles for a cost–effective embedded smart

camera. Our aim is to alleviate the shortcomings of the existing designs,

such as excessive reliance on battery power and wireless networking, over–

emphasized focus on specific use cases, and use of specialized technologies. In

our opinion, these shortcomings prevent widespread commercialization and

adoption of embedded smart cameras, especially in the context of visual–

sensor networks. The proposed principles lead to a distinctively different de-

sign, which relies on commoditized, standardized and widely–available com-

ponents, tools and knowledge. As an example of using these principles in

practice, we present a smart camera, which is inexpensive, easy to build and

support, capable of high–speed communication and enables rapid transfer of

computer–vision algorithms to the embedded world.

Keywords: commoditized smart camera, general–purpose smart camera,

∗Corresponding author
Email addresses: bostjan.murovec@fe.uni-lj.si (Boštjan Murovec),

janez.pers@fe.uni-lj.si (Janez Perš), rok.mandeljc@fe.uni-lj.si (Rok Mandeljc),
vildana.sulic@fe.uni-lj.si (Vildana Sulić Kenk),
stanislav.kovacic@fe.uni-lj.si (Stanislav Kovačič)

Preprint submitted to Journal of Systems Architecture January 22, 2014

design principles, reference design, visual–sensor networks

1. Introduction1

Capabilities of embedded processors have increased remarkably in recent2

years. Consequently, we have witnessed a migration of many tasks, previ-3

ously considered as processing–intensive, to the domain of embedded sys-4

tems. An example is computer vision, which is increasingly moving from the5

once–prevalent domain of desktop and industrial computers to the embed-6

ded devices — embedded smart cameras — and is the driving force behind7

the development of visual–sensor networks (VSNs) [1]. Especially in VSNs,8

embedded vision faces many challenges [2, 1, 3], due to severe limitations in9

computing performance, memory capacity and communication bandwidth of10

VSN nodes. Additionally, for VSNs to be a viable and economical alter-11

native to centralized computer systems, nodes have to be inexpensive and12

easy–to–maintain. These requirements have resulted in numerous attempts13

to build an inexpensive yet sufficiently powerful general–purpose embedded14

smart camera, which would be able to run various computer vision algo-15

rithms.16

Given the fair number of proposed designs, it is somewhat surprising that17

a general–purpose embedded smart camera, based on an open architecture18

is difficult to find, and even more difficult to buy. Furthermore, no solutions19

are available at a price range that would justify large–scale VSN deployments20

with several dozens or even hundreds of nodes, collaborating on large, dis-21

tributed and complex tasks. As shown by surveys of the field, e.g. [4, 3, 5],22

there is certainly no shortage of proposed smart camera architectures, which23

2

all reached the stage of a working prototype. However, we feel that the ab-24

sence of large–scale commercialization and deployment hints at more deeply25

rooted weaknesses in existing general–purpose smart camera architectures.26

We also feel that the absence of commercialization of general–purpose smart27

cameras negatively affects the deployment of large–scale VSNs and therefore28

warrants a special attention.29

This paper aims to identify shortcomings of the existing designs. We30

feel that the issues raised here significantly affect chances for widespread31

commercial deployment of general–purpose smart cameras, especially in the32

context of visual sensor networks. Therefore we also present a smart camera33

design that, while by itself not being at the bleeding edge of technology,34

does address many of the architectural weaknesses discussed in the paper.35

As such, it should serve as an example of how the proposed principles may36

be applied in practice, even when inexpensive hardware is used. We do37

not claim that our proposition outperforms other designs; we merely claim38

that we took care to address every aspect of the design in accordance with39

the proposed principles, providing best possible environment for embedded40

computer vision application design, given the hardware constraints.41

The remainder of the paper is structured as follows: in Section 2 we42

present a systematic overview of embedded camera designs and highlight43

their strengths and weaknesses. Next, we describe the proposed set of de-44

sign principles in Section 3, followed by the example of their application in45

Section 4. In Section 5 we present a proof–of–concept camera design, which46

follows our principles, along with the experimental evaluation. We conclude47

the paper with Section 6.48

3

2. Related work49

A brief overview of embedded smart–camera technology is given in [6]; the50

prevailing concept appears to be close integration of a CMOS visual sensor, a51

microcontroller (MCU) and the supporting electronics [7], sometimes to the52

point of integrating them all in a single integrated circuit, as illustrated in [8].53

There is a wide variety of components that can be used in embedded smart54

cameras, which result in different compromises between image resolution,55

computing power, connectivity and power requirements. However, in this56

paper, we focus on design principles behind a general–purpose smart camera.57

Therefore, when comparing our work to state of the art, we attributed the58

highest importance to the programmer’s view of the camera. As such, we59

divide the published camera designs into the following four categories.60

• Low–end. Cameras from this group are, in general, built around ba-61

sic, sometimes 8–bit, MCUs, and can process images at low framerate62

and/or at low resolution. These cameras support only basic computer63

vision algorithms, such as thresholding, simple blob extraction and64

simple color segmentation. Consequently, their power requirements are65

usually low and the hardware is inexpensive, but on the other hand,66

they provide very little flexibility in terms of programming — the code67

has to be written (and perhaps optimized) for each platform separately.68

Often, such cameras lack even sufficient amount of memory to store the69

whole image at once, which promptly disqualifies them for being ca-70

pable of running anything but algorithms that require only single pass71

over the image.72

4

• Mid–range. Cameras from this group can employ a wide variety of73

MCUs, but they do not run a fully fledged operating system. The two74

main characteristics of cameras in this range are the availability of a75

standard–compliant C compiler for the chosen MCU platform and suf-76

ficient amount of RAM to store the whole image at a chosen resolution77

and bit depth. Both characteristics enable a straightforward imple-78

mentation of widely–used computer–vision algorithms for the camera79

architecture. On the other hand, even though such designs are more80

flexible, in the absence of an operating system, the task of such camera81

remains more or less fixed once it is programmed.82

• High–end. Cameras from this group run an operating system (fre-83

quently a variant of Linux), offering high degree of flexibility. A stan-84

dard C/C++ compiler is taken for granted, as is the number of stan-85

dard software libraries like OpenCV [9] for computer vision, libjpeg86

for JPEG image compression/decompression, and similar. Given the87

proper connectivity, these cameras can be maintained and upgraded re-88

motely, even to the point of completely changing their task (completely89

different computer–vision algorithm) by simply instructing the camera90

to run a different version of executable code.91

• Heterogenous and special designs. Cameras from this group are92

highly specialized for their task, and their hardware architecture reflects93

that. As such, they cannot be considered general–purpose. From the94

programmer’s point of view, they may be more similar to low–end95

designs regarding their inflexibility since the code has to be written from96

5

scratch to take advantage of their capabilities, but their raw computing97

performance at the task they have been developed for can be on a par98

with or significantly better than the high–end designs.99

2.1. Low–end cameras100

There is a significant group of designs that are based on low–end MCUs.101

In [10], authors present 30 frames–per–second color tracking, whereas in [11],102

a tracking system with 7.5 frames–per–second is presented; both are based103

on an 8–bit AVR MCU and use image resolution of 176×144 pixels. Both104

designs have insufficient memory to store even a single full frame, and the105

code was highly optimized to process image data in a single pass in order to106

make even basic tracking feasible.107

In [12], the problem was approached differently: a system–on–chip so-108

lution was used, combining 8–bit AVR MCU with an FPGA module, and109

external SRAM module is used to store acquired images. To take full advan-110

tage of the architecture, processing has to be split between the FPGA and111

MCU, requiring highly specialized and optimized code.112

eCam [13] is an example of a low–end embedded camera design that is113

specialized to the extreme; it consists only of image sensor, a specialized114

controller chip (OV528 serial bridge with JPEG compression capabilities)115

and communication interface (wireless sensor node). Its only function is116

streaming of JPEG–compressed video to a base station.117

2.2. Mid–range cameras118

At the the lower end of this category, we find designs like a mote, described119

in [14]. It uses 30×30 pixel optical mouse sensor and a dsPIC microcontroller120

6

with only 16 kB of RAM, but is nevertheless able to perform Viola–Jones121

face detection [15], gradient–based edge detection, motion estimation, and122

background removal using two convex filters with slow and fast forgetting123

parameters to avoid ghosting [16]. An ANSI C compiler is available for124

the platform, and given the small resolution of image sensor, the amount of125

memory is sufficient to store multiple acquired images. This way, computer–126

vision algorithms can be adapted for use on this platform without excessive127

optimization that is customary for low–end devices.128

Cyclops sensor, presented in [17], is built around 8–bit Atmel ATmega128L129

MCU, with RAM expanded to 64 kB and using the image sensor with max-130

imum resolution of 352×288 pixels. In [18], a mote for wireless sensor net-131

works is presented, built around an ARM7–based MCU with up to 64 kB132

of RAM, and two 30×30 pixel image sensors. An ARM9–based camera is133

presented in [19], processing 160×120 pixel images. With integrated energy134

harvester (solar) module and a PIR sensor, the system is optimized for the135

task of person detection, under the assumption of low–duty–cycle operation,136

thus lowering power consumption. RoboVision platform in [20] comprises137

ARM9–based MCU and 96 kB of RAM, but is coupled with disproportion-138

ately high–resolution image sensor (1600×1200 pixels). Authors themselves139

note that reasonable image sizes for onboard processing are actually much140

smaller (160×120 pixels).141

Finally, one of the most prominent embedded camera designs is the CMU-142

Cam line, especially CMUcam3 [21]. Its ARM7–based MCU and 64 kB of143

RAM are insufficient to process captured images at the maximum resolution144

and bit depth offered by the included image sensor (352×288 pixels, RGB).145

7

However, by halving the resolution and processing only grayscale images, it146

can run state–of–the–art algorithms, such as Viola–Jones face detection [15].147

A version of GCC–based toolchain, adapted to the camera architecture, is148

provided.149

2.3. High–end cameras150

For computationally more demanding tasks, significantly more powerful151

computing platforms are used, such as a RISC–processor–based design with152

16 MB of RAM, presented in [22]. It is used for real–time car counting,153

during which it processes images at the resolution of 320×240 pixels at 30154

frames per second. Developers of the system explicitly aimed at a platform155

without dedicated hardware. Even more powerful CITRIC platform [23] uses156

Intel XScale PXA270 processor clocked at up to 624 MHz, combined with157

64 MB of RAM and a 1280×1024 pixel image sensor; the platform runs158

embedded Linux. Panoptes [24] relies heavily on standard, commoditized159

hardware: Intel StrongArm 206 MHz processor (running Linux) is coupled160

with a USB web camera (resolutions up to 640×480 pixels) and IEEE 802.11161

(WiFi) wireless network interface.162

2.4. Heterogenous and special designs163

To cope with relatively high demands of real–time image processing, some164

designs use specialized hardware to deliver required computing power. The165

system presented in [25] relies on a DSP for real–time video compression, us-166

ing optimized libraries provided by the DSP vendor. However, when running167

plain C++ code, the system’s performance suffers significantly.168

8

There are many examples of similar systems: [26] and [27] rely on DSPs as169

well, and [28] relies on specialized multimedia processors. Both [29] and [30]170

rely on SIMD processors, requiring specialized programming knowledge to171

exploit their full potential. On the other hand, the processing module is not172

the only component that can be customized to optimize certain performance173

goals: in [31], authors opt for a dual–sensor architecture to decrease power174

consumption of an otherwise more powerful 32–bit microcontroller; they em-175

ploy low–resolution imaging sensor for basic detection, and capture image of176

higher resolution only when needed. Similar path is chosen by authors of the177

dual–camera sensor, presented in [32].178

It is obvious that the computer–vision algorithms need to be adapted179

to take advantage of such multi–sensor setups, even if designs are based on180

otherwise standardized architectures, and therefore are rightly considered181

specialty designs.182

2.5. Summary183

Generally, high–end cameras employ more powerful hardware compo-184

nents. Consequently, their cost and power requirements are higher as well,185

but they are able to run more advanced computer–vision algorithms. How-186

ever, there are some designs that stand out, for example [14], which has ex-187

ceptionally modest hardware specifications, but is versatile and able to run188

even state–of–the–art algorithms, albeit under obvious hardware constraints.189

It is our opinion that such combination reflects a well–thought–out design190

that provides high value to the user (programmer, software developer).191

In this paper, we strive to formalize the design principles that would192

have a similar effect: cost–effective, but maximally versatile general–purpose193

9

embedded camera designs, which would be appealing to a wider user base and194

not restricted to a single project or a single application. Finally, with regard195

to the previously–described criteria, the camera that we present in this paper196

as an practical example of applying the proposed design principles, falls into197

the mid–range category.198

3. Proposed design principles199

We believe that there may be several design issues that hinder the wider200

adoption of general–purpose smart cameras, especially in the context of visual201

sensor networks. Those issues stem from certain design principles that may202

be reasonable in general embedded system design, however, their justification203

in the context of smart cameras is not entirely straightforward.204

3.1. Standardization and commoditization205

The reason behind the rapid development in many areas of computer206

technology lies in widespread standardization, which allows unhindered com-207

petition between many different vendors, and inevitably leads to commoditi-208

zation of the new technology. A classical example is the personal computer,209

which, after being designed and initially marketed by IBM, became extremely210

commoditized, with its clones produced and sold by numerous vendors.211

The second historically important aspect of such development is a possi-212

ble inferiority of the winning product, which is again illustrated by the dom-213

inance of the IBM–PC clones. At the time of its introduction, the PC was214

an office computer with inferior graphics, no sound, and modest processing215

capabilities. However, the effect of standardization was powerful enough to216

10

overcome deficiencies and allowed rapid development into a far more superior217

product.218

At the moment, the field of smart cameras is experiencing a complete219

absence of both paradigms, which contributes to slow adoption of embedded220

visual systems and practically no major deployment of large–scale VSNs.221

Such state of affairs is not surprising, as commoditization in short run benefits222

the consumers of the technology and not its manufacturers. However, in the223

long run, a widespread adoption of a particular technology often increases224

manufacturer’s production volume despite their lower market share.225

Our proposal. Without the move to standardized and commoditized com-226

ponents, it is unlikely that smart cameras and VSNs will ever become ubiqui-227

tous. Furthermore, to spur the innovation in the field, especially the transfer228

of state–of–the–art computer vision algorithms to the embedded domain,229

and boost the popularity of smart cameras as much as possible, the designs230

should be suitable for developers of various backgrounds and funding capac-231

ities, from industrial teams to hobbyists.232

In addition to being cost–effective, designs should extensively rely on233

parts that can be easily purchased in small quantities, and allow assembly of234

prototypes without highly specialized and expensive machinery. For exam-235

ple, the components should be available both in SMD and DIP variation of236

housing; the former is important for serial manufacturing, whereas the latter237

is breadboard–friendly and enables quick and ad–hoc development.238

As demonstrated by successful start–ups on a daily basis, the momentum239

behind individual developers should not be underestimated. In our opinion,240

such adoption is critical in evolution of smart cameras, as it significantly rises241

11

the probability of killer applications, which are needed for the field of smart242

cameras to stay competitive.243

3.2. Long–term stability244

The long–term fate of most designs is difficult to predict, since the rush245

for specialized technologies usually results in use of the best and the hottest246

parts that are available on the market at the instant of a project kickoff;247

many such parts tend to be discontinued fairly frequently. As an example,248

the renown line of CMUcam smart cameras1 so far consists of four members,249

with the first three already discontinued.250

Frequent discontinuities and replacements pose a serious barrier to a wide251

smart–camera adoption. Without considerable support from the camera de-252

signers, computer–vision developers are forced to redesign their software in253

order to cope with the changes introduced by new models. Such redesigns254

are difficult to justify due to engineering costs for re–achieving something255

that has already worked well, and there is always a risk of introducing re-256

gressions. Despite the stated difficulties, a low–cost smart camera with a257

long–term support is yet to appear.258

Our proposal. There certainly exist smart camera applications that bene-259

fit from the use of the latest technology; this is especially true in cases where260

cameras perform relatively standard tasks, such as real–time video compres-261

sion. Nevertheless, general–purpose smart cameras could definitely benefit262

from the shift of focus from the bleeding–edge technology towards mature263

and time–proven components, especially if they are to be deployed in tasks264

1http://cmucam.org

12

that will require many years of support and servicing.265

3.3. Generality266

The CMUcam family is also an illustrative example of products that267

are non–generalized by design. Models CMUcam12 and CMUcam23 were268

specifically intended to be used as trackers, which was also reflected by their269

firmware. Although it was possible to reprogram the whole camera to change270

its capabilities, this was not their intended use, and such practice was not271

officially supported. A further step in this direction has been done with272

CMUcam4, where firmware is not even programmed in C or other widespread273

programming language, but in a “C–like” language called SPIN4. Porting274

existing computer–vision code to such environment is definitely not a trivial275

task.276

In contrast, the third member of the family, CMUcam3 [21], was fully–277

programmable in standard C programming language; this model has become278

extremely popular among computer–vision developers who required embed-279

ded capability, which clearly demonstrates the need for general–purpose de-280

signs. We expect that discontinuation of CMUcam3 will adversely affect281

many research groups working with embedded vision.282

Our proposal. The design of embedded smart cameras should be as283

generic as possible. Instead of offering firmware with a pre–built function-284

ality, the expectation should be that camera’s software will be developed285

almost from scratch by application developers, not camera developers. The286

2http://cmucam.org/projects/cmucam1
3http://cmucam.org/projects/cmucam2
4http://www.cmucam.org/projects/cmucam4/wiki/Firmware

13

latter should provide libraries and APIs for hardware–independent image ac-287

quisition, image debugging and communication, preferably as C source code288

that links with application’s code, but should not impose any mandatory289

boilerplate design of camera’s firmware.290

3.4. Specialized technology291

Many designs rely on technologies that are too specialized, such as DSP292

processors and FPGA circuits. Although these offer an unparalleled boost of293

cameras’ capabilities, very few computer–vision developers can actually use294

them efficiently. This is directly tied to the available knowledge– and code–295

base in the computer–vision community, which has at its access a large pile296

of a carefully crafted C and Matlab code that uses only generic processing297

hardware.298

Our proposal. In contrast to the current practice, development of smart299

cameras needs to be decoupled from development of applications that run300

on them, since the two require different expertise. Computer–vision devel-301

opment requires a dedicated computer–vision specialist. If such an engineer302

needs to master additional specialty areas and hardware–specific skills, appli-303

cation development becomes impractically demanding, since a whole–team304

worth of expertise is required to develop even a simple practical solution. In305

this context, truly open nature of an embedded camera becomes extremely306

important. Cameras should be able to run standard computer–vision C code307

nearly out of the box, and offer a simple C application programming inter-308

face (API) for acquiring images directly into memory buffers specified by309

developer. Different approaches almost inevitably confine camera’s opera-310

tion to one or at most a few applications that its own developers are willing311

14

to implement.312

3.5. Power supply313

There appears to be consensus that embedded smart cameras need to314

be as energy–efficient as possible in order to enable battery–powered appli-315

cations, and the majority of designs nominally strive to achieve this goal.316

However, as shown in Table 1, most of the proposed solutions cannot oper-317

ate on battery power for long periods of time, especially when their power318

requirements in the fully–operational state is considered.319

Design Power [mW] Autonomy [days]

[21] CMUcam3 650 0.57
[29] Xetal 600 0.6
[12] (WSN node) 500 1.33
[23] CITRIC 1000 1.5♣

[13] eCAM 231 1.6
[32] (dual–camera) 150♦ 2.5
[30] IC3D 100 3.75
[18] (WSN mote) 99–363 1–3.8
[19] (with PIR sensor) 50–650♦ 7.5–0.58
[17] Cyclops 23–65† 5.7–16†

[31] MeshEye 12‡ 31‡

† rich power options to adapt to actual needs
‡ average; very low duty–cycle regime of operation
♦ low duty–cycle regime, wakeup by a secondary sensor
♣ authors’ own estimation

Table 1: Power consumption of some of the designs when processing data (contrary to
sleep mode) — exceptions are described in the footnotes. Where possible the consumption
without communication was taken into account. Autonomy is based on 9 Wh capacity,
which is an equivalent of two AA alkaline batteries without any additional energy source.

A general–purpose smart camera by definition cannot be designed with320

only one particular application in mind, therefore power calculations should321

15

be based on its fully–operational state. Designs that conserve power by, for322

example, resorting to extremely low frame rates or additional sensors for323

wakeup, such as [31, 19, 32], thus allowing a camera to conserve power by324

frequently shutting down major parts of its architecture, should be more325

appropriately referred to as a low–duty–cycle application instead of a low–326

power design.327

Therefore, it seems that the ubiquitous goal of designing a general–328

purpose battery–powered smart camera cannot be achieved using the cur-329

rent technology. Even the extremely permissive scenarios with intermittent330

operation (as envisioned in [31]) require monthly battery changes. In a large331

network, this may be uneconomical in terms of battery and labor costs, un-332

less there is absolutely no alternative. For a comparison, one should consider333

the similar task of changing the burned–out light bulbs: the rush to substi-334

tute incandescent light bulbs with alternatives was motivated in part by a335

desire to reduce the labor costs, associated with frequent bulb changes. Fre-336

quent battery changes may be impractical due to service interruption, and337

environmentally harmful due to a pile of discarded batteries. Finally, even338

though battery–powered designs seem attractive as a solution for a variety of339

applications, there is rarely an absolute need to use battery power, at least340

in urban environments – not to mention the indoor installations. In those,341

the economics of the recurring cost of battery maintenance, compared to the342

initially higher but fixed cost of wiring up the cameras, may quickly become343

questionable.344

Autonomy in the environments, where there is absolutely no possibility345

of externally supplied power, can be extended using the solar power, such as346

16

described in [19, 33], but this requires reserve capacity for the periods when347

there is not enough solar radiation.348

Our proposal. While there undoubtedly exist applications where battery–349

powered operation is unavoidable, there certainly exist many more where350

wired power works just as well. There are inherent advantages to the wired351

power supply — mainly in relaxing other, often prohibitive, constraints, as352

we demonstrate later on. Therefore, while the research into energy efficiency353

of smart cameras remains a noble and worthwhile goal, there is no need to354

restrict camera architectures solely to battery power, even in the case of355

visual–sensor networks. To cope with broad range of situations, a truly open356

and general–purpose camera architecture should support both power options357

— the battery power and the wired power.358

3.6. Communication359

Another common design goal is wireless communication. In theory, battery–360

powered and wirelessly–communicating nodes enable rapid deployment of361

VSNs. In practice, the push for battery power necessitates resorting to362

low–power communications, based on the IEEE 802.15.4 standard (ZigBee,363

6LoWPAN), which have limited bandwidth and range. For example, in [30],364

5 m is described as a practical operating distance; therefore, a square area365

of 400 m2 requires sixteen nodes just to overcome the limitations in com-366

munication range, with associated sixteen battery packs to be changed on a367

regular basis.368

Our proposal. As with the power–supply issue, there certainly exist ap-369

plications where wired communication is completely acceptable — even at370

the price of a more complicated initial setup. In this case, the long–term371

17

benefits of the wired solution are even more obvious, as wired communica-372

tion enables significantly higher bit rates than low–power wireless solutions.373

As we show later on, when a node is designed with wired power in mind, it is374

trivial to extend its power–supply lines with additional high–speed commu-375

nication lines at little extra cost. Additionally, wired communication is less376

exposed to opportunistic hacking attacks as physical access is needed to tap377

into wired communication lines.378

When power lines are already in place but installation of communication379

lines is unfeasible, the wired power supply may be efficiently supplemented380

with a high–bandwidth wireless communication of a decent range (IEEE381

802.11 WiFi). Of course, for nodes that must communicate wirelessly and382

rely on battery power, low–power wireless communication is more or less the383

only option.384

When considering a truly open implementation of an embedded smart385

camera, incompatible communication options may be difficult to overcome.386

Many standard solutions, such as ZigBee, 6LoWPAN, WiFi and BlueTooth387

exist in the form of modules that can be connected to standard SPI, I2C388

or UART interfaces on MCUs; however, even in such cases, hardware from389

different vendors likely requires different, vendor–specific, code paths in cam-390

era’s software.391

In contrast, there are alternative solutions that do not require such ex-392

plicit level of adaptation. This is especially true when standard UART com-393

munication interfaces are used with less complex, time proven, communica-394

tion options, such as RS–232 and RS–485, or a truly widespread and standard395

interface, such as Ethernet. Consequently, communication tasks can be ab-396

18

stracted away to the point where they do not represent an obstacle to a397

widespread adoption anymore. Our proof–of–concept implementation shows398

that this is indeed possible.399

3.7. Image resolution400

Existing embedded–camera designs frequently exhibit a noticeable dis-401

crepancy between the resolution of imaging sensor and capabilities of the402

associated MCU, and especially the amount of RAM available for image403

storage and processing. Sensors often deliver color images of VGA or higher404

resolutions, whereas storing a whole such image requires 1 MB of RAM or405

more, which is well beyond the capacity of the low–end MCUs.406

Our proposal. Many state–of–the–art computer–vision algorithms do not407

rely on color information at all, and therefore a monochrome sensor is com-408

pletely sufficient. Typical RAM capacities from 32 kB to 128 kB correspond409

to monochrome images of resolutions from 50×50 to about 250×100, which410

should allow simultaneous storage of multiple images during processing. Ide-411

ally, there should be support for image acquisition with adjustable resolution,412

to enable online balancing between the available memory and desired visual413

details.414

Even though, intuitively, low resolutions seem insufficient for any com-415

puter vision application, the contrary is successfully demonstrated by designs416

like [14, 18] (30×30–pixel applications). Another example is CMUCam1 with417

the image resolution of 80×143 pixels [20]. Finally, if the resolution is too418

high for the MCU that processes the data (to the point that the whole im-419

age cannot be buffered in RAM), the camera is effectively downgraded from420

the mid–range design to the low–end one, since the majority of ready–made421

19

computer vision algorithms are prevented from running on such images.422

3.8. Image acquisition423

The main task of general–purpose smart cameras — and general–purpose424

VSN nodes — is reliable image processing and extraction of information425

required by downstream users (machines or people). Such concept is not426

far from the field of machine vision, even if the setup does not operate in427

an industrial environment. Consequently, the application of machine–vision428

guidelines [34] may be beneficial for many potential applications.429

One of the main guidelines in machine vision is the use of artificial illu-430

mination for scene normalization, which is mostly avoided in smart–camera431

designs due to power consumption of illuminators. The situation is contra-432

dictory, since the lack of scene normalization requires more CPU–intensive433

algorithms for image processing with adequately higher power consumption.434

Another important lesson from the field of machine vision is that the optics435

should be adapted to the problem at hand, thus making the best use of the436

available image resolution.437

Our proposal. We advise that the machine–vision guidelines are applied438

whenever possible. The wired power, if feasible, is a game–changer in this439

aspect; it on one hand enables use of illumination, which simplifies computa-440

tion, and on the other hand allows use of a more powerful CPU than in the441

case of a low–power design. Use of appropriate and possibly exchangeable442

lens (in contrast to cameras with integrated lens, such as those usually built443

into mobile phones) allows adaptation of optical–system parameters to a spe-444

cific application. This includes, but is not limited to, compensating for the445

previously–suggested lower image resolution by optimizing camera’s field of446

20

view. Furthermore, optical filters may be used to increase camera’s relative447

sensitivity to a particular wavelength (typically wavelength of camera’s own448

illuminator), thus reducing the interference from uncontrolled light sources,449

such as sunlight.450

3.9. Image debugging451

Development of computer–vision applications differs from the usual em-452

bedded programming in at least one important aspect. During debugging,453

the computer vision algorithm developer is not only interested in the plain454

numerical values of MCU’s registers and memory locations, but also benefits455

from being able to display raw or partially–processed images stored in MCU’s456

memory. Many smart–camera designs place no emphasis on this functional-457

ity, thus making embedded computer–vision development more challenging458

than necessary.459

Our proposal. Although image visualization is a higher–level concept than460

inspection of memory locations, it is possible to make image debugging semi–461

transparent by providing software interface for transferring image buffers462

from the smart camera to the host PC, where they can be displayed. While463

such solutions requires sufficient communication capabilities, they need to464

be implemented only in the development version of the smart camera. We465

demonstrate the concept of image debugging by piping live image buffers from466

our proof–of–concept smart camera to the host PC and displaying them in467

Matlab.468

21

4. Implementation of the proposed principles469

This section outlines possible implementations that reflect the previously470

discussed design principles. Following our classification of embedded–camera471

designs in Section 1, we focus on the low–end and mid–range category, as472

these represent significantly bigger challenge in that respect. Our recommen-473

dations are summarized in Table 2.474

4.1. Microcontroller and development toolchain475

The choice of MCU depends heavily on its integrated peripherals for476

CCIR image acquisition (Sections 4.4 and 4.5) and communication interfaces.477

Aspect Viable solutions

Microcontroller Min. 64 kB RAM, 256 kB FLASH, two UART/serial mod-
ules. High–speed host USB module (only for UVC video).
32–bit CPU core with GCC–based or other standard C
toolchain. C++ is desired but non–mandatory.

Power supply A pair of exclusive switching–mode voltage regulators for
wired and battery power (for each desired output voltage).

Communication RS–485 for wired communication. Arbitrary wireless mod-
ule with standard serial interface. Software abstraction for
network independent API.

Imaging sensor Analog CCIR (for monochrome low–resolution imaging) or
USB camera supporting the UVC standard.

Video digitizer
(for analog video)

Microcontroller’s built–in A/D converter capable of at least
1 MSamples/s, together with other required periphery.

Optics M12 interchangeable lens. Focal length depending on appli-
cation.

Illumination NIR LED diodes with optional diffusor and NIR filter.

Table 2: Standardized and commoditized technology for imaging and processing aspects
of embedded smart–camera designs.

22

Multiple serial/UART interfaces are necessary to implement a variety of stan-478

dard communication options, such as RS–232 and RS–485 (Section 4.3). The479

majority of 6LoWPAN, ZigBee and BlueTooth modules and some Ethernet480

interfaces can also be connected to serial interfaces.481

MCU should have enough RAM to store all simultaneously–needed images482

(Section 3.7) and other variables. In our view, 64 kB of RAM is a minimum,483

but 128 kB is much better, especially if Matlab Coder5 is used to translate484

Matlab code to the C language.485

Since image processing is computationally intensive task, a MCU based486

on a 32–bit CPU should be chosen; generally, it is less prudent to use 16–bit487

or lesser CPU architectures, especially if power supply is not an issue. In488

addition, MCUs that provide sufficiently advanced peripherals usually come489

with 32–bit CPUs anyway, and wider buses also enable faster access to RAM490

and peripherals. Hardware support for floating–point arithmetic is a bonus,491

but not mandatory for many tasks.492

CPU should be supported by a GCC6–based development toolchain to493

facilitate straightforward porting of an existing computer vision code; both494

native–C code, as well as code generated by Matlab Coder. Availability of495

a C++ toolchain, which is less common in the embedded world, makes it496

possible to use code based on OpenCV [9].497

4.2. Multiple power–supply options498

Notwithstanding the dilemma between the wired and battery power, it is499

beneficial, if the camera can be powered from a variety of power sources. In500

5http://www.mathworks.com/products/matlab–coder/
6http://gcc.gnu.org

23

addition to being flexible per se (allowing installation in variety of environ-501

ments), such feature comes handy when autonomy is being extended using502

rechargeable batteries, solar power (as for example in [33] and [19]) or pow-503

ered from other unreliable sources, like car battery during engine cranking.504

In the case of a wired power, the minimal upper end of input voltage range505

should be 12 V, which is used by many illuminators. Furthermore, camera506

operation on wider voltage ranges is easily achievable, which is needed for507

seamless integration into various environments. For example, MAX50337508

voltage regulator supports input voltages between 7.5 V and 76 V; this in-509

cludes 42 V, which is emerging as the new standard for car power supply.510

4.3. Communication solutions511

In contrast to frequently used low–power wireless solutions that mostly512

benefit battery–powered nodes, there exist excellent wired alternatives. One513

of them is the time–honored RS–485 standard, which is used in various in-514

dustrial and consumer setups, but appears to be completely overlooked by515

embedded smart–camera engineers. RS–485 has been devised for industrial516

environments that require robustness to electromagnetic interference, dis-517

tances up to 1.2 km and bandwidths up to 10 Mbit/s.518

For example, members of MAX485 family8 offer bandwidth of 2.5 Mbit/s519

and bus topology with up to 128 nodes at the price of $3–5 in small quantities;520

this is the price of a bare ZigBee transceiver integrated circuit, and one521

third of a price of a full ZigBee transceiver module. Several members of522

7http://datasheets.maxim–ic.com/en/ds/MAX5033.pdf
8http://datasheets.maxim–ic.com/en/ds/MAX1487–MAX491.pdf

24

MAX308x family9 provide bandwidth of 10 Mbit/s and bus topology with523

up to 256 nodes for nearly the same price10. Both models exist in DIP and524

SMD variants. Transceivers attach to standard UART interfaces. Connection525

between RS–485 devices consists of a three–wire bus, where one of the wires526

is a ground wire, and may be shared with power supply lines. In total, four527

wires are enough to provide both power supply and RS–485 communication528

to the node.529

In our tests, we easily achieved bit rate of 3.5 Mbit/s over 125 m of530

unshielded three–wire mains cable using MAX–485 transceiver that is de-531

clared for maximal throughput of 2.5.Mbit/s11. Although we certainly do532

not suggest to use the transceiver beyond its specifications, the experiment533

demonstrates that industry–certified and expensive RS–485 cables are not534

necessary for embedded–camera setups, which makes RS–485 an extremely535

attractive low–cost, high–range communication solution.536

4.4. Imaging sensor537

Due to popularity of digital–cameras and smartphones, many digital538

imaging sensors are commercially available; however, each has a different,539

non–standard, communication protocol. Such sensors are readily connectable540

to MCUs, but if a sensor is withdrawn from the market, the embedded design541

becomes obsolete. In addition, only high–volume customers can easily obtain542

9http://datasheets.maxim–ic.com/en/ds/MAX3080–MAX3089.pdf
10The choice of bandwidth is more influenced by slew–rate limitation, EMI emission and

length of connection than price.
11Transmission–reception of 3 GB of data without a single bit error. Configuration

consisted of one transmitter and one receiver. Practically achievable bandwidth degrades
by increasing number of nodes but experiment nevertheless demonstrates a huge safety
margin by exceeding the official bandwidth limits by 40%.

25

such sensors, whereas smaller groups often find such purchases challenging.543

To the best of our knowledge, there are only two widespread standards for544

imaging sensors that are not subject to the stated concerns: the time–honored545

analog video12, and the USB Video Class (UVC) specification13.546

UVC cameras deliver images in digital format, and may thus seem more547

suitable for embedded designs. However, although not required by the UVC548

standard, most of available UVC cameras mandate high–speed (480 Mbit/s)549

USB hosts, whereas many viable MCUs with built–in USB support can only550

cope with full–speed (12 Mbit/s) USB connectivity. In addition, UVC cam-551

eras generally deliver color images of high resolutions that require too much552

RAM for storage and processing (see Section 3.7). Consequently, we see UVC553

cameras as viable imaging sensors only in combination with high–end MCUs554

that come with sufficient amount of RAM and high–speed USB support.555

Considering all this, analog cameras present a viable imaging option. A556

monochrome (CCIR) version is sufficient for many practical purposes (Sec-557

tion 3.7). CCIR cameras of a size of a coin cost around $6, and can be558

obtained both in DIP or SMD housing.559

4.5. Video digitizer560

CCIR image of a sufficient quality for many computer–vision applications561

can be acquired solely using MCU’s internal peripherals, without any active562

external circuits, such as analog filters and amplifiers. The required peripher-563

als are an A/D converter and a voltage comparator with a voltage reference564

for detection of sync pulses. An A/D with sampling rate of 1 Msample/s565

12http://pdfserv.maxim–ic.com/en/an/AN734.pdf
13http://www.usb.org/developers/devclass docs/USB Video Class 1 1.zip

26

allows acquisition at horizontal resolution of 50 pixels, whereas with faster566

sampling it is possible to extend resolution up to the sensor’s physical limit.567

Two adjacent interlaced video frames may be combined to double the568

horizontal resolution at the same sampling rate, although the method is569

suitable only for quasi–static images due to characteristic blurring that occurs570

with fast moving objects. The full CCIR vertical resolution of 288 pixels571

is achievable regardless of the A/D sampling rate. The stated capabilities572

match the guidelines of Section 3.7.573

Figure 1 shows two images acquired using the presented approach; resolu-574

tions are 50×50 and 100×250 — the lower and the upper end of resolutions575

recommended in Section 3.7.576

Figure 1: Acquired images of a human hand without use of illuminators (left: 50 × 50
pixels, right: 100× 250 pixels).

4.6. Optics, illumination and filters577

According to the guidelines in Section 3.8, we recommend equipping cam-578

eras with exchangeable M12–type lens, which are a standard for low–cost579

(board) cameras. Several models cost around $5 and fit the previously–580

27

mentioned low–cost CCIR cameras. When the system is subjected to un-581

wanted visible light, NIR LED illuminators in combination with visible–light582

blocking NIR filter aid in scene normalization. Figure 2 demonstrates ben-583

efits of this approach, which makes segmentation of an object of interest (a584

hand) much easier.585

Figure 2: Scene normalization with illumination. Separation of object of interest (a hand)
from background becomes much easier compared to images in Figure 1, which were ac-
quired using the same optics and at same resolution (left: 50× 50 pixels, right: 100× 250
pixels).

5. Proof–of–concept embedded smart camera586

We illustrate the presented design principles on a proof–of–concept low–587

cost embedded smart camera, which can be used as a standalone entity or in588

role of a VSN node. Figure 3 presents the conceptual scheme.589

5.1. Hardware590

The MCU of our choice (U1 in Figure 3) is a high–end member of Mi-591

crochip’s PIC32 family14. It comprises 32–bit MIPS CPU, 512 kB of FLASH,592

14http://www.microchip.com/pagehandler/en–us/family/32bit/

28

Figure 3: A proof–of–concept embedded smart camera.

128 kB of RAM, 10–bit A/D converter with 1 Msample/s, two voltage com-593

parators, a settable voltage reference, six UART modules, four SPI modules594

and five I2C modules. Microchip offers a free graphical integrated develop-595

ment environment MPLAB–X15 with assembler and C toolchain. The chosen596

MCU is available only in SMD housing, but it can still be used on breadboard597

with an aid of Sparkfun adapter16.598

The preference for Microchip over other families and vendors is influenced599

by long–term stability of their products, especially in contrast to ARM pro-600

cessors, where different models are introduced and withdrawn fairly quickly.601

Also, the zero–price entry barrier for almost fully–featured development en-602

vironment is an important factor of consideration.603

From a hardware standpoint, a plain MCU can be converted into a smart604

camera simply by adding a CCIR camera and resistor R1 (Figure 3), therefore605

enabling the capture of up to 50×250 pixel images at 25 frames per second,606

and up to 100×250 pixel images by combining two interlaced video frames.607

15http://www.microchip.com/pagehandler/en–us/family/mplabx/
16http://www.sparkfun.com/products/9713

29

The other two integrated circuits in Figure 3 add connectivity options to608

the mote; part U2 takes care of RS–232 connection with the host PC17 for609

image debugging and exchange of processing results, while part U3 drives610

RS–485 bus network for VSN connectivity18. When wired power is used, it is611

possible to use the RS–485 ground wire as power ground, therefore four wires612

are enough to provide both power supply and connectivity to visual–sensor613

network.614

Our design requires extremely little specialized skills and can be built even615

by hobbyists, which lowers the bar for low–volume applications. Total price616

for the parts in Figure 3 together with omitted voltage regulators, lens and617

illuminators, but without the PCB and housing, is about $40 for purchases618

in small quantities.619

5.2. Software620

Applications are developed in the standard C programming language.621

Support for standard C code enables reuse of large code–base that exists622

in the computer–vision community. The camera itself does not force any623

boilerplate code or application skeleton for proper operation. In addition,624

Matlab code can be straightforwardly ported to the camera by compiling into625

C code using Matlab Coder. Our tests indicate that Microchip’s toolchain626

successfully compiles the resulting ports of Matlab code.627

For decoupling application and camera development, we developed a soft-628

17Depending on the actual RS–232 driver, a couple of additional discrete components
not shown in the scheme may be needed.

18RS–485 bus must be terminated at both ends with 120 Ω resistor. When nodes’ power
supplies are floating against each other, an RS–485 ground wire must be added to the bus,
and ground point of each node must be connected to the bus ground through 1 kΩ resistor.

30

ware library that offers platform– and imaging–sensor–independent API for629

image acquisition. It is integrated into an application purely in form of source630

code, without any binary objects. It offers C interface for image acquisition631

into arbitrary RAM locations. The image resolution is specified at each ac-632

quisition; it can be chosen from the resolutions that are available as per633

Section 4.5. The library also handles acquisition of images with a prescribed634

time delay, thus relieving the application developers from having to deal with635

timers. Furthermore, it takes care of video signal sampling and operates as636

a set of interrupt routines that run in the background, thus making CPU637

available for execution of application’s code even while the image acquisition638

is in progress.639

5.3. Illustrative examples640

A simple test of image–processing capabilities was done using a motion641

detector that acquires two 50× 50 images with a prescribed time delay. For642

each grabbed image, the following intermediate results are derived:643

• image of vertical first–order derivatives (1.22 ms),644

• image of horizontal first–order derivatives (1.21 ms),645

• gradient image; per–element integer squared root of summed squares646

of vertical and horizontal derivative (20.02 ms),647

• blurred image; obtained from gradient image using 5×5 averaging filter,648

together with scaling so that only additions are performed (2.58 ms).649

The total execution time of the above steps is 25.03 ms; the timings are650

for code compiled without optimization, which demonstrates the level of651

31

performance offered by the free version of the toolchain.652

The final image is produced by thresholding the absolute differences be-653

tween two consecutive blurred images (1.60 ms). Motion is detected if the654

sum of pixels in this image (0.59 ms) exceeds another prescribed threshold.655

Please note that this is not a state–of–the–art motion detector but rather a656

test–bed for timing common image–processing operations. According to the657

results, the camera is capable of running the described detector at full 25658

frames–per–second, and still have slightly more than 12 ms (30 %) of spare659

time during each frame.660

Computing variance of the resulting image (duration 31.94 ms) is also661

an instructive measure of performance as it involves floating point arith-662

metic. The chosen MCU does not offer hardware floating–point support,663

which makes the computation rather slow. The last performance test in-664

volving the motion detector is computing histogram of the resulting image665

(duration 0.97 ms) and associated entropy using a look–up table together666

with a proper scaling that enables operation in the integer domain (dura-667

tion 0.13 ms). For illustration, the code optimization that comes with the668

licensed version of the toolchain reduces image–processing steps from 25 ms669

to 8.1 ms, whereas variance computation time drops from 32 ms to 17.7 ms.670

The RAM capacity of the camera allows storage of all intermediate re-671

sults, which makes it possible to transfer and examine them on the host PC672

using the image–debugging facilities, as shown in Figure 4. Furthermore, we673

have implemented two–way debugging facilities, which enable two images to674

be uploaded from the host PC for processing on the camera. This way, algo-675

rithms can be tested on a prescribed set of images (e.g., a standard dataset)676

32

in the actual working environment instead on an emulator.677

Figure 4: Image debugging of the motion detector. First row, from left to right: the first
input image, vertical first–order derivatives, horizontal first order derivatives, gradient
image. Second row: the second input image and its intermediate results. Third row:
blurred variations of the first and second gradient image, thresholded difference of blurred
images, histogram of the last image (with omitted frequency of pixels with zero value).

5.4. Additional tests678

To illustrate the abilities of our proof–of–concept design, we ported sev-679

eral well–known algorithms to the developed platform and measured their680

performance in terms of processing time per frame. We also ran the same681

tests on a range of hardware platforms to establish how they compare to our682

smart camera.683

33

5.4.1. People tracker684

With only minimal modifications we successfully ported a basic people–685

tracking application that was originally developed in the C programming lan-686

guage under Linux. The algorithm is based on sequential image differencing687

and blob tracking, with the Munkres assignment algorithm [35] as the final688

tracking stage. The code on the camera runs at 20–25 frames–per–second at689

resolution 50× 50.690

5.4.2. Object–recognition scheme and people detector691

We also implemented a simple object–recognition scheme, using either692

HOG descriptor [36] or region covariance descriptor [37]. For each frame, it693

performs a descriptor extraction and calculates its distance to the reference694

descriptor. The recognition runs with 5.6 and 7.4 frames–per–second, re-695

spectively (at resolution of 50× 50 pixels). Finally, we run the combination696

of the HOG descriptor and the linear SVM classifier, trained off–line as a697

people detector (training was performed in advance on a PC). This test was698

done at the resolution of 50×100 pixels – which is supported by the camera699

as well. The test ran at approximately 2.5 frames–per–second. The detailed700

timings are provided in the next section (Table 3).701

Matlab code for covariance descriptor and the corresponding distance is702

presented in Figure 5. It was ported to our platform using Matlab Coder.703

Note that the code includes the computation of generalized eigenvalues, a704

task that is seldom implemented on MCUs. We feel that the possibility705

of running code that was developed in Matlab truly constitutes the Holy706

Grail of the embedded computer vision, and illustrates the versatility of the707

proposed approach.708

34

% covariance de s c r i p t o r f o r the
% cen t ra l (32 x32) reg ion of a
% 50x50 p i x e l , 8− b i t image .
function C = cov de s c r i p to r (I)

% Copy , crop , convert
I f = s i n g l e (I (8 : 4 1 , 8 : 4 1)) ;

% Convolut ion masks
f 1 = [−1 0 1] ;
f 2 = [−1 2 −1] ;

% Der i v a t i v e s
Ix = conv2 (f1 , I f) ;
Iy = conv2 (f1 , 1 , I f) ;
Ixx = conv2 (f2 , I f) ;
Iyy = conv2 (f2 , 1 , I f) ;

% Features
I f = I f (2 : 3 3 , 2 : 3 3) ;
I f = I f (:) ;
c oo r d i na t e s = 1 : 3 2 ;
X = repmat (coord inates , 3 2 , 1) ;
Y = repmat (coord inates ’ , 1 , 3 2) ;
X = X(:) ;
Y = Y(:) ;
Ix = Ix (2 : 3 3 , 3 : 3 4) ;
Ix = Ix (:) ;
Iy = Iy (3 : 3 4 , 2 : 3 3) ;
Iy = Iy (:) ;
Ixx = Ixx (2 : 3 3 , 3 : 3 4) ;
Ixx = Ixx (:) ;
Iyy = Iyy (3 : 3 4 , 2 : 3 3) ;
Iyy = Iyy (:) ;
F = [I f , X, Y, Ix , Iy , Ixx , Iyy] ;

% Descr ip tor
C = cov (F) ;

% Distance between the two
% covariance d e s c r i p t o r s
function D = di s tance (C1 , C2)
D = sqrt (sum(log (eig (C1 ,C2)) . ˆ 2)) ;

Figure 5: Matlab code for computing the region covariance descriptor and generalized–
eigenvalues distance. This code is directly portable to our camera using Matlab Coder.

35

5.5. Comparison to widely–used hardware platforms709

In addition to testing our camera design, we ran the same battery of tests710

on the following hardware platforms:711

• Axis 207W, an ARM9TDMI–based IP camera running Linux (dis-712

continued).713

• Axis P1346, a HD IP camera with a CRIS ARTPEC–3 CPU. This714

and the previous camera are commercial products, manufactured by715

Axis Communications. They run Linux, and for licensing reasons, the716

development toolchains are provided for both. We tested the cameras717

without the video clients connected, therefore, their CPU load before718

the test was negligible.719

• Raspberry Pi, a single–board computer, intended as a tool for teach-720

ing computer science, powered by ARM11–based ARM1176JZF–S pro-721

cessor at 700 MHz, running Linux.722

• A high-end PC with Intel Core i7 950 CPU at 3.07 GHz, running723

Linux.724

In all cases, GCC compiler for each platform was used to compile the same725

C code, with full optimization enabled, except for the covariance test on Axis726

207W, where the optimization produced broken code. In all cases, the code727

utilized only a CPU; on PC, only a single core of a quad–core CPU was used.728

Table 3 presents a comparison of results between all the tested architectures.729

Note that we do not present the detailed results of the tracker test, as the730

performance varies significantly with the number of objects detected. In all731

36

cases, the camera draws 160 mA of current at 12 V without the infrared LED732

illuminator. This value includes the energy cost of voltage conversion. The733

whole setup consumes 360 mA with the illuminator turned on. (The mote734

without the illuminator can be powered from 5 V with an equal current735

consumption.)736

Platform Covariance [ms] HOG [ms] HOG+SVM [ms]

Axis 207W 2025† 1845 3848
Axis P1346 262 261 574
Raspberry Pi 2.71 3.48 7.48
Intel PC 0.09 0.14 0.44
Our camera 135 180 395

† optimization disabled

Table 3: Comparison of the running times for the three algorithms on the five tested
architectures. The values represent the average time needed for the actual computation.
Covariance and HOG tests were run at 50×50 pixel resolution, while the people detector
(HOG+SVM) was run at 50×100 pixels.

5.6. Exemplary communication abstraction737

Section 3.6 mentions the idea of isolating core application’s code from738

communication details. To verify the feasibility of the approach, we devel-739

oped second smart–camera prototype by connecting a CCIR camera to Mi-740

crochip’s PIC32 Ethernet Starter Kit19, which consists of the same PIC32741

MCU combined with all hardware required for establishing an Ethernet742

connection. In conjunction with Microchip’s TCP/IP stack20, such a node743

quickly becomes TCP/IP compliant.744

19http://www.microchip.com/stellent/idcplg?IdcService=SS GET PAGE&nodeId=2615&dDocName=en545713
20http://www.microchip.com/stellent/idcplg?IdcService=SS GET PAGE&nodeId=2505¶m=en535724

37

On both prototypes, a simple server application (written in C) services745

requests from the host–PC client (written in Matlab), such as acquiring im-746

ages at different resolutions, reading and writing of image buffers, sending747

configuration information, etc. For both RS–232 and Ethernet, a set of rou-748

tines for sending and receiving data, data availability testing, buffer–full state749

indication, etc., was developed using the same function prototypes. For each750

connection type, we prepared a C header file containing preprocessor macros751

that translate into appropriate function calls.752

The end result are two camera prototypes that, in spite of having two753

radically different connection types, share the same application code. This754

shows that isolation of embedded smart–camera applications from details of755

communication options and hardware implementations is indeed both possi-756

ble and beneficial.757

6. Conclusion758

In this paper, we identified several issues in the field of embedded smart759

cameras, that in our opinion hinder widespread adoption of these devices.760

Our research was partially motivated by our background in computer vision;761

to us, a general–purpose embedded smart camera is a vehicle for unobtru-762

sive and gradual introduction of computer–vision technology into everyday763

use. Therefore, we are especially concerned with issues such as long–term764

design stability, commoditization, generalization, rapid application develop-765

ment and code reusability.766

We certainly do not suggest that widely–discussed issues such as low767

power and wireless communications do not require any attention from the768

38

embedded camera community. However, we feel that there are significant769

but overlooked opportunities for embedded camera designers to use proven770

and well–established technologies to deploy computer vision and smart cam-771

eras into widespread use. To illustrate our point, we presented our camera772

design, which does not further state–of–the–art technology–wise, but on the773

other hand possesses many properties we would like to see in a modern,774

leading–edge smart camera. It is flexible in a sense that it allows the ap-775

plication of machine vision principles to solutions based on such camera. It776

allows reasonably fast communications, thus it can be used as a part of a777

larger camera network. It enables computer–vision engineers to reuse a large778

body of code developed for other platforms, and it allows computer–vision779

scientists to quickly develop new algorithms using widely–used engineering780

tools, such as Matlab. Finally, since it is made up of relatively standard or781

widely used components, it should allow solution providers to deploy and sell782

products based on such camera with relatively low risk of quick obsolescence.783

We are not proposing our camera as a reference design for embedded smart784

cameras, but we hope that the principles outlined in this paper gain wider785

adoption in the embedded smart camera community and find their way into786

next generation of cameras.787

References788

[1] S. Soro, W. Heinzelman, A Survey of Visual Sensor Networks, Advances789

in Multimedia 2009 (2009) 21 pages.790

[2] Y. Charfi, N. Wakamiya, M. Murata, Challenging Issues in Visual Sensor791

Networks, IEEE Wireless Communications 16 (2009) 44–49.792

39

[3] I. T. Almalkawi, M. Guerrero Zapata, J. N. Al-Karaki, J. Morillo-Pozo,793

Wireless multimedia sensor networks: Current trends and future direc-794

tions, Sensors 10 (2010) 6662–6717.795

[4] B. Tavli, K. Bicakci, R. Zilan, J. M. Barcelo-Ordinas, A survey of visual796

sensor network platforms, Multimedia Tools and Applications (2011)797

1–38.798

[5] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, W. Wolf, The evo-799

lution from single to pervasive smart cameras, in: Second ACM/IEEE800

International Conference on Distributed Smart Cameras (ICDSC 2008),801

pp. 1–10.802

[6] Z. Zivkovic, R. Kleihorst, Smart Cameras for Wireless Camera Net-803

works: Architecture Overview, in: H. Aghajan, A. Cavallaro (Eds.),804

Multi–Camera Networks, Academic Press, 2009, pp. 497–510.805

[7] B. Rinner, W. Wolf, An Introduction to Distributed Smart Cameras,806

Proceedings of the IEEE 96 (2008) 1565–1575.807

[8] W. Caarls, P. P. Jonker, H. Corporaal, SmartCam: Devices for Em-808

bedded Intelligent Cameras, in: PROGRESS 2002, Proceedings of 3rd809

Seminar on Embedded Systems.810

[9] G. Bradski, The OpenCV Library, Dr. Dobbs Journal of Software Tools,811

2000.812

[10] H.-N. Nguyen, A.-C. Lee, Real Time Tracking Multiple YUV 24–Bit813

Color Objects with 8–Bit MCU–Based Embedded Vision System, in:814

40

Proceedings of the Fourth International Conference on Innovative Com-815

puting, Information and Control (ICICIC’09), pp. 160–164.816

[11] A. Aggarwal, Embedded Vision System, in: Proceedings of817

IEEE/ASME International Conference on Mechtronic and Embedded818

Systems and Applications (MESA’08), pp. 618–621.819

[12] A. Kerhet, M. Magno, F. Leonardi, A. Boni, L. Benini, A low-power820

wireless video sensor node for distributed object detection, Journal of821

Real-Time Image Processing 2 (2007) 331 – 342.822

[13] C. Park, P. H. Chou, ecam: ultra compact, high data-rate wireless sensor823

node with a miniature camera, in: Proceedings of the 4th international824

conference on Embedded networked sensor systems, SenSys ’06, pp. 359–825

360.826

[14] M. Camilli, R. Kleihorst, Demo: Mouse Sensor Networks, the Smart827

Camera, in: The Fifth ACM/IEEE International Conference on Dis-828

tributed Smart Cameras (ICDSC’11), pp. 1–3.829

[15] M. Viola, M. J. Jones, P. Viola, Fast Multi–View Face Detection, in:830

Proceedings of Computer Vision and Pattern Recognition (CVPR’03).831

[16] M. Cristani, M. Farenzena, D. Bloisi, V. Murino, Background Subtrac-832

tion for Automated Multisensor Surveillance: A Comprehensive Review,833

EURASIP Journal on Advances in Signal Processing 2010 (2010) 24834

pages.835

[17] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,836

41

M. Srivastava, Cyclops: In Situ Image Sensing and Interpretation in837

Wireless Sensor Networks, in: SenSys, ACM Press, 2005, pp. 192–204.838

[18] I. Downes, L. B. Rad, H. Aghajan, Development of a mote for wireless839

image sensor networks, in: Proc. of COGnitive systems with Interactive840

Sensors (COGIS).841

[19] M. Magno, D. Brunelli, P. Zappi, L. Benini, A solar-powered video sen-842

sor node for energy efficient multimodal surveillance, in: 11th EUROMI-843

CRO Conference on Digital System Design Architectures, Methods and844

Tools (DSD ’08), pp. 512–519.845

[20] V. Rana, M. Matteucci, D. Caltabiano, R. Sannino, A. Bonarini, Low846

cost smartcams design, in: IEEE/ACM/IFIP Workshop on Embedded847

Systems for Real-Time Multimedia (ESTImedia 2008), pp. 27–32.848

[21] A. Rowe, A. Goode, D. Goel, I. Nourbakhsh, CMUcam3: An Open849

Programmable Embedded Vision Sensor, Technical Report CMU–RI–850

TR–07–13, Robotics Institute, Carnegie Mellon University, Pittsburgh,851

Pennsylvania, 2007.852

[22] M.-Y. Chiu, R. Depommier, T. Spindler, An Embedded Real–time Vi-853

sion System for 24–hour Indoor/Outdoor Car–Counting Applications,854

volume 3, IEEE Computer Society, 2004, pp. 338–341.855

[23] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. Lobaton,856

M. Meingast, S. Oh, S. Wang, P. Yan, A. Yang, C. Yeo, L.-C. Chang,857

J. D. Tygar, S. Sastry, Citric: A low-bandwidth wireless camera net-858

42

work platform, in: Second ACM/IEEE International Conference on859

Distributed Smart Cameras (ICDSC 2008), pp. 1–10.860

[24] W.-C. Feng, E. Kaiser, W.-C. Feng, M. Le Baillif, Panoptes: Scalable861

low-power video sensor networking technologies, in: In MULTIMEDIA862

03: Proceedings of the eleventh ACM international conference on Mul-863

timedia, ACM Press, 2003, pp. 562–571.864

[25] M. Bramberger, R. P. Pflugfelder, A. Maier, B. Rinner, B. Strobl,865

H. Schwabach, A smart camera for traffic surveillance, in: In Pro-866

ceedings of the First Workshop on Intelligent Solutions in Embedded867

Systems, pp. 153–164.868

[26] H. Andrian, K.-T. Song, Embedded CMOS Imaging System for Real–869

Time Robotic Vision, in: IEEE/RSJ International Conference on Intel-870

ligent Robots and Systems (IROS 2005), pp. 1096–1101.871

[27] M. Bramberger, R. P. Pflugfelder, A. Maier, B. Rinner, B. Strobl,872

H. Schwabach, A Smart Camera for Traffic Surveillance, in: Pro-873

ceedings of the First Workshop on Intelligent Solutions in Embedded874

Systems (WISES), pp. 153–164.875

[28] T. Loten, R. Green, Embedded Computer Vision Framework on a Mul-876

timedia Processor, in: Proceedings of 23rd International Conference on877

Image and Vision Computing New Zealand (IVCNZ’08), pp. 1–5.878

[29] R. Kleihorst, A. Abbo, B. Schueler, A. Danilin, Camera Mote with a879

High-Performance Parallel Processor for Real–Time Frame-based Video880

43

Processing, in: First ACM/IEEE International Conference on Dis-881

tributed Smart Cameras (ICDSC’07), pp. 109–116.882

[30] R. Kleihorst, B. Schueler, A. Danilin, M. Heijligers, Smart Camera Mote883

with High Performance Vision System, in: ACM SenSys Workshop on884

Distributed Smart Cameras.885

[31] S. Hengstler, H. Aghajan, A Smart Camera Mote Architecture for Dis-886

tributed Intelligent Surveillance, in: ACM SenSys Workshop on Dis-887

tributed Smart Cameras.888

[32] D. Xie, T. Yan, D. Ganesan, A. Hanson, Design and implementation of889

a dual-camera wireless sensor network for object retrieval, in: Interna-890

tional Conference on Information Processing in Sensor Networks (IPSN891

’08), pp. 469–480.892

[33] T. Celik, H. Kusetogullari, Solar-powered automated road surveillance893

system for speed violation detection, IEEE Transactions on Industrial894

Electronics 57 (2010) 3216–3227.895

[34] B. G. Batchelor, P. F. Whelan, Machine Vision Systems: Proverbs, Prin-896

ciples, Prejudices & Priorities, in: In Proceedings of Applied Machine897

Vision Conference, pp. 7–19.898

[35] H. W. Kuhn, The Hungarian Method for the Assignment Problem, in:899

Naval Research Logistics Quarterly, volume 2(1–2), pp. 83–97.900

[36] N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human De-901

tection, in: IEEE Computer Society Conference on Computer Vision902

and Pattern Recognition (CVPR’05), volume 1, pp. 886–893.903

44

[37] O. Tuzel, F. Porikli, P. Meer, Region Covariance: A Fast Descriptor904

for Detection and Classification, in: European Conference on Computer905

Vision (ECCV), volume 7.906

45

Boštjan Murovec received B.Sc., M.Sc. and Ph.D. degrees in Electrical engineering at907

the Faculty of Electrical Engineering, University of Ljubljana, in 1996, 1999 and 2002,908

respectively. He is currently an assistant professor at the Machine Vision Laboratory at909

the Faculty of Electrical Engineering, University of Ljubljana. His research interests lie in910

image processing, pattern recognition, embedded design, combinatorial optimization and911

sequence analysis.912

913

Janez Perš received B.Sc., M.Sc. and Ph.D. degrees in Electrical engineering at the914

Faculty of Electrical Engineering, University of Ljubljana, in 1998, 2001 and 2004, re-915

spectively. He is currently an assistant professor at the Machine Vision Laboratory at916

the Faculty of Electrical Engineering, University of Ljubljana. His research interests lie917

in image–sequence processing, object tracking, human–motion analysis, dynamic–motion–918

based biometry, and in autonomous and distributed systems.919

920

46

Rok Mandeljc received his B.Sc. degree in electrical engineering from the Faculty of921

Electrical Engineering, University of Ljubljana, Slovenia, in 2010. He is currently pursuing922

the Ph.D. degree as Junior Researcher at Machine Vision Laboratory at the Faculty of923

Electrical Engineering, University of Ljubljana. His research interests include computer924

vision, image processing and data fusion in context of multi–view and multi–modal person925

localization and tracking.926

927

Vildana Sulić Kenk received her B.Sc. and Ph.D. degrees from the Faculty of Elec-928

trical Engineering of the University of Ljubljana, Slovenia in 2006 and 2011, respectively.929

Currently, she is a researcher at the Machine Vision Laboratory at the Faculty of Electri-930

cal Engineering, with her interests in computer vision, image processing, human–motion931

analysis and visual–sensor networks.932

933

47

Stanislav Kovačič is a professor, a vice dean and the head of the Laboratory for934

Machine Vision at the Faculty of Electrical Engineering, University of Ljubljana. He was935

a visiting researcher in the GRASP Laboratory at the University of Pennsylvania, the936

Technische Fakultät der Friedrich–Alexander–Universität in Erlangen, and at the Faculty937

of Electrical Engineering and Computing, University of Zagreb. His research is focused on938

various aspects of image and video analysis with applications in medicine, industry and939

sports.940

48

