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A Two-Stage Dynamic Model for Visual Tracking
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Abstract—We propose a new dynamic model which can be
used within blob trackers to track the target’s center of gravity.
A strong point of the model is that it is designed to track a
variety of motions which are usually encountered in applications
such as pedestrian tracking, hand tracking and sports. We
call the dynamic model a two-stage dynamic model due to its
particular structure, which is a composition of two models: a
liberal model and a conservative model. The liberal model allows
larger perturbations in the target's dynamics and is able to
account for motions in between the random-walk dynamics and
the nearly-constant-velocity dynamics. On the other hand, the
conservative model assumes smaller perturbations and is usedFig. 1. Examples of using blobs to model entire persons (agbpaperson’s
to further constrain the liberal model to the target's current hand (d). The blobs are parameterized by ellipses.
dynamics. We implement the two-stage dynamic model in a two-
stage probabilistic tracker based on the particle filter and apply

it to two separate examples of blob tracking: (i) tracking entire . . .
persons and (ii) tracking of a person’s hands. Experiments show associated with the dynamics of the tracked target. One way t

that, in comparison to the widely used models, the proposed deal with these uncertainties is to apply a recursive Baljtes fi
two-stage dynamic model allows tracking with smaller number (see, e.g., {l, page 638) to continuously estimate a posterior
of particles in the particle filter (e.g., 25 particles), while achieving probability density function (pdf) over the parameter spat
smaller errors in the state estimation and a smaller failure rate. o target's model. The mode, or the mean, of the posterior ca
The results suggest that the improved performance comes from then be taken as an estimate of the target's state (.gtiqosi
the model’s ability to actively adapt to the target’s motion during ! : - ) .
tracking. An early analytical solution to the recursive Bayes, which
approximates the posterior by a single Gaussian distabuti
was presented in the sixties. Although the original deidvat
was not presented strictly in a Bayesian form it is the first
solution to the recursive Bayes and is nhow commonly known
S ) ~as the Kalman filterd]. The assumptions which are used to
Tracking in video data is a part of a broad domain Gferive the Kalman filter are often too restrictive for visual
computer vision that has received a great deal of attentiggcking and pose a major drawback for its application in
from researchers over the last twenty years. One of themeasgs |- jife scenarios. The reason is that the measuremecegso
is that the computer-vision-based visual tracking has douRnq the target's dynamic model are assumed to be linear and
its way into many real-world applications such as visughayssian: these assumptions are often severely violated in
surveillance, video editing, analysis of sport eventseRiatic the visual tracking. In the past decade, Monte-Carlo-based
analysis in medical applications, and human-computer-intg,ymeric approximations of the recursive Bayes filter, calle
faces. This gave rise to a body of literature, of which SUSVeYhe particle filters §], have become a widely-used approach
can be found in the work of Aggarval and Call,[Gavrila {5 tracking, due to their ability to account for much more
[2], Gabriel et al. f], Hu et al. [] and Moeslund et al.q], general processes than the Kalman filter. A central point of
[6]. In many applications, the tracked object (the target) {ge particle filters is that they approximate the posterior a
gpproximated by a single region or a blob. The blob’s in.teriqme time-step by a number of weighted particles and can
is used to extract the target's appearance model, while #g;s deal with a large variety of shapes of the posterior. The
blob's centre of gravity is used to encode the target's @sit osterior for the next time-step is obtained by sampling and
in the image. T_hese tracker; are cal_led the b_Iob tra‘j‘k?fl%pagating the particles through the target's dynamicehod
and are convenient for tracking a variety of objects, sinGg g re-evaluating their weights against the visual data Th
they typically make only weak assumptions about the ol§eclariance of the estimated state will largely depend on the
shape. Some examples of modelling a human body and oRlymber of particles used and the strategy by which they
a part of a human body by a blob are shown in Figlre 516 gllocated at hypothesized states. For example, in many
A major difficulty in visual tracking is the uncertainty gppjications it is difficult to derive a good dynamic model
associated with the visual data as well as the uncertaigly ihe target's dynamics and usually a simple dynamic model
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estimate of the target’s state. As a result, the variancé®f tcurrent motion and the estimates from different trackees ar
estimated state value increases and can even lead to a thes combined accordingly. A detailed treatment of differe
of track. Two solutions are commonly used in practice: (§ombination schemes is given ind). The interacting multiple
increase the number of particles and/or (ii) use clevetesiias model approaches based on Kalman filters have received
to allocate the particles close to the modes of the posterioonsiderable attention in the work on aircraft trackinghwit
Such strategies may be applications of an auxiliary-véialradars P(], [21], and an application to camera gaze control
particle filter [LO], local-likelihood sampling 11], a boosted can be found in §2]. A particle-filter-based implementation
particle filter [LZ] or hybrid applications with hill-climbing of IMM can be found in P3], [24], [25]. A drawback of
routines [L3], to name just a few. IMM approaches is that the complexity of tracking increases

An alternative, by which the above problems of an increaséldamatically, since now the probability distributions &ato
variance of the state estimator can be addressed, is to tise bbe estimated (jointly) over each of the interacting modkis.
models of the target's dynamics to more efficiently allotate particle filters, the likelihood function of observationashto
particles in the first place. Good allocation of particlesoal be evaluated for each hypothesis (particle). In visuakirag
improves tracking by reducing the uncertainty which ariseslculating the likelihoods is usually time-consumingcgin
from the visual data, thus achieving a more reliable traok. the visual model has to be calculated for each particle and
this paper we focus on such an approach. We propose a rmnpared to the reference model. Thus computational sffort
dynamic model for tracking the target's centre of gravity if visual tracking with particle filters is considerably ieased
blob trackers. The model is implemented within the framdwomhen using IMM approaches.
of particle filters and is designed to track human motion® Th For many applications, such as tracking in sports, gesture-
dynamic model allows an improved tracking in comparisobased human-computer interfaces and surveillance, itfis di
to the widely-used dynamic models while at the same tinfieult to find a compact set of rules that govern the target's
requires only a low number of particles in the particle filtedynamics. Because of this, and the computational complexit
We provide simple rules to selecting the model’'s parametassociated with the IMM methods, researchers usually model
and demonstrate its effectiveness quantitatively as well the target’s motion using a single model. In practice, tcec@v
qualitatively with examples of tracking person’s body arithw range of different motions, a common solution is to choose ei
examples of tracking person’s hands. thera RW P6], [27], [13] ora NCV [28], [12], [29], [30], [31],
[32], [33] model, and increase the process noise to account
for the unmodelled dynamics. An obvious drawback of this
A. Related work approach is that poorly modelling dynamics can signifigantl

When the dynamics of the tracked object are known, thieteriorate the tracker's performance. Another drawbatk,
search space of the parameters to be estimated duringrigackibsence of additional solutions, is that the increase of the
can be constrained considerably. In this respect, mostef ffrocess noise requires an increase of the number of the
work on human dynamic models has been focused on derivipgrticles to maintain a good track, which can in turn slow
detailed kinematic models for human pose estimation, e.glown the tracking and rendering the trackers less apptepria
[14], [15], [16], [17]. However, in blob trackers, when trackingfor realtime applications.
entire persons or only a part of a person (see Fiduia ex- To alleviate the increasing variance of the estimation when
amples), the motion cannot be constrained as much in peactigsing a random walk model with a large process noise, Okuma
and simpler dynamic models are used instead. The commairal. [L7] integrated a particle filter with an AdaBoost object
choices are a random-walk (RW) model or a nearly constagiétector. Another approach to variance reduction was jseqbo
velocity (NCV) dynamic model; seel {] for a good treatment by NeedhamZ7], who applied a Kalman filter to further filter
of these. The RW model assumes that the target’s velocihe estimates from the particle filter. An ad-hoc scheme was
is a white-noise sequence and is thus temporally completefien used tomove the particles in the particle filter closer
non-correlated. On the other hand, the NCV model assumesthe Kalman-filtered estimate. In a multiple-interacting
that velocity is temporally strongly correlated, sincessames targets application3/], a similar approach was applied with
that the changes in velocity arise only due to the white noise collision-avoidance algorithm: Each time a target would
of the acceleration. The RW model thus describes the targesbllide with another target, the dynamic model for one targe
dynamics best when the target performs radical accelesatiavould be modified to move particles in the particle filter away
in random directions, e.g. when undergoing abrupt movesnerffom the other target. Both approaches have in common the
However, when the target moves in a certain direction (whigfoncept that a single dynamic model is used within a particle
is often the case in, e.g., surveillance), the RW model perfo filter and another model is used on top of a particle filter to
poorly and the motion is better described by the NCV modeémmprove the final estimation of the target’s state; we adbijst t

In practice, the target will undergo various different tymé concept in our approach.
motion and therefore, to cover a range of possible dynaniics o
the tracked object, some authors have proposed an intggacti
multiple model (IMM) approach. In this approach multiple>: OUr @pproach
trackers, each with a different dynamic model, are used inWe propose a two-stage dynamic model for tracking the
parallel for tracking the target. A special scheme is usedrget’s centre of gravity in blob trackers. The dynamic elod
to determine how well each model describes the targetsdesigned to account for motions which we usually observe
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in tracking persons. We call the modeltso-stage dynamic time-stepk is approximated by a new weighted particle set
model due to its particular structure, which is compositiop(xy|y1.x) ~ {x;“,w;;)}gv:l. The current state of the target
of two models: a liberal and a conservative model. Th#&, can then be estimated as the minimum mean-square error
liberal model allows larger perturbations in the targets d (MMSE) estimate over the posteriptxy|yi.x)

namics and is able to account for motions in between the N N

RW dynamics and the NCV dynamics. This is achieved Xy, :Zi:l xw?. )
by explicitly modelling the target’s velocity as a non-zero

mean Gauss-Markov process. The conservative model assumes [Il. THE TWO-STAGE DYNAMIC MODEL

smaller perturbations in the velocity and is used in to feirth A, The liberal model
constrain the liberal model to the target's current dynamic As noted in the introduction, the conceptual difference

we impl_en_’nent the proposgd dynamic model ir) a t‘.NO'Sta%%tween RW and NCV models is that they assume two
probabilistic tracker which is based on the particle filiafe extremal views on the temporal correlation of the velocity.

apply the proposed dynamic model to examples of trackighy, s rationale we can obtain a more general model by
entire persons and to examples of tracking person’s hands

: . 3 simply treating the velocity as a correlated (colored) epis
The outline of the remainder of the paper is as follows. IBut without deciding orthe extent to which it is correlated.

Sectionll we first briefly overview the bootstrap particle mte% convenient way to model the correlated noise is to use a

In Sectionlll-A we develop the liberal dynamic model ands, \ss-Markov process (GMP). The GMP has been previously
analyze how the parameters of the model influence the mod ,§ed with some success in modelling the acceleration of an

_structure. The conservative model is proposed in_Sed:IicBL ajrplane in flight (see, e.g.3f], [29], [40]), which allowed an
in Sectionlll-C we propose the two-stage dynamic model ang, ., eq tracking of air maneuvers. In this section we show

its application to blobtracking in Sectidii-D . In SectionlV that by modelling the velocity with a Gauss-Markov process,
results of the experiments are reported, and conclusions @fe obtain a model of which RW and NCV are only special
drawn in SectiorV. cases and which is able to account for more general dynamics;
we will call this model the liberal model. In all our subseqtie
[l. BOOTSTRAP PARTICLE FILTER experiments we have used separate dynamic models to model

We give here only the basic concept of the particle filteff€ target's horizontal and vertical motion independenitife
and notations, and refer the reader f][for more details. therefore require derivation of the model for one-dimenalo
Let x;_; denote the state (e.g., position and size) of a trackBiPblems only. After derivation of the liberal model we also
object at time-stefz — 1, lety,_; be an observation dt— 1, Provide an analysis of its parameters.
and lety,.,_; denote a set of all observations upite 1. From  We start by noting that changes in the positioft) arise
a Bayesian point of view, all of the interesting informatioflu€ to a non-zero velocity(t) of the target, i.e.i:(t) = v(t).
about the target's state,_; is encompassed by its posterior’he velocityv(t) is modelled as a non-zero-mean correlated
p(xk_1|y1.x_1). During tracking, this posterior is recursivelynoIsé
estimated as the new observatignsarrive, which is realized v(t) = o(t) + 0(1), (4)

in two steps: predictionl) and updateZ), whered(t) denotes a zero-mean correlated noise aftdl is
the current mean of the noise; we will céllt) the input ve-
PXk[Y10-1) = /p(x’f‘xkfl)p(xkfl‘Y1¢’f*1)dxk*1’ (@) 1ocity. we model the correlated noisét) as a Gauss-Markov
process with an autocorrelation functid®y(r) = oe P17l
p(xk|y1:k) o< p(yr|xk)p(Xk]y10-1)- () whereo? is the variance of the process noise, ahds the
The recursion 1,2) for the posterior, in its simplest form, correlation time constant. To derive the dynamic model ef th

thus requires a specification of a dynamical model desgibiR"0c€ss 4) in a form which we can use for tracking, we have
the state evolutiop(xy|x;_1 ), and a model that evaluates thdo first find a stochastic dlﬁgrentlgl equation (s.d.e.) lo¢ t.
likelihood of any state given the observatipfy|x). process 4), governed by a white-noise process, and then find

In our implementation we use a simple bootstrap particls discretized counterpart.
filter [36], [37). The posterior at time-step — 1 is estimated Applying a shaping filter (see, e.g41], page 137) to the
by a finite Monte Carlo set of stateéjzl and their respective correlated noisé(t) gives the following s.d.e.
weights wi” |, p(xp_1lyrn-1) ~ {x\’, wi’ }¥,, such 0(t) = =Bo(t) + Vgeu(t), )
D e aring o mefees. — 2 i the spectial densy f he exuivalen
! . . ' . “White-noise process acting arjt) and whereu(t) denotes a
weights, " order to obtain an~L(Jir)1we|lghjt\[ed representation Qlic variance white-noise process. The continuous-tirdees
the posterion(xx—1|y1x-1) ~ {X, 1, § }i=1- Then they are ¢ - can now be derived by expressingt) in (4) and
propagated according to the dynamical mogj(akﬂi,@l), plugging it into ),
to obtain a representation of the predictipfx|yi.x—1) =~

{x{" |, L}N . Finally, a weight is assigned to each particle 0(t) = =Pu(t) + B0(t) + Vacu(t). (6)
according to the likelihood functiomu,(j) x p(yk|x,(j)), all In order to arrive at a discretized form of the above model,

weights are normalized to sum to one, and the posterior at the first note from 4) thato(t) = %(v(t) —0(t)) and assume
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that the input velocityt(¢) remains constant over a samplingon the other hand, at — oo, the model takes the form of

intervalt. Thus we obtain a RW model with the state transition matrixs_.., and the
. R input matrixI's_. o
0(t) = —Bo(t) + BO(t) + v/Geu(t). ) ’
_ _ 10 1
Sincez(t) = v(t), we can write the complete system s.d.e. P00 = 0 0 T = 11 (12)

in the matrix form .
Note that the values of 3_,., are nonzero, thus the input

X(t) = [ 8 1 } X(t) + { 0 } o(t) + { (1) } qoul(t), velocity has to be set to zeré,_, = 0, to obtain the pure
-3 B ®) random-walk model.
where we have defineX () — [x(t),v(t)]". Applying a We have seen thus far that the liberal dynamic model takes

standard discretization (see, e.4Z] Appendix B) to €) we the structure of RW and NCV models at the limiting values of

obtain the continuous-time liberal model) (with discretized A But wha}t ha.p;lens whef is set to somewherg n between.
statesXy, — [z4, vy zero and infinity? To get a better understanding of that, it

is beneficial to rewrite the model in the following way. Let

Xp = PXp_1 4+ 01 + Wi, (9) xi = [z, v;]" denote the state at the time-stepith position

| lme B Atf_14eA1 x5, and velocityvy, and, similarly, letx, 1 = [zx_1,v5_1]"
D = [ fmg ] I = ﬁ,mg ] denote the state at the previous time-gtepl. We also rewrite
0 e 1—e the elements of the system transition matbixand the input

From the theory of estimation and control (e.g9[page 186) MatrixT" (9) in the following abbreviated form
the analytic from of the equatio®)is known as thealiscrete- 1 ¢15 -
time linear stochastic dynamic system, in which ® corresponds ¢ = { 0 ¢2:2 ] = { Yo ] :
to the state transition matrix and I' is the discrete-time )

gain (assumed constant over the sampling interval) througtlhNOte from @) that ® and I depend on the size of the
which a deterministic sequenég_, enters the system. In our iMe-Step A, which is the time between one and the next
treatmentjy,_, in (9) is the input velocity for the current time- Measurement. Without loss of generality we can set the time-
stepk, At is the time-step length, ant;, is a white-noise step to unity, i.e. At = 1. For compIeFeness, let us also define
sequence with a covariance matrix the values of the noise terms, at time-stgpacting on the

(13)

position and velocity by, = [wyk,w.]”. Now we can
Q= i1 Q2 q (10) rewrite the liberal model9) in terms of the state’s components
Q2 g |7 as
1 _ _
11 = 2763(2&56 — 1+ de AP o 72818) Tp = Tp—1+ O12Uk—1 + V10k—1 + Wek (14)
1 Vy = P22Vk—1 + V2Uk—1 + Wyk-
Since we have seht = 1, we have from 9) and (L4)

g2 = %(1 — 2e72A),

Note that there are two parameters which can be set in fiileis means thab, » and~; are the proportions in which the
liberal model @, 10): one is the correlation-time parametér internal velocityv,_; and theinput velocity o1 will be
and the other is the spectral density of the noise. In the combined into the deterministic part of the velocity acting
following we first give an analysis of how the parameter on the currentposition z;.2 Similarly, ¢ > and v, are the
influences the structure of the proposed liberal model. Theroportions in which the internal velocity, 1 and theinput
we propose a method for selecting the spectral defsifpr velocity 9,1 will be combined into the deterministic part of
a given class of objects. the velocity acting on the currerelocity v,.. With At fixed,

1) Parameter 8: In terms of the parametet, the dynamic the values of the mixing factors; o, ¢2 2, 71 and~, depend
properties of the liberal mode®) can be considered as beingsolely onS. We show this dependence in Figute
in between a random-walk and a nearly-constant-velocity From the Figure we see that by increasing the influence
model; this can be seen by limiting to zero, or to infinity. of the input velocity?,_; increases in4), and for a very
In the case ofs — 0, the model takes the form of a purelarge 3, the internal velocityv,_; is completely disregarded
NCV model with a state transition matrikz_., and the input by the dynamic model ag,; > and¢, » of (14) tend to zero. On

p12+m=1and ¢22+72 =1

matrix I'g_.o the other handy, and~, tend to zero for small values ¢f.
This means that we can consideas a parameter that specifies
Do = [ (1) { } Tpo= [ 8 ] ) (11) an a-priori confidence of the inptf,_; and internal velocity
v,_1. If, for example, we know thaty_, is very accurate,

. . hen 3 shoul very large value. Otherwi maller
INote that this assumption may be restrictive if the target iiggmtly then § should be set to a ve y large value. Otherwise, smalle

changed its motion during a time step. In our application, haveve assume 0 Should be used.

a camera frame-rate of 20 to 30 frames per second, which res8&50ms

time steps. We can therefore reasonably assume a constant fribenGMP 2The nondeterministic part of the velocity acting on the current position
and absorb the unmodelled changes into the white noise seguen xy, IS the white noisav,y,.
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target’s state after a single time-step is

%, R A Xy =X 1+ Wy (15)
© ! = 0.57 . . . .
g o6 \ 7; 043 The covariance of the position at time-steps
o V 1,2 —
ot /¥ P o= (X))
€ 02 I el = (0X; 1 X 0T + (X W)
HWXE_,@7) + (W W), (16)
6 8 10
where (-) denotes the expectation operator. Since the state
Xi_1 is not correlated with the noisdV, and since
= Yo = 0.86 Qé<W;€WkT>, the equation X6) simplifies into
()]
‘© P= P11 P12 =X, 1 XT Vol + Q. 17
2 e ] e XEgeTeQ a7)
5 Sincepyq in (17) is just the expected squared change of target’s
= \(,¢2 5 =0.14 position in consecutive time steps, i.g;; = 02,, we have
Ufn, P11
6 8 10 1— eiAtﬁ )
= (T) (Vk—1Vk—1) + q114c- (18)
Fig. 2. The values of the components®fandl™ at At = 1 w.r.t. different

values of 3. The left graphs (upper row) shog » and~; which are used Since we have defined earlief,_; ~ g22¢., we know that
for mixing v, _1 and o, _1, respectively, in estimating the current position _ n is rewritten in

xk. The right graphs (lower row) show the values @f » and v2 which <vk71vk*1> 229, @ d 0'8) S rewritte to

are used for mixingy,_1 and o _1, respectively, in estimating the current 9 1 — e A8 5

velocity v,. In (), the values of1 o are depicted by the dashed line, while o, = ((———)"q2 + q11)qc. (29)
the values ofy; are depicted by the full line. Similarly, in (b), the values of B

¢2,2 are depicted by the dashed line, while the values-ofiepicted by the ; 19) fi i _of- i
full line. In both images, the upright dash-dotted line depithe values of Inverting ( 9) fma”y gives the rule-of-thumb rule for SeIeCtmg

$1,2, d2,2, y1 and s at B = 2. For convenience, these values are writeth€ spectral density
out at the marked locations. —AtS

1—e
qC:UEn((

3 )2qaz + Q11)_1- (20)

The two-stage dynamic model which is presented in thi The conservative model

paper usually yields reasonable estimates of the inputitglo  In contrast to the liberal model, the conservative model
o1 for a large class of targets. In practice we have observggsumes that the target’s velocity does not change abruptly
that it is thus beneficial to let the input velocity,_; have a and approximates the local dynamics by fitting a linear model
dominant effect ovew,—; in estimating the currentelocity to the past filtered states. This model is used in the twoestag

vy, However, if we want the liberal model to be able to accouigiynamic model to regularize the estimated target positions
for a greater agility of the target, it is also beneficial tbtlee  from the liberal model.

internal velocityv,—; to have a greater effect on predicting Let 6, ., 1 = {0; f;klfK denote a sequence of theé

the currenposition x;,. We have found that these requirementgast regularized (e.g., horizontal) positighof the target, and
are sufficiently well met at ~ 2 which is the value we use inlet 7., 1 = {m; k-1 denote the set of their weights.

. i=k—K
all subsequent experiments. The valuespob, 71, ¢2,2 and  These weights indicate how well the corresponding position
Y2 at 3 =2 are shown in Figure. have been estimated. The conservative model aims to locally

2) Selecting the spectral density: Another important param- @Pproximate the sequenég_x.x—1 by the following linear
eter of the liberal modeld] is the spectral density,. of the Model o o
process noisel(Q). Note that in many cases it is possible to Ti = Upk—1% + Qok—1, (21)

obtain some general characteristics of the dynamics of th@erez; is the target's linearly approximated position at time-
class of objects which we want to track. Specifically, thgtepi_ The subscript-)sx—1 in (21) is used to indicate that the
expected squared distaneg, that objects of certain classparameters have been estimated using a sequence of filtered
travel between two time-steps is often available. Assumirﬁﬂ)sitions up to positior,_;. Since all positions are usually
that we have some estimate @f,, and that the time-step sizenot estimated equally well, and since the recent positioas a
At and the paramete? are known, we now derive a rule-of-more relevant for estimating the target's current dynamics
thumb rule for selecting the spectral density the parameters,,_; andas,_; of the linear model Z1) are

To derive the rule-of-thumb, let us consider the followingstimated such that they minimize the following weightehsu
example. Assume that at time-step- 1 a target is located at of squared differences
the origin of the coordinate system, i.e;_1 = 0, and begins E—1
moving with a velocityvy 1 ~ ga2qe, i-€., X1 = [0, vr_1]T. Crq = Z G;(Ql(éi i) (22)
Assuming that the input velocity,_; in (9) is zero, the i K
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in which the weightsGEf)) are defined as lacks the ability of the liberal model’s exploration of thate-
 ny? space.
G;;) —me 2 o2 (23) We therefore propose a two-stage dynamic model, which

combines the liberal model with the conservative model from
While the first term in 23) reflects the likelihood of the sectionlil-B into a two-stage probabilistic tracker as follows.
position o;, the second term is a Gaussian which assigigsume we have a sequence of the pAstfiltered target
higher a-priori weights to the more recent states. In maCtipositionsék,K:k,l and their weightsr,_x.._1, and that we
this means that we only considéf = 30, past positions have fitted a linear model{) to this sequence. Recall that
in (22), since the a-priori weights of all the older pOSiti0n$he parameteris, 1 in (27) iS a conservative estimate of
are negllglble Note that the Gaussian form was used for tﬂ% target’s Ve|ocity from the target’s positions up to time
last term exclusively to attenuate the importance of th@wldstep 1 — 1. At time-step k, when a new image arrives,
positions. In general, however, other forms that exhiloitilsir e can use this conservative estimatg ; to approximate
behavior (e.g., an exponential function) could have beeud.usthe input velocityd,_, for the liberal model §). With the
From Q1) and @2) we can now findds,—1 and Gask—1  input velocity approximated, the liberal model, which asets
simply by setting the corresponding partial derivativegeéoo for the non-constant velocity, can be used within a particle

AC)._1 oC)._1 filter to approximate the posteripxy|y1.,) over the target's
Ovor1 " Daer_1 =0, (24)  current state. The mean value of the posteri®y i€ the
hich ai liberal approximation of the target's statg = [@, 0|7 . The
which gives variance of the liberal estimate of the target's position ba
k=1 ; k=1 ; reduced by taking into account the conservative estimate as
- ~(1) A . ~(1)
ing’kalol + Aklekfl(i:;KZkal) well. The conservative model is used to generate the current
Uok—1 = 1 4 1 ‘ » conservative prediction2{) of the target’s position,. The
> iQGgﬁl —Ap_a (Y inQl)2 liberal estimate can be fused with the conservative estiropat
i=k—K i=k—K using the visual data as follows. We measure the likelifood
k—1 A . . .
. B . ) Ws), = p(y;?\xk) that the target is Ic_chted at the liberal estlm_ate
aop-1 = Ap—1(Br-1 — ok—1 Z iGyy), (29)  ofits positionz; and we can do similarly for the conservative
i=k—K estimate i, w,) = p(yx|Zx). The conservative and the
where we have defined liberal estimates are then fused as
k—1 k—1 . Tk - Wz, + Tp - Wg,
Q) \— i) A o = , 28
Aea=( Y GO0 Bea= S 66 (26) kT + wn, (28)
i=k—K i=k—K

the corresponding weight, of the new regularized posi-

The conservative model is completely defined with paramgen ¢, is evaluated using the visual likelihood function,
tersvs,—1 andas,—1. A conservative prediction of the target'sy, = p(yx|6x), and the new parameters;( andasy) of the
position 7, at time-stepk is calculated as conservative model2() are recalculated usin@%). The new
@7) regularized state from the two-_s_tage dynamic quel_is then

constructed from the fused position and conservative itgloc

Note that the parametég;_; can be interpreted as a consere;, = [oy, 9ox|?. The prediction of the regularized staig
vative approximation of the target’s current velocity edéded from the two-stage dynamic model for the next time-step
from a sequence a¥;_ ., filtered positions. can be calculated under the assumption of a locally-cohstan
velocity as

Ty = Vok—1k + Aop—1.

C. A two-stage dynamic model 1 At } ) (29)

The liberal model in sectiorll-A was derived from a 0 1

continuous-time non-zero-mean Gauss-Markov processsand iNote that the proposed two-stage algorithm essentially
capable of accounting for various types of dynamics, ramgifmplements a well-known concept of information fusion. In
from a random walk to the nearly-constant-velocity behavigarticular, we can summarize an iteration of the algorithm
This model can be readily used within a particle filter tgn the following three steps: (i) generating a “consentiv
estimate the posterior over the target's state recursiwglyne. prediction” of the target’s position from the conservative
A mean value calculated on this posterior can be taken asnadel, (ii) generating the “liberal measurement” from the
minimum-mean-squared-error estimate of the target'sectir |iberal model in the particle filter (estimated mean value
state (e.g., position). While the liberal model can potdiytia of the posterior) and (iii) fusing the “prediction” and the
well explore the target's state-space, it requires estmat “measurement” into a single estimate using the visual data
of the mean value of the Gauss-Markov process (the inpuikelihood). The concept of fusing prediction and measure

velocity) and the quality of the state estimation will quick ment by linear (weighted) combination is, for example, a
deteriorate with decreasing the number of particles in the

particle filter. In cases when the target's velocity is Iteal _ °The visual likelihoodsp(yx|x) and p(y|Zx) refer to the likelihood

. . : function, which we also use in the particle filter and whiclaleates the
linear, the conservative model from SectidiRB may prowde likelihood that a target is located at some position or a s&, the color-

a better approximation of the target's dynamics, howe\er, based likelihood function.

Ory1 = Fop F:[



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYERNETICS 7

central approach of the Kalman filte][ There, the weights with @ defined in (0) and I« = diag[1, 1]. The parameter

for fusing prediction and measurement by linear interpotat og corresponds to the noise in the random-walk models on
are computed from the covariance of the prediction’s aride target's size. As in4[g], we fix this parameter in all
measurement noise. In the two-stage dynamic model, ther subsequent experiments such that the target’s size does
weights are provided directly from the visual model whicimot change between two time-steps by more tha%. The

tells us how well each hypothesisofiservative prediction and conservative model uses sequences of the gastgularized

the liberal measurement) is supported in the visual data. Thestatesd, k.1 and weightsr,_ k.1 to fit a linear model to
linear interpolation between various estimates is alstrakto  the regularized positions (Sectioi-B) and estimates ;1

the particle filter: each particle produces a state and &fbeland as;_;. A conservative prediction of the target's position
that the target is actually in that state. While each particlg, at time-stepk is then defined as

is in itself an estimator of the target’s position, the vada

of this estimator is usually very large. However, the linear
averaging of particles gives a mean value of the posteridihe liberal model provides a liberal estimate of the tamget’
which is an estimator with a reduced (but potentially séite) position x;, which is fused with the conservative prediction
variance. By enforcing regularization from our consemgti x;, into a regularized position. The conservative estimate of
prediction, the variance can be further reduced. In pddicu the velocity Vi1 is recalculated and combined with the
the regularization (implemented here as linear interpmiat regularized position into a new regularized state

can be viewed as adding additional (conservative) samples t
the particles from the particle filter, appropriately weigh
them (using the visual data) and calculating their meanevalurhis is the output of the two-stage dynamic model. The
Effectively, this combination of two alternative hypotlkss prediction of the two-stage dynamic model is made under the
allows the two-stage dynamic model to handle constant assumption of constant velocity and is defined as

well as nonconstant motions. The reduction in the variarice o

Xp = Vok_1k + asp_1- (32)

T
O = [Omk7 Ovzks Oyky Ovyk, OHzk OHyk] . (33)

the estimator and improved tracking of the various motions Ok = Froy ; Fr=diag|F\ F, F], (34)
are validated in our experiments in the sectioh. with F'is defined in 84). Following the above description, we

summarize the particle-filter-based blob tracker with a-two
D. Application to blobtracking stage dynamic model in Algorithrh.

Here we present an implementation of the two-stage dy-1) The parameters: Since the two-stage dynamic model in
namic model on an example of particle-filter-based blolgorithm 1 is composed of the liberal and the conservative
tracker. This tracker is used in our experiments to compamodel, there are a few parameters that have to be set. Two
the performance of the proposed model with common dynanparameters have to be set for the liberal mod#: the
models used for blob tracking. In a probabilistic blob tragk parameters and the spectral density. of the process noise.
the target is commonly modelled by an elliptical or rectdagu A detailed discussion of how the parametginfluences the
region and its appearance is encoded by a color histogratructure of the liberal model was provided in SectibpAl.
(e.g., B3], [44], [2€6], [45], [30]). The color-based likelihood There we have concluded, that the required dynamic preserti
function for the particle filterp(yx|xx) is thus calculated of the liberal model are met @t = 2. The remaining parameter
through comparison of reference color histograms to tld the liberal model, the spectral density has to be specified
histograms extracted at the target's staje(see, e.g.,45]). for the problem at hand and we have proposed a principled
We use two one-dimensional two-stage models for modellingay to selecting;. in Sectionlll-A2. The conservative model
the motion of target's horizontal and vertical positiore(i.el- requires setting a single parametey, which effectively de-
lipse’s center) and two one-dimensional random-walk moddermines the number of the recent regularized states which
for the target's width and height. The target’s state is thase considered in the linearization. We set this parameter
defined asx;, = [zk, Vok, Yis Vyks Hok, Hyi] T, Where[zy, y],  using the following rationale. We can assume that the object
[vaks vyil, [Haek, Hyi] are the target’s position, velocity andwhich are considered in our applications do not usually gean
size, respectively. The liberal moded){ which is also used their velocity drastically within a half of the second. Sénc
for the state transition modelx;|xx_1) in the particle filter, most of our recordings used in the experiments are recorded
is therefore defined as at 25 frames per second, this means that we consider only
K = 125 ~ 13 recent regularized states. We have noted in

K= ®Lxp—1 + TV + Wiy, (30)  Sectionlll-B that & — 30,, which means that, = 4.3. For
O = diag[®, ®,1,1], T = [diag[T,T],0251]", convenience, we summarize the parameters in Table
where® andT are defined inQ?, 0251 = [0,0]7, ¥4_1 = TABLE |
[Vak—1,¥yr—1]" are the horizontal and vertical input veloci- PARAMETERS OF THE TWOSTAGE DYNAMIC MODEL.
ties, andiW . is a discrete-time white noise sequence defined
by a zero-mean normal distributiobz, ~ N(0,Qr), with The liberal dynamic model (Section I1I-A)

. tri Paramete = 2.
covariance matrix e  Spectral density. selected by the rule from Sectidh-A2

s 2 The conservative dynamic model (Section 11I-B)
Qr = diag|Q, Q, Irx20H], (1) e  Parameter, = 4.3.

4Without loss of generality the time-step sizednandT is set toAt = 1
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Algorlthm 1A prObabiliStiC blob-tracker with a tWO'StaQEtogram (See, egé]_EL page 39) For the videos demonstrating

dynamic model. the results presented in this paper and additional examples
Input: . fth ior pdf f of the tracker’s performance, please see http://vicostii
* P(Xp-1|y1r-1) ... estimate of the posterior pdf from; oj/qata/matejkitracking/DynamicModel/Sub/indebxh

the previous time-step
o k—1.

regularized positions and weights. Seven players of handball were instructed to run on a

e Vor—1,86k—1... parameters of the conservativepredefined path drawn on the court (Figi®e The path was

model from time-steg — 1. designed such that the observed motion involved accedesati

o The current image. decelerations and rapid changes in the direction of mofibe.
Output: scene was recorded with a camera mounted on the ceiling
« 0 ... the new regularized state. of the sport’s hall, such that the size of each player was

e p(xk|y1k) ... the new estimate of the posterior pdf.approximatelyl0 x 10 pixels. The video was recorded at the
o On_Ki1:k,Th_Ki1:k - - - AUgMented sequence of regframe rate of 25 frames per second. Each player was manually

ularized positions and weights. tracked thirty times through each frame and the average of
e Vor,dsr... New parameters of the conservativéhe thirty trajectories obtained for each player was taken a
model. the ground truth. In this way approximately 273 groundkrut
lteration: positionsp,, = (zx,yx) per player were obtained.

1: Approximate the input velocity,_, of the liberal model
(30) by a conservative estimate;,_1.

2: Execute an iteration of the particle filter using a color-
based likelihood functiop(y|x)) and the liberal model
(30) for the state transition modelx|xx—_1). The result
is the approximation of the new posteripfxy|y1.x)-

3: Calculate the liberal estimate of the state, =
Xk )p(xely 1) (3)-

4: Calculate the conservative predictign (32).

5. Fuse the liberal and conservative estimates into a regu-
larized positiono, according to Sectionll-C, calculate
the weightm, = p(yr|6x) and augment the weighted

sequence of regularized positions in€g,_ . and - 3 4 :
q g p &0, 1.k . HET o = Lo % "iﬁ -
Thk—K+1:k-
6: Recalculate parametefs,, andas; from 65— 1., and
T b K4 1:k- Fig. 3. Seven players and the path used in the first experiment.

7. Construct a regularized statg, (33) as a concatenation ) .
of the regularized positio;, and conservative velocity All seven players from Figurg were then tracked with three
5 trackers: Two reference trackers and the proposed tratker.

only difference between these trackers was in the dynamic
models they used for modelling the dynamics of the player’s
position. The proposed tracker, we denote it Tys, was
the two-stage probabilistic tracker from Sectioil-D. The
We carried out two sets of experiments to evaluate tmeference trackers were essentially the color-basedcfearti
performance of the proposed two-stage dynamic model frditters from [£Z](chapter 3), which employed two widely-used
SectionllI-C. In the first set of experiments (SectidtwA) dynamic models on the player’s position. The first reference
we have tracked persons moving on a predefined path toacker, Tryw, used the random-walk model, while the second
the ground. This experiment was designed for quantitativeference tracker used the nearly-constant-velocity moge
and qualitative comparison of the estimation accuracy ef tldenote this tracker bf{'ncv. All three trackers used random-
proposed two-stage dynamic model and the two commonhyalk models to model the dynamics of the player’s size.
used dynamic models. The second experiment was designed tdbhe parameters of the RW and NCV dynamic models in
demonstrate the generality of the proposed dynamic model aiycy and Trw were learned from the ground truth. In
to demonstrate how it can help to reduce the visual ambiguijgrticular, the only parameter of the RW and NCV model that
which occurs when the target is moving close to anothBas to be specified is the spectral density of the process.nois
visually similar object (SectiorlV-B). In that experiment, The spectral densities were estimated using a linear-dignam
we have applied the two-stage dynamic model to trackirsystem learning method (see, e.g]] pages 635-644) from
person’s palms and to tracking a person in a squash match7lr 30 = 210 ground truth trajectories. The method yielded
all the experiments, the target was described by an eliptiche spectral densityrw = 4.6 for the RW model and the
region and its visual properties were encoded by a color higpectral densityyncy = 0.4 for the NCV model. We have

Vok-

IV. EXPERIMENTAL STUDY
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observed in experiments that the estimated spectral gensitin our case the null hypothesiH, was thatTrg is not

for RW was too small and, in practice, the tracker was failinguperior toT'rgr. For each tracker we calculated the sample-

frequently for some of the players. For that reason, thetsgec performance-difference mean

density in the RW model was increaseddgy = 6 in the

experiments. Aol ZR A (38)
The spectral density,. of the liberal model §) in Trg R &r=1

was determmed using the rule-of-thumb rule, which we ha\é%d its standard error

proposed in Sectionll-A2. Recall that the rule requires us

to provide an estimate of the squared distange that the s

objects under consideration are expected to travel betivaen Ox = % Z (A0 — A)2. (39)

r=1

time steps. Since we track sports players in our experiment,

we can findo?, as follows. Based on the findings of Bon

et al. £7], who refer to Kotzamanidis4[g], Erdmann {i9 The null hypothesis was then tested against an alternative
and Bangsbot(] regarding the dynamics of handball/soccehypothesisH;, that Ts is superior to the reference tracker
players, we can estimate the highest velocity of a player @S, using the statistic>-. Usually, the alternative hypothe-
Umaz = 8.0m/s. At a frame rate of 25frames/s we can say tths is accepted at a signi?icance leveloff & > {1, Where
Umae = 0.32m/frame. During tracking, the player is usually, represents a point on the standard Gaussian distribution
determined by an ellipse that is approximately the size @fresnonding to the upper-tail probabilityf As is standard
his/hers shoulders. We estimate this size tofhe~ 0.4m. 5 acfice in hypothesis testing, we set the significancel keve
Assuming a Gaussian form of the velocity distribution, thg _ o=

highest velocity can be approximated with three standard
deviations of the Gaussian. This gives,,, = 3o,,/frame
and the parameter,, = H; 232 = H,}. Using the rule-of-
thumb rule g0) the spectral density of the liberal model
thus estimated as

The results of the hypothesis testing on position and pre-
diction with respect to a different number of particles i th
.Sparticle filter are shown in Tablé and Tablelll. Tablell
'Shows the results for testing the hypothesis tAags is
superior toTrw, While Tablelll shows the results for testing

e = (H; )2 (q11 + gool 1—e=? )2)-1, (35) the hypothesis thal'rg is superior tdI'xcy. The second and
* g third column in Tablell and Tablelll show the test statistic
whereq;; and s, are defined in 10). A In all cases the test statistic is greater thaps = 1.645.

1) Quantitative evaluation: Using the parameters givenF?om Tablell we can thus accept the hypothesis tiats is
above, all seven players from FiguB2were tracked thirty superior toTgw in estimating the position and the prediction
times with the trackerS' gy, Tncv andTrs. ThusK =30 at thea = 0.05 level. Similarly, from Tablelll we can also
trajectories per player were recorded for each trackereNaiccept the hypothesis that the traclgrg is superior tdl'ncv
that Trw and Tncv have failed during tracking on a fewin estimating the position and the prediction at the= 0.05
occasions by losing the player. In those situations, tragkilevel. Note that these hypotheses could have been accepted
was repeated and only the trajectories where tracking did reven at levels lower than = 0.01 (10,01 = 3.090). Since the
fail were considered for evaluation. In all experimefliss only difference between tH€rg, Tz andT yc was in the
never failed. dynamic model of the player’s position, we can conclude that

A standard one-sided hypothesis testirig][was applied the two-stage dynamic model is superior to both, the random-
to determine whether the accuracy of estimatiorilbys was walk, as well as the nearly-constant-velocity model.
greater than the accuracy of the reference tracggg and
Txcv- In the following, when not referring to a specific ~ TABLEII
tracker, we W|” abbreviate the reference trackerS’D;yEF. THE TEST STATISTIC A FOR THE ALTERNATIVE HYPOTHESIS THAT

ETN
The performance of the trackers in theth repetition was Trs is superior 1o Try”, CALCULATED FROM 30 RUNS. THE

HYPOTHESIS MAY BE ACCEPTED AT SIGNIFICANCE LEVELSx = 0.05 AND

defined in terms of the root-mean-square (RMS) error as a=0.01.
7 K
Al 1 ; 5. 1 no. particles  Position£-)  Prediction (&)
C(T):? (? H(Z)pk - (l)pg) H2) 2. (36) 25 :]_glzﬁA 32_8b
i=1 k=1 50 245 54.9
, . . 75 71.0 148.6
In (36) (p,, denotes the ground-truth position at time-step 100 629 149.2

k for the i-th player, (i)f)ff) is the corresponding estimated
position and|| - || is thel, norm. At each repetition, sample-

performance-difference 2) Qualitative evaluation: To further illustrate the perfor-

mance of the trackers, the RMS erros$) were averaged over
A =t o) (37) all thirty repetitions for each tracker and are shown in Fig-
ure 4(a,b) and Figuré(a,b). To visualize how the smoothness
was calculated. The terd("} was the cost value3g) of Trs, of the obtained trajectories changes with the number of par-
while CI(QJ  presented the cost value of the reference trackiicles, we have also calculated the mean-absolute-difte®
Trer- (MAD) on positions for different numbers of particles in the
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- TABLE 1l . N
THE TEST STATISTIC-2- FOR THE ALTERNATIVE HYPOTHESIS THAT effect of the visual ambiguity. To demonstrate the perforoea

“Torg is superior to Tney”, CALCULATED FROM 30 RUNS, THE of the two-stage dynamic model in those situations, we have
HYPOTHESIS MAY BE ACCEPTED AT SIGNIFICANCE LEVELSy = 0.05 AND ﬁrst app“ed |t to tracking hands of a person (F|glﬁ)3
a=00L The person was facing the camera, waving his hands, and
the hands occluded each other 17 times with majority of
occlusions occurring in front of the persons face. Both lsand

no. particles Position;%) Prediction %)

25 14.4 147 X )
50 7.5 7.7 were approximately20 x 20 pixels large, and were tracked
17050 2-8 31}73 with the two-stage tracker from the previous experiment.

All parameters of the tracker remained the same as in the
previous experiment, except for the spectral dengityThe
spectral density was estimated using the rule-of-thumb rul

particle filter, from sectionlll-A2 and assuming that the expected distance

Al 30 4 T 4 5 () that the hand travels between two time-steps is approxiynate
MAD:% Z = Z 7 Z Dby, — Dp,), (40) 5,, = 5 pixels. The number of particles in the particle filter
r=1 " i=1" k=1 was set to onlyN = 25 particles. We denote this tracker

) 0 N by Trg. For reference, the hands were also tracked using
wherep, = & >~ (Vp,” was the position of theth player a tracker which applied a nearly-constant-velocity (NEV)

at k-th time_step,’"g\l,eraged over thirty tracking repetitithg; Model instead of the two-stage dynamic model and which used
MADs are shown in Figuréc and Figuresc. N = 100 particles in the particle filter; we denote this tracker

Figure 4 thus shows the results for the average RMS erro®y Tnev. o
of position and prediction and MAD values of position when The hands were tracked separately five times Wity and

the number of particles used in the particle filter is variedNcv, and an average times that the tracker lost a hand was
Using only 25 particles the proposed dynamic modelips  recorded. The results of tracking are shown in the second and
achieved smaller RMS errors for position (Figuéa) and third row of the TablelV. There we see thal'ncy lost a

prediction (Figurelb) than theT gy, even when four times as hand on average 27 times, while the two-stage dynamic model

many particles were used in tfBrw. Trs also consistently N Trg reduced the number of failures approximately by 10
produced smaller MAD values thaBgy for all numbers of failures. All the failures occurred when the tracked hand wa

particles (Figuretc). moving in front of a person’s face, or was moving close to the

In Figure 5, we can compare the average RMS errof@her hand. An example of such situation is shown in Figure
and MAD values betwee'rs and Txcy. Using only 25 [N those situations, the visual ambiguity was highest, esinc
particles, theTrs achieved equal average RMS errors fof€ hands and the face were of similar color, which caused
position (Fig.5a) and prediction (Figsh) as theTxcy with  SPurious modes in the visual likelihood function. Since the
100 particles Trs also consistently produced smaller MADUacker which used the proposed two-stage dynamic model
values thariTycy for all numbers of particles (Figufge) and, reduced the failure rate in comparison to a NCV model, this
again, using only 25 particle®rs achieved approximately meéans that the two-stage dynamic model helped to reduce the
equal MAD value as NCV at 100 particles. An important poinfisual ambiguities simply by better modelling the motion of
to note here is that th&s outperformed th&'gyw andTncy e hand. However, there were still 15 hand overlaps, where
even though the spectral densities for gy and Tyoy (€ Visual ambiguity was too high and could not be resolved
were estimated from the test data. In fact, sifige; was not Merely by the motion model. We have therefore repeated the
taken into account in the derivation of the rule-of-thumkery €XPeriments, but instead of using a simple color-basedavisu
(20), the obtained spectral density f@irs was overestimated, M0del, we used the recently proposed local-motiai, which
and presents an upper bound on the actual density. Neveri€S optical flow to resolve the color ambiguities. The tssul
less, the two-stage model outperformed both, the RW and & Shown in the last two rows of the Talile. We see that
NCV model. This implies powerful generalization capatsitt While the visual model by itself reduced the number of fai&r
of the proposed two-stage dynamic model. its combination with the proposed two-stage dynamic model

even further decreased the failure rate. Note, that not dialy
] ] the two-stage dynamic model reduce the number of failures in
B. Experiment 2: robustness of tracking comparison to the NCV model, but was able to do so requiring

As mentioned in the introduction of this paper, a good quarter as many particles in the particle filter as the NCV
dynamic model can not only provide a better accuracy afodel.
estimation but can also improve tracking in situations ghhi  To demonstrate how the two-stage dynamic model performs
visual ambiguity. These situations arise, for example, wheavhen tracking an object which rapidly changes its motion, we
the target is moving close to another visually similar objechave applied it to tracking a player of squash (FigéyeDue
or when the target is occluded by such an object. Even thouighfrequent occlusions between the players, we have used the
the tracking can be improved by applying a better visual rhodecal-motion visual model[1] in this experiment. The player

to reduce the visual ambiguity by itself, the dynamic model
guity by y 5The NCV model was used in preference to the RW model, since theé ha

canfurther improve the tracking by preferring the targe_zt \_NhiChmotion was closer to a nearly-constant-velocity motion thenrandom-walk
corresponds to the model's dynamics, thus alleviating thetion.
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Fig. 4. Graphs on (a) and (b) show the average RMS errors {geriy C) of position (a) and prediction (b), respectively, as a fiorcof the number of
particles. Graphs in (c) show the mean-absolute-differ@iidenoted byM AD) values of position estimates. The results gy are depicted by thdotted
lines, while solid lines depict the results fatrg.
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Fig. 5. Graphs on (a) and (b) show the average RMS errors {elriry C) of position (a) and prediction (b), respectively, as a fiorc of the number
of particles. Graphs in (c) show the mean-absolute-difisen(denoted bWIAD) values of position estimates. The results Bxcy are depicted by the
dotted lines, while solid lines depict the results fa@trg.

trackerTgs remained the same as in the previous experiment.
The spectral density. was again estimated using the rule-
of-thumb rule from sectionlll-A2 and assuming that the
expected distance that the player travels between two time-
steps is approximately,, = 5 pixels. For reference, the player
was also tracked using the recently proposed state-oduthe-
tracker 1] which applied a nearly-constant-velocity (NCV)
and the local-motion visual model. We denote this tracker by
Txcv. The player was tracked five times with each tracker
and the number of times the tracker failed was recorded. All
the failures occurred when the player was occluded by the
other visually similar player.

Fig. 6. Frames from the experiments with hand tracking usingGVN
dynamic model with 100 particles (upper row) and using the s$teme
dynamic model with only 25 particles (lower row). The whitepde depicts
the tracked region.

TABLE IV
RESULTS OF TRACKING HANDS USING THENCV AND THE TWO-STAGE
DYNAMIC MODEL .

tracker  visual model  dynamic number number
model of particles  of failures
Trg color-based two-stage 25 15
TNov color-based NCV 100 27
Trs combined two-stage 25 2
TNov combined NCV 100 4

. . Fig. 7. A le f king th h player in which
was approximatel5 x 45 pixels large and was occluded 149 n example from tracking the squash player in whichptagrer gets

occluded.
times by another visually similar player. The sequence was
especially difficult to track due to frequent occlusions and Table V shows the average number of times each tracker

rapid changes in the player's motion. All parameters of tHailed with respect to the number of particles used in the



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYERNETICS 12

particle filter. Using 25 particles, the NCV model failed omapidly moving persons but also parts of persons, such as
average four times, while the two-stage model failed ontgeh hands. For further examples of tracking with the two-stage d
times. When the number of particles was increased to 50, themic model please see the online videos at http://viéasi¥
NCV model improved in performance by reducing the failurg.si/data/matejk/tracking/DynamicModel/Sub/indexuh
rate to three failures, while the two-stage model reduced th
failure rate to two failures. However, when the number g e
particles was increased to 100, the failure rate of the NC Sengitivity to parameters
model remained at three failures, while the two-stage modelThere are two main parameters in the two-stage dynamic
further reduced the failure rate to only a single failureeThmodel. The first parameter is the parametein the liberal
two-stage dynamic model consistently outperformed the NOvodel ©). We have studied this parameter in some detail
model by producing a smaller failure rate for all the seléctén sectionlll-A and chose its valugg = 2. Note that this
number of particles. Note also that, using only 25 particlegalue has been fixed faall our experiments reported here,
the two-stage dynamic model achieved an equal failure rawdich also practically justifies the value we have chosen in
as the NCV model with 100 particles. As the number of thiédae sectionlll-A. The other very important parameter is the
particles was increased, the two-stage model further dsece spectral density of the liberal model. This parameter, hewe
the failure rate. Note that the improvements in tracking eonvery much depends on the given application and the setup and
from two sources. One source is that the TS model redudesin standard dynamic models related directly or indisectl
the ambiguity by better modelling the target's motion daspito the variance of the state estimates. In particular, in a
the rapid changes in motion. The second source is that #tandard particle-filter-based tracker, using a large tsplec
local-motion visual modelq1] relies on updating its model density necessarily requires increasing the number oicpest
by using the target velocity estimated from the trackerc&into maintain a low variance of the final estimate (e.g., aanura
the TS produces better estimates of the velocity than NG, thf position). To make setting the spectral density in the-two
result is an improved visual model and improved tracking. stage dynamic model a more intuitive matter, we have related
it to the distance a target is expected to travel in consdquen

TABLE V time-stepsg,,,, and derived the corresponding rule-of-thumb

THE AVERAGE NUMBER OF TIMES THE TRACKER FAILED TO CORRECTLY | . h t [1” A2
TRACK THE PLAYER OF SQUASH WHEN USING ANCV (Tncy) ANp THE  TUIE 1N the sectiorll-AZ . _
TWO-STAGE DYNAMIC MODEL (T'g). To gain a further insight of how different values of the

parameter,, affect the performance of the two-stage dynamic

tracker  dynamic model number . number — execution pgqe| we have revisited the experiment from sectioi . In
of particles  of failures  times [ms] . . .

Trs fwo-stage 25 3 21 that experiment the spectral density was set using theafule-
Trs two-stage 50 2 27 thumb rule with the average-distance parametgrestimated
s two stage 20 . e from the sports literature. To see how the results vary vhith t

TES\V/ NCV 50 3 26 parameter the expt_arimgnt was repeated forTheg with 25
Tncv NCV 100 3 35 particles in the particle filter. The parametgy, was decreased

by some factorv to a point where the tracker started to fail

As noted in the introduction, a very important aspect afnd then increased to a point where it started to fail.
every tracker is its processing speed. In particular, thigba When lowering the, the tracker started to fail at = 0.5
filters are Monte Carlo methods, which rely on estimatingnd then, when this parameter was increased, the tracker
distributions using simulations of particles and evaluadi of started to fail again atv = 1.4. The results for the values
the likelihood function. While simulation from the dynamice = {0.5,0.7,1.0,1.2,1.4} are shown in Figures8. That
model is a fast operation, evaluating the likelihood fumeti figure shows that the optimum is reachedoat= 0.9 which
for each particle presents a bottle-neck in the processingeans that the optimum parametegy is 90% of that estimated
speed — the processing time of each iteration increases withthe rule-of-thumb rule. We also see that parameter values
increasing the number of particles. We have therefore decbr around the value estimated by the rule-of-thumb rule do not
average execution times per time-step for the experimentdignificantly deteriorate the tracker’s performance. Theans
Table V. Given the same number of particles in the filtethat despite of increased variance of the noise in the libera
the processing times d@F g are practically equal to those ofdynamic model, the variance of the tracker’'s estimate ,(e.g.
Tncv. Note, however, thal'ts required only 25 particles to position and prediction) remains low when using the twasta
achieve performance dI'xycy at 100 particles. This meansdynamic model.
that T1g achieved an equal performance Tacy but with To further demonstrate the accuracy of tracking with an
40% reduction in the processing time. overestimated noise and with low number of particles in

From the results in Tabl&/ and TableV we see that the the particle filter, we have have considered an example of
two-stage dynamic model can improve tracking by reducirtcacking in cluttered environment as shown in FigGreThe
the number of failures by reducing the visual ambiguity, leshi tracked person was performing rapid movements and was
at the same time requiring only a small number of particlexcluded many times by other persons. The person was first
in the particle filter, which effectively reduces the pragiag tracked with a color-based tracker that used the two-stage
time. We can also conclude that the two-stage dynamic modginamic model Trs) with 25 particles in the particle filter.
is general enough to improve tracking not only when trackinthe noise parameter,, was estimated as in3p) and was
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Fig. 8. Graphs on (a) and (b) show the average RMS errors {elériy C)) of position (a) and prediction (b), respectively, as a fiorc of parameter.
Graphs in (c) show the mean-absolute-differences (denagtedl AD) values of position estimates. The solid lines depict theltedor Trg while dotted
line depicts performance af'Ncy -

tracking persons. The proposed model is composed from two
separate dynamic models. The first dynamic model is called
the liberal dynamic model which was derived in SectibbrA
from a non-zero-mean Gauss-Markov process. An analysis
of the parameters of the liberal model in SectidhAl
has shown that two widely-used models, the random-walk
(RW) model and the nearly-constant-velocity (NCV) model,
are obtained at the limiting values of the model’s paranseter
We have also noted that the liberal model can explain even
motions which are in between the RW and the NCV model. An
important parameter of the liberal model is the spectrakign
of the Gauss-Markov process, which depends on the dynamics
of the class of objects to be tracked. In SectidlrA2 we
have therefore derived a rule-of-thumb rule to selectirig th
density, which requires only a vague estimate of the target
dynamics. Furthermore, by controlling the mean value of the
Gauss-Markov process, the liberal model can even further
adjust to the dynamics of the tracked target. To efficiently
) _ N _ ) estimate this mean value in the liberal model, another dymam
Fig. 9. An example of tracking with highly overestimated noieethe . .
dynamic model. The upper row shows the tracked (yellow) playsequence model, which we call the conservative model, was proposed
of images with indexes 202, 212 and 225. The middle row showsampgle in Sectionlll-B. In contrast to the liberal model which allows

in which the Tncv fails due to a large variance of the estimate during thgreater perturbations in target’s motion, the consergatiodel
occlusion. The lower row shows the same sequence in whichhth& 't '

does not fail. The ellipses depict the tracked region andathewv shows the a_lssumes stronger constraints on the target Velf).Cit_y' In Sec
estimated velocity. tion 111-C we have proposed a two-stage probabilistic tracker

which uses the liberal dynamic model within a particle filter

to efficiently explore the state space of the tracked ta@at.
multiplied by a factora = 2 to grossly overestimate it. the other hand, the conservative model is used to estimate th
The same person was then tracked using a NCV dynamigan value of the Gauss-Markov process in the liberal model
model (T'ncv) with comparably overestimated noise. We havas well as for regularizing the estimations from the pagticl
observed that the variance of the estimates (position ak Wter.

as prediction) provided by th&ycyv was significantly higher . i

than those of'rs tracker. Despite the overestimated noise, 1WO Sets of experiments were designed to evaluate the
the Trg tracker was able to track the person througho@€rformance of the proposed two-stage dynamic model. The
the sequence, whereas thBycy failed when the person first set of experiments involved tracking persons running

was completely occluded by other persons. This is shoffl the path which was drawn on the floor. The path was
in Figure 9 and for the full video demonstrating this perdesigned such that the observed motion included acceler-
formance, see the papers homepage at http://vicos.ri.uRtONS, decelerations, short runs in a certain directiod an

Ij.si/data/matejkltracking/DynamicModeI/Sub/inddmh sudden Changes in the direction of motion. All persons were
tracked with the proposed dynamic model as well as with two

reference trackers which employed one of the two widely-
used dynamic models — the RW model and the NCV model.
We have proposed a two-stage dynamic model, andThe results have shown that the proposed dynamic model
corresponding two-stage probabilistic tracker, that camoant performed significantly better than the RW as well as NCV
for various types of motions which we usually encounter whanodel. In particular, the two-stage dynamic model yielded a

V. CONCLUSION
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better accuracy of tracking in comparison to the RW and NC{85). Another pathological case is when the spectral dgensit
models, and at the same time required significantly smaliier severely overestimated and the particles in the particle
number of particles in the particle filter. In the second séitter spread far beyond the target. Having a small number of
of experiments we have tracked person’s hands and a plagarticles this inevitably increases the variance of thamegor

in squash using the proposed dynamic model and a NG@wid the motion model becomes weaker. As a result, the target’
model. These experiments were designed to demonstrate riration is poorly modelled and if a visually-similar objest i
performance of the two-stage dynamic model when the targ@mewhere in the target’s surrounding, chances are that the
is moving in a close proximity of a visually similar object.tracker will fail to keep a lock on the correct target.

In the experiment of tracking a person’s hands, the proposedA convenient property of the two-stage dynamic model is
dynamic model was able to use half as many particles tinat, since it typically requires a smaller number of péetidn

the particle filter as the NCV model while still reducing thehe particle filter, it allows faster tacking with more coreypl
number of times that tracking failed in comparison to theisual models in comparison to other dynamic models which
NCV model. This shows the ability of the two-stage dynamiequire more particles. Note also that the implementatibn o
model to reduce the visual ambiguity in the target’s positicthe two-stage model allows adopting existing solutions for
by better modelling the target’s dynamics. To demonstiage timproved particle filtering, like the ones mentioned in the
performance of the two-stage dynamic model when trackimgtroduction [LO], [11], [12], [13], [32]. These can be used to
a person who rapidly changes its motion, we have appliegien further improve the tracker’s performance, both imger

it to tracking a squash player. The results again showed tlodimproved estimation accuracy as well as in reduction ef th
the two-stage model allows smaller number of particles & tlailure rate. These topics are the focus of ongoing research
particle filter to achieve a comparable of better perforneanc

than the NCV model achieves with a large number of particles. ACKNOWLEDGMENT

The regults of the two sets of the experiments imply 4 This research has been supported in part by: Research
.superlorlty. of the two—stage mc_>de| over .the RW and NC ogram P2-0214 (RS), research program P2-0095 (RS), M3-
in accounting for various dynamics of moving persons as weba5 project PDR sponsored by the ministry of defense of re-
as parts of persons such as hgnds. . ublic of Slovenia, and EU FP7-ICT215181-IP project CogX.
We have seen in the experiment of tracking hands an would also like to thank the editor and the anonymous
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to resolve some of the visual ambiguities which occur Wh‘?ﬂ]prove our paper

the target is moving close to another visually similar objec
However, there were situations in which the dynamic model
could not resolve the ambiguity by it self. Since the dynamic

model was implemented within a standard particle filter, th&tl J. K. Aggarwal and Q. Cai, “Human motion analysis: A revie@pmp.
. | del which was used in the experiment can be easi \is. Image Understanding, vol. 73, no. 3, pp. 428-440, 1999.
visual model which was u I Xperi |¥] D. M. Gauvrila, “The visual analysis of human movement: A syl

replaced or augmented by more powerful existing visual mod- Comp. Vis. Image Understanding, vol. 73, no. 1, pp. 82-98, 1994.

els, e.g., 552], [53], [54], [55], which may better handle some [3] P. Gabriel, J. Verly, J. Piater, and A. Genon, “The statehe art in
multiple object tracking under occlusion in video sequeridesProc.

of the visual ambiguities. The performance of the proposed  agyanced Concepts for Intelligent Vision Systems, 2003, p. 1661731
two-stage dynamic model strongly depends on the select¢d w. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual

noise parameter of the dynamic system (the spectral dgnsity Surveillance of object motion and behaviok£EE Trans. Systems, Man
and Cybernetics, C, vol. 34, no. 30, pp. 334-352, 2004.

!mpropgr vglue_s of this parameter might_ Ie?'d to fa:”ed tirsgk [5] T. B. Moeslund and E. Granum, “A survey of computer visicaséd
in certain situations. If the spectral density in the libenadel human motion captureComp. is. Image Understanding, vol. 81, no. 3,

is set too low, then the dynamic model will not be able to_ PP. 231-268, March 20011 . .
for th brupt motions and will act as having a reé?] T. B. Moeslund, A. Hilton, and V. Kruger, “A survey of adwees in
account for the a p gag vision-based human motion capture and analystofmp. Vis. Image

inertial properties. Consider an example in which the targe Understanding, vol. 103, no. 2-3, pp. 90-126, November 2006.

is quickly moving to the left for a while and then abruptly [7] C. M. Bishop,Pattern Recognition and Machine Learning, ser. Informa-

. . . . . tion Science and Statistics. Springer Science+BusinessiaieCC,
changes its direction and starts moving to the right. A very 5506 1 8 pring M

low spectral density will likely result in tracker not beiadple  [8] R. E. Kalman, “A new approach to linear filtering and preitio

to keep up with the target even from the start and it will E“;b'emsr””ans- ASME, J. Basic Engineering, vol. 82, pp. 34-45, 1960.

lose the target. By slightly increasing the spectral dgr(sitit [9] A’. Doucet, N. de Freitas, and N. Gordon, Ed3&quential Monte Carlo
still keeping it low), the tracker will exhibit strong inéat Methods in Practice. New York: Springer-Verlag, January 2001.

properties and initially keep up with the target, but thehew [10] M. K- Pittand N Sheppard, ‘iiering via simulation: Mifary paricle
. . o . . ters,” J. Amer. Sat. ., vol. 94, no. . Pp. —-599, ,
the target changes its motion, it will continue approximhate 1'4ers & ve ne PP

in the direction in which it was initially moving, and again[11] P. Torma and C. Szepesvari, “On using likelihood-adjdgtroposals in
lose the target. Note that these are pathological situmtion Particle filtering: Local importance sampling,” Broc. Int. Symp. Image
. and Sgnal Processing and Analysis, September 20052, 14

Indeed, we have observed that the two-stage model is I’Ong} K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and ®. Lowe,
to variations of the spectral density around the one which is “A boosted particle filter: Multitarget detection and tréaw” in Proc.
calculated by the rule-of-thumb. Therefore, if a designer European Conf. Computer Mision, vol. 1, 2004, pp. 28-3%2, 14

. . . . ﬁ13] A. Naeem, T. Pridmore, and S. Mills, “Managing particleresgm
a traCkmg algorlthm wishes to fine tune the spectral dens Y™ via hybrid particle filter/kernel mean shift tracking,” iRroc. British
for a given application, a good starting point is the equatio  Machine Vision Conference, 2007. 2, 14
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