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Abstract—We propose a new dynamic model which can be
used within blob trackers to track the target’s center of gravity.
A strong point of the model is that it is designed to track a
variety of motions which are usually encountered in applications
such as pedestrian tracking, hand tracking and sports. We
call the dynamic model a two-stage dynamic model due to its
particular structure, which is a composition of two models: a
liberal model and a conservative model. The liberal model allows
larger perturbations in the target’s dynamics and is able to
account for motions in between the random-walk dynamics and
the nearly-constant-velocity dynamics. On the other hand, the
conservative model assumes smaller perturbations and is used
to further constrain the liberal model to the target’s current
dynamics. We implement the two-stage dynamic model in a two-
stage probabilistic tracker based on the particle filter and apply
it to two separate examples of blob tracking: (i) tracking entire
persons and (ii) tracking of a person’s hands. Experiments show
that, in comparison to the widely used models, the proposed
two-stage dynamic model allows tracking with smaller number
of particles in the particle filter (e.g., 25 particles), while achieving
smaller errors in the state estimation and a smaller failure rate.
The results suggest that the improved performance comes from
the model’s ability to actively adapt to the target’s motion during
tracking.

Index Terms—Dynamic Models, Two-Stage Models, Blob
Tracking, Probabilistic Tracking, Particle Filters

I. I NTRODUCTION

Tracking in video data is a part of a broad domain of
computer vision that has received a great deal of attention
from researchers over the last twenty years. One of the reasons
is that the computer-vision-based visual tracking has found
its way into many real-world applications such as visual
surveillance, video editing, analysis of sport events, kinematic
analysis in medical applications, and human-computer inter-
faces. This gave rise to a body of literature, of which surveys
can be found in the work of Aggarval and Cai [1], Gavrila
[2], Gabriel et al. [3], Hu et al. [4] and Moeslund et al. [5],
[6]. In many applications, the tracked object (the target) is
approximated by a single region or a blob. The blob’s interior
is used to extract the target’s appearance model, while the
blob’s centre of gravity is used to encode the target’s position
in the image. These trackers are called the blob trackers
and are convenient for tracking a variety of objects, since
they typically make only weak assumptions about the object’s
shape. Some examples of modelling a human body and only
a part of a human body by a blob are shown in Figure1.

A major difficulty in visual tracking is the uncertainty
associated with the visual data as well as the uncertainty
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Fig. 1. Examples of using blobs to model entire persons (a,b) and a person’s
hand (d). The blobs are parameterized by ellipses.

associated with the dynamics of the tracked target. One way to
deal with these uncertainties is to apply a recursive Bayes filter
(see, e.g., [7], page 638) to continuously estimate a posterior
probability density function (pdf) over the parameter space of
the target’s model. The mode, or the mean, of the posterior can
then be taken as an estimate of the target’s state (e.g., position).
An early analytical solution to the recursive Bayes, which
approximates the posterior by a single Gaussian distribution,
was presented in the sixties. Although the original derivation
was not presented strictly in a Bayesian form it is the first
solution to the recursive Bayes and is now commonly known
as the Kalman filter [8]. The assumptions which are used to
derive the Kalman filter are often too restrictive for visual
tracking and pose a major drawback for its application in
real-life scenarios. The reason is that the measurement process
and the target’s dynamic model are assumed to be linear and
Gaussian; these assumptions are often severely violated in
the visual tracking. In the past decade, Monte-Carlo-based
numeric approximations of the recursive Bayes filter, called
the particle filters [9], have become a widely-used approach
to tracking, due to their ability to account for much more
general processes than the Kalman filter. A central point of
the particle filters is that they approximate the posterior at
one time-step by a number of weighted particles and can
thus deal with a large variety of shapes of the posterior. The
posterior for the next time-step is obtained by sampling and
propagating the particles through the target’s dynamic model,
and re-evaluating their weights against the visual data. The
variance of the estimated state will largely depend on the
number of particles used and the strategy by which they
are allocated at hypothesized states. For example, in many
applications it is difficult to derive a good dynamic model
for the target’s dynamics and usually a simple dynamic model
with a large process noise is used instead. In those cases, after
the simulation step, the particles have to be well spread in the
state-space so they can cover the alternative hypotheses inthe
target’s motion. This, however, can result in many particles
having low weights and contributing very little to the final
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estimate of the target’s state. As a result, the variance of the
estimated state value increases and can even lead to a loss
of track. Two solutions are commonly used in practice: (i)
increase the number of particles and/or (ii) use clever strategies
to allocate the particles close to the modes of the posterior.
Such strategies may be applications of an auxiliary-variable
particle filter [10], local-likelihood sampling [11], a boosted
particle filter [12] or hybrid applications with hill-climbing
routines [13], to name just a few.

An alternative, by which the above problems of an increased
variance of the state estimator can be addressed, is to use better
models of the target’s dynamics to more efficiently allocatethe
particles in the first place. Good allocation of particles also
improves tracking by reducing the uncertainty which arises
from the visual data, thus achieving a more reliable track. In
this paper we focus on such an approach. We propose a new
dynamic model for tracking the target’s centre of gravity in
blob trackers. The model is implemented within the framework
of particle filters and is designed to track human motions. The
dynamic model allows an improved tracking in comparison
to the widely-used dynamic models while at the same time
requires only a low number of particles in the particle filter.
We provide simple rules to selecting the model’s parameters
and demonstrate its effectiveness quantitatively as well as
qualitatively with examples of tracking person’s body and with
examples of tracking person’s hands.

A. Related work

When the dynamics of the tracked object are known, the
search space of the parameters to be estimated during tracking
can be constrained considerably. In this respect, most of the
work on human dynamic models has been focused on deriving
detailed kinematic models for human pose estimation, e.g.,
[14], [15], [16], [17]. However, in blob trackers, when tracking
entire persons or only a part of a person (see Figure1 for ex-
amples), the motion cannot be constrained as much in practice,
and simpler dynamic models are used instead. The common
choices are a random-walk (RW) model or a nearly constant
velocity (NCV) dynamic model; see [18] for a good treatment
of these. The RW model assumes that the target’s velocity
is a white-noise sequence and is thus temporally completely
non-correlated. On the other hand, the NCV model assumes
that velocity is temporally strongly correlated, since it assumes
that the changes in velocity arise only due to the white noise
of the acceleration. The RW model thus describes the target’s
dynamics best when the target performs radical accelerations
in random directions, e.g. when undergoing abrupt movements.
However, when the target moves in a certain direction (which
is often the case in, e.g., surveillance), the RW model performs
poorly and the motion is better described by the NCV model.

In practice, the target will undergo various different types of
motion and therefore, to cover a range of possible dynamics of
the tracked object, some authors have proposed an interacting
multiple model (IMM) approach. In this approach multiple
trackers, each with a different dynamic model, are used in
parallel for tracking the target. A special scheme is used
to determine how well each model describes the target’s

current motion and the estimates from different trackers are
then combined accordingly. A detailed treatment of different
combination schemes is given in [19]. The interacting multiple
model approaches based on Kalman filters have received
considerable attention in the work on aircraft tracking with
radars [20], [21], and an application to camera gaze control
can be found in [22]. A particle-filter-based implementation
of IMM can be found in [23], [24], [25]. A drawback of
IMM approaches is that the complexity of tracking increases
dramatically, since now the probability distributions have to
be estimated (jointly) over each of the interacting models.In
particle filters, the likelihood function of observations has to
be evaluated for each hypothesis (particle). In visual tracking,
calculating the likelihoods is usually time-consuming since
the visual model has to be calculated for each particle and
compared to the reference model. Thus computational efforts
of visual tracking with particle filters is considerably increased
when using IMM approaches.

For many applications, such as tracking in sports, gesture-
based human-computer interfaces and surveillance, it is dif-
ficult to find a compact set of rules that govern the target’s
dynamics. Because of this, and the computational complexity
associated with the IMM methods, researchers usually model
the target’s motion using a single model. In practice, to cover a
range of different motions, a common solution is to choose ei-
ther a RW [26], [27], [13] or a NCV [28], [12], [29], [30], [31],
[32], [33] model, and increase the process noise to account
for the unmodelled dynamics. An obvious drawback of this
approach is that poorly modelling dynamics can significantly
deteriorate the tracker’s performance. Another drawback,in
absence of additional solutions, is that the increase of the
process noise requires an increase of the number of the
particles to maintain a good track, which can in turn slow
down the tracking and rendering the trackers less appropriate
for realtime applications.

To alleviate the increasing variance of the estimation when
using a random walk model with a large process noise, Okuma
et al. [12] integrated a particle filter with an AdaBoost object
detector. Another approach to variance reduction was proposed
by Needham [27], who applied a Kalman filter to further filter
the estimates from the particle filter. An ad-hoc scheme was
then used tomove the particles in the particle filter closer
to the Kalman-filtered estimate. In a multiple-interacting-
targets application [34], a similar approach was applied with
a collision-avoidance algorithm: Each time a target would
collide with another target, the dynamic model for one target
would be modified to move particles in the particle filter away
from the other target. Both approaches have in common the
concept that a single dynamic model is used within a particle
filter and another model is used on top of a particle filter to
improve the final estimation of the target’s state; we adopt this
concept in our approach.

B. Our approach

We propose a two-stage dynamic model for tracking the
target’s centre of gravity in blob trackers. The dynamic model
is designed to account for motions which we usually observe
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in tracking persons. We call the model atwo-stage dynamic
model due to its particular structure, which is composition
of two models: a liberal and a conservative model. The
liberal model allows larger perturbations in the target’s dy-
namics and is able to account for motions in between the
RW dynamics and the NCV dynamics. This is achieved
by explicitly modelling the target’s velocity as a non-zero-
mean Gauss-Markov process. The conservative model assumes
smaller perturbations in the velocity and is used in to further
constrain the liberal model to the target’s current dynamics.
We implement the proposed dynamic model in a two-stage
probabilistic tracker which is based on the particle filter.We
apply the proposed dynamic model to examples of tracking
entire persons and to examples of tracking person’s hands.

The outline of the remainder of the paper is as follows. In
SectionII we first briefly overview the bootstrap particle filter.
In SectionIII-A we develop the liberal dynamic model and
analyze how the parameters of the model influence the model’s
structure. The conservative model is proposed in SectionIII-B ,
in SectionIII-C we propose the two-stage dynamic model and
its application to blobtracking in SectionIII-D . In SectionIV
results of the experiments are reported, and conclusions are
drawn in SectionV.

II. B OOTSTRAP PARTICLE FILTER

We give here only the basic concept of the particle filters
and notations, and refer the reader to [35] for more details.
Let xk−1 denote the state (e.g., position and size) of a tracked
object at time-stepk− 1, let yk−1 be an observation atk− 1,
and lety1:k−1 denote a set of all observations up tok−1. From
a Bayesian point of view, all of the interesting information
about the target’s statexk−1 is encompassed by its posterior
p(xk−1|y1:k−1). During tracking, this posterior is recursively
estimated as the new observationsyk arrive, which is realized
in two steps: prediction (1) and update (2),

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (1)

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1). (2)

The recursion (1,2) for the posterior, in its simplest form,
thus requires a specification of a dynamical model describing
the state evolutionp(xk|xk−1), and a model that evaluates the
likelihood of any state given the observationp(yk|xk).

In our implementation we use a simple bootstrap particle
filter [36], [37]. The posterior at time-stepk − 1 is estimated
by a finite Monte Carlo set of statesx(i)

k−1 and their respective

weights w
(i)
k−1, p(xk−1|y1:k−1) ≈ {x(i)

k−1, w
(i)
k−1}N

i=1, such
that all weights in the particle set sum to one. At time-
step k the particles are first resampled according to their
weights, in order to obtain an unweighted representation of
the posteriorp(xk−1|y1:k−1) ≈ {x̃(i)

k−1,
1
N
}N

i=1. Then they are

propagated according to the dynamical modelp(xk|x̃(i)
k−1),

to obtain a representation of the predictionp(xk|y1:k−1) ≈
{x(i)

k−1,
1
N
}N

i=1. Finally, a weight is assigned to each particle

according to the likelihood functionw(i)
k ∝ p(yk|x(i)

k ), all
weights are normalized to sum to one, and the posterior at the

time-stepk is approximated by a new weighted particle set
p(xk|y1:k) ≈ {x(i)

k , w
(i)
k }N

i=1. The current state of the target
x̂k can then be estimated as the minimum mean-square error
(MMSE) estimate over the posteriorp(xk|y1:k)

x̂k =
∑N

i=1
x

(i)
k w

(i)
k . (3)

III. T HE TWO-STAGE DYNAMIC MODEL

A. The liberal model

As noted in the introduction, the conceptual difference
between RW and NCV models is that they assume two
extremal views on the temporal correlation of the velocity.
With this rationale we can obtain a more general model by
simply treating the velocity as a correlated (colored) noise,
but without deciding onthe extent to which it is correlated.
A convenient way to model the correlated noise is to use a
Gauss-Markov process (GMP). The GMP has been previously
used with some success in modelling the acceleration of an
airplane in flight (see, e.g., [38], [39], [40]), which allowed an
improved tracking of air maneuvers. In this section we show
that by modelling the velocity with a Gauss-Markov process,
we obtain a model of which RW and NCV are only special
cases and which is able to account for more general dynamics;
we will call this model the liberal model. In all our subsequent
experiments we have used separate dynamic models to model
the target’s horizontal and vertical motion independently. We
therefore require derivation of the model for one-dimensional
problems only. After derivation of the liberal model we also
provide an analysis of its parameters.

We start by noting that changes in the positionx(t) arise
due to a non-zero velocityv(t) of the target, i.e.,̇x(t) = v(t).
The velocityv(t) is modelled as a non-zero-mean correlated
noise

v(t) = ṽ(t) + v̂(t), (4)

where ṽ(t) denotes a zero-mean correlated noise andv̂(t) is
the current mean of the noise; we will callv̂(t) the input ve-
locity. We model the correlated noisẽv(t) as a Gauss-Markov
process with an autocorrelation functionRṽ(τ) = σe−β|τ |,
whereσ2 is the variance of the process noise, andβ is the
correlation time constant. To derive the dynamic model of the
process (4) in a form which we can use for tracking, we have
to first find a stochastic differential equation (s.d.e.) of the
process (4), governed by a white-noise process, and then find
its discretized counterpart.

Applying a shaping filter (see, e.g., [41], page 137) to the
correlated noisẽv(t) gives the following s.d.e.

˙̃v(t) = −βṽ(t) +
√

qcu(t), (5)

where qc = 2βσ2 is the spectral density of the equivalent
white-noise process acting on˙̃v(t) and where,u(t) denotes a
unit-variance white-noise process. The continuous-time s.d.e.
of (4) can now be derived by expressing̃v(t) in (4) and
plugging it into (5),

˙̃v(t) = −βv(t) + βv̂(t) +
√

qcu(t). (6)

In order to arrive at a discretized form of the above model,
we first note from (4) that ˙̃v(t) = ∂

∂t
(v(t)− v̂(t)) and assume
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that the input velocitŷv(t) remains constant over a sampling
interval1. Thus we obtain

v̇(t) = −βv(t) + βv̂(t) +
√

qcu(t). (7)

Sinceẋ(t) = v(t), we can write the complete system s.d.e.
in the matrix form

Ẋ(t) =

[

0 1
0 −β

]

X(t) +

[

0
β

]

v̂(t) +

[

0
1

]√
qcu(t),

(8)
where we have definedX(t) = [x(t), v(t)]T. Applying a
standard discretization (see, e.g.,[42] Appendix B) to (8) we
obtain the continuous-time liberal model (4) with discretized
statesXk = [xk, vk]T :

Xk = ΦXk−1 + Γv̂k−1 + Wk, (9)

Φ =

[

1 1−e−∆tβ

β

0 e−∆tβ

]

,Γ =

[

∆tβ−1+e−∆tβ

β

1 − e−∆tβ

]

.

From the theory of estimation and control (e.g., [19] page 186)
the analytic from of the equation (9) is known as thediscrete-
time linear stochastic dynamic system, in whichΦ corresponds
to the state transition matrix and Γ is the discrete-time
gain (assumed constant over the sampling interval) through
which a deterministic sequencêvk−1 enters the system. In our
treatment,̂vk−1 in (9) is the input velocity for the current time-
stepk, ∆t is the time-step length, andWk is a white-noise
sequence with a covariance matrix

Q =

[

q11 q12

q12 q22

]

qc, (10)

q11 =
1

2β3
(2∆tβ − 1 + 4e−∆tβ − e−2∆tβ),

q12 =
1

2β2
(1 + e−2∆tβ − 2e−∆tβ),

q22 =
1

2β
(1 − 2e−2∆tβ).

Note that there are two parameters which can be set in the
liberal model (9, 10): one is the correlation-time parameterβ

and the other is the spectral densityqc of the noise. In the
following we first give an analysis of how the parameterβ

influences the structure of the proposed liberal model. Then
we propose a method for selecting the spectral densityqc for
a given class of objects.

1) Parameter β: In terms of the parameterβ, the dynamic
properties of the liberal model (9) can be considered as being
in between a random-walk and a nearly-constant-velocity
model; this can be seen by limitingβ to zero, or to infinity.
In the case ofβ → 0, the model takes the form of a pure
NCV model with a state transition matrixΦβ→0 and the input
matrix Γβ→0

Φβ→0 =

[

1 T

0 1

]

,Γβ→0 =

[

0
0

]

. (11)

1Note that this assumption may be restrictive if the target significantly
changed its motion during a time step. In our application, however, we assume
a camera frame-rate of 20 to 30 frames per second, which results in 33-50ms
time steps. We can therefore reasonably assume a constant mean of the GMP
and absorb the unmodelled changes into the white noise sequence.

On the other hand, atβ → ∞, the model takes the form of
a RW model with the state transition matrixΦβ→∞ and the
input matrixΓβ→∞

Φβ→∞ =

[

1 0
0 0

]

,Γβ→∞ =

[

1
1

]

. (12)

Note that the values ofΓβ→∞ are nonzero, thus the input
velocity has to be set to zero,̂vk−1 = 0, to obtain the pure
random-walk model.

We have seen thus far that the liberal dynamic model takes
the structure of RW and NCV models at the limiting values of
β. But what happens whenβ is set to somewhere in between
zero and infinity? To get a better understanding of that, it
is beneficial to rewrite the model in the following way. Let
xk = [xk, vk]T denote the state at the time-stepk with position
xk and velocityvk, and, similarly, letxk−1 = [xk−1, vk−1]

T

denote the state at the previous time-stepk−1. We also rewrite
the elements of the system transition matrixΦ and the input
matrix Γ (9) in the following abbreviated form

Φ =

[

1 φ1,2

0 φ2,2

]

,Γ =

[

γ1

γ2

]

. (13)

Note from (9) that Φ and Γ depend on the size of the
time-step∆t, which is the time between one and the next
measurement. Without loss of generality we can set the time-
step to unity, i.e.,∆t = 1. For completeness, let us also define
the values of the noise terms, at time-stepk, acting on the
position and velocity byWk = [wxk, wvk]T . Now we can
rewrite the liberal model (9) in terms of the state’s components
as

xk = xk−1 + φ1,2vk−1 + γ1v̂k−1 + wxk (14)

vk = φ2,2vk−1 + γ2v̂k−1 + wvk.

Since we have set∆t = 1, we have from (9) and (14)

φ1,2 + γ1 ≡ 1 and φ2,2 + γ2 ≡ 1.

This means thatφ1,2 andγ1 are the proportions in which the
internal velocity vk−1 and the input velocity v̂k−1 will be
combined into the deterministic part of the velocity acting
on the currentposition xk.2 Similarly, φ2,2 and γ2 are the
proportions in which the internal velocityvk−1 and theinput
velocity v̂k−1 will be combined into the deterministic part of
the velocity acting on the currentvelocity vk. With ∆t fixed,
the values of the mixing factorsφ1,2, φ2,2, γ1 andγ2 depend
solely onβ. We show this dependence in Figure2.

From the Figure2 we see that by increasingβ, the influence
of the input velocityv̂k−1 increases in (14), and for a very
large β, the internal velocityvk−1 is completely disregarded
by the dynamic model asφ1,2 andφ2,2 of (14) tend to zero. On
the other hand,γ1 andγ2 tend to zero for small values ofβ.
This means that we can considerβ as a parameter that specifies
an a-priori confidence of the input̂vk−1 and internal velocity
vk−1. If, for example, we know that̂vk−1 is very accurate,
thenβ should be set to a very large value. Otherwise, smaller
β should be used.

2The nondeterministic part of the velocity acting on the current position
xk is the white noisewxk.
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Fig. 2. The values of the components ofΦ andΓ at ∆t = 1 w.r.t. different
values ofβ. The left graphs (upper row) showφ1,2 andγ1 which are used
for mixing vk−1 and v̂k−1, respectively, in estimating the current position
xk. The right graphs (lower row) show the values ofφ2,2 and γ2 which
are used for mixingvk−1 and v̂k−1, respectively, in estimating the current
velocity vk. In (a), the values ofφ1,2 are depicted by the dashed line, while
the values ofγ1 are depicted by the full line. Similarly, in (b), the values of
φ2,2 are depicted by the dashed line, while the values ofγ2 depicted by the
full line. In both images, the upright dash-dotted line depicts the values of
φ1,2, φ2,2, γ1 and γ2 at β = 2. For convenience, these values are written
out at the marked locations.

The two-stage dynamic model which is presented in this
paper usually yields reasonable estimates of the input velocity
v̂k−1 for a large class of targets. In practice we have observed
that it is thus beneficial to let the input velocitŷvk−1 have a
dominant effect overvk−1 in estimating the currentvelocity
vk. However, if we want the liberal model to be able to account
for a greater agility of the target, it is also beneficial to let the
internal velocityvk−1 to have a greater effect on predicting
the currentposition xk. We have found that these requirements
are sufficiently well met atβ ≈ 2 which is the value we use in
all subsequent experiments. The values ofφ1,2, γ1, φ2,2 and
γ2 at β = 2 are shown in Figure2.

2) Selecting the spectral density: Another important param-
eter of the liberal model (9) is the spectral densityqc of the
process noise (10). Note that in many cases it is possible to
obtain some general characteristics of the dynamics of the
class of objects which we want to track. Specifically, the
expected squared distanceσ2

m that objects of certain class
travel between two time-steps is often available. Assuming
that we have some estimate ofσ2

m, and that the time-step size
∆t and the parameterβ are known, we now derive a rule-of-
thumb rule for selecting the spectral densityqc.

To derive the rule-of-thumb, let us consider the following
example. Assume that at time-stepk− 1 a target is located at
the origin of the coordinate system, i.e.,xk−1 = 0, and begins
moving with a velocityvk−1 ∼ q22qc, i.e.,Xk−1 = [0, vk−1]

T.
Assuming that the input velocitŷvk−1 in (9) is zero, the

target’s state after a single time-step is

Xk = ΦXk−1 + Wk. (15)

The covariance of the position at time-stepk is

P = 〈XkX
T
k 〉

= 〈ΦXk−1X
T
k−1Φ

T 〉 + 〈ΦXk−1W
T
k 〉

+〈WkX
T
k−1Φ

T 〉 + 〈WkWT
k 〉, (16)

where 〈·〉 denotes the expectation operator. Since the state
Xk−1 is not correlated with the noiseWk and since
Q

∆
=〈WkWT

k 〉, the equation (16) simplifies into

P =

[

p11 p12

p21 p22

]

= Φ〈Xk−1X
T
k−1〉ΦT + Q. (17)

Sincep11 in (17) is just the expected squared change of target’s
position in consecutive time steps, i.e.,p11 = σ2

m, we have

σ2
m = p11

= (
1 − e−∆tβ

β
)2〈vk−1vk−1〉 + q11qc. (18)

Since we have defined earliervk−1 ∼ q22qc, we know that
〈vk−1vk−1〉 = q22qc, and (18) is rewritten into

σ2
m = ((

1 − e−∆tβ

β
)2q22 + q11)qc. (19)

Inverting (19) finally gives the rule-of-thumb rule for selecting
the spectral density

qc = σ2
m((

1 − e−∆tβ

β
)2q22 + q11)

−1. (20)

B. The conservative model

In contrast to the liberal model, the conservative model
assumes that the target’s velocity does not change abruptly
and approximates the local dynamics by fitting a linear model
to the past filtered states. This model is used in the two-stage
dynamic model to regularize the estimated target positions
from the liberal model.

Let ôk−K:k−1 = {ôi}k−1
i=k−K denote a sequence of theK

past regularized (e.g., horizontal) positionsôi of the target, and
let πk−K:k−1 = {πi}k−1

i=k−K denote the set of their weights.
These weights indicate how well the corresponding positions
have been estimated. The conservative model aims to locally
approximate the sequencêok−K:k−1 by the following linear
model

x̃i = v̂ôk−1i + âôk−1, (21)

wherex̃i is the target’s linearly approximated position at time-
stepi. The subscript(·)ôk−1 in (21) is used to indicate that the
parameters have been estimated using a sequence of filtered
positions up to position̂ok−1. Since all positions are usually
not estimated equally well, and since the recent positions are
more relevant for estimating the target’s current dynamics,
the parameterŝvôk−1 and âôk−1 of the linear model (21) are
estimated such that they minimize the following weighted sum
of squared differences

Ck−1 =

k−1
∑

i=k−K

G
(i)
k−1(ôi − x̃i)

2 (22)
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in which the weightsG(i)
(·) are defined as

G
(i)
j = πie

− 1
2

(i−j)2

σ2
o . (23)

While the first term in (23) reflects the likelihood of the
position oi, the second term is a Gaussian which assigns
higher a-priori weights to the more recent states. In practice
this means that we only considerK = 3σo past positions
in (22), since the a-priori weights of all the older positions
are negligible. Note that the Gaussian form was used for the
last term exclusively to attenuate the importance of the older
positions. In general, however, other forms that exhibit similar
behavior (e.g., an exponential function) could have been used.

From (21) and (22) we can now findv̂ôk−1 and âôk−1

simply by setting the corresponding partial derivatives tozero

∂Ck−1

∂v̂ôk−1
≡ 0 ,

∂Ck−1

∂âôk−1
≡ 0, (24)

which gives

v̂ok−1 =

k−1
∑

i=k−K

iG
(i)
k−1ôi + Ak−1Bk−1(

k−1
∑

i=k−K

iG
(i)
k−1)

k−1
∑

i=k−K

i2G
(i)
k−1 − Ak−1(

k−1
∑

i=k−K

iG
(i)
k−1)

2

,

âôk−1 = Ak−1(Bk−1 − v̂ôk−1

k−1
∑

i=k−K

iG
(i)
k−1), (25)

where we have defined

Ak−1 = (

k−1
∑

i=k−K

G
(i)
k−1)

−1 ; Bk−1 =

k−1
∑

i=k−K

G
(i)
k−1ôi (26)

The conservative model is completely defined with parame-
tersv̂ôk−1 andâôk−1. A conservative prediction of the target’s
position x̃k at time-stepk is calculated as

x̃k = v̂ôk−1k + âôk−1. (27)

Note that the parameter̂vôk−1 can be interpreted as a conser-
vative approximation of the target’s current velocity calculated
from a sequence of̂ok−K:k−1 filtered positions.

C. A two-stage dynamic model

The liberal model in sectionIII-A was derived from a
continuous-time non-zero-mean Gauss-Markov process and is
capable of accounting for various types of dynamics, ranging
from a random walk to the nearly-constant-velocity behavior.
This model can be readily used within a particle filter to
estimate the posterior over the target’s state recursivelyin time.
A mean value calculated on this posterior can be taken as a
minimum-mean-squared-error estimate of the target’s current
state (e.g., position). While the liberal model can potentially
well explore the target’s state-space, it requires estimation
of the mean value of the Gauss-Markov process (the input
velocity) and the quality of the state estimation will quickly
deteriorate with decreasing the number of particles in the
particle filter. In cases when the target’s velocity is locally-
linear, the conservative model from SectionIII-B may provide
a better approximation of the target’s dynamics, however, it

lacks the ability of the liberal model’s exploration of the state-
space.

We therefore propose a two-stage dynamic model, which
combines the liberal model with the conservative model from
sectionIII-B into a two-stage probabilistic tracker as follows.
Assume we have a sequence of the pastK filtered target
positionsôk−K:k−1 and their weightsπk−K:k−1, and that we
have fitted a linear model (27) to this sequence. Recall that
the parameter̂vôk−1 in (27) is a conservative estimate of
the target’s velocity from the target’s positions up to time-
step k − 1. At time-step k, when a new image arrives,
we can use this conservative estimatev̂ôk−1 to approximate
the input velocity v̂k−1 for the liberal model (9). With the
input velocity approximated, the liberal model, which accounts
for the non-constant velocity, can be used within a particle
filter to approximate the posteriorp(xk|y1:k) over the target’s
current state. The mean value of the posterior (3) is the
liberal approximation of the target’s statex̂k = [x̂k, v̂k]T . The
variance of the liberal estimate of the target’s position can be
reduced by taking into account the conservative estimate as
well. The conservative model is used to generate the current
conservative prediction (27) of the target’s positioñxk. The
liberal estimate can be fused with the conservative estimate by
using the visual data as follows. We measure the likelihood3

wx̂k
= p(yk|x̂k) that the target is located at the liberal estimate

of it’s position x̂k and we can do similarly for the conservative
estimatex̃k, wx(k) = p(yk|x̃k). The conservative and the
liberal estimates are then fused as

ôk =
x̃k · wx̃k

+ x̂k · wx̂k

wx̃k
+ wx̂k

, (28)

the corresponding weightπk of the new regularized posi-
tion ôk is evaluated using the visual likelihood function,
πk = p(yk|ôk), and the new parameters (v̂ôk and âôk) of the
conservative model (27) are recalculated using (25). The new
regularized state from the two-stage dynamic model is then
constructed from the fused position and conservative velocity,
ok = [ôk, v̂ok]T . The prediction of the regularized stateõk+1

from the two-stage dynamic model for the next time-step
can be calculated under the assumption of a locally-constant
velocity as

õk+1 = Fok ; F =

[

1 ∆t

0 1

]

. (29)

Note that the proposed two-stage algorithm essentially
implements a well-known concept of information fusion. In
particular, we can summarize an iteration of the algorithm
in the following three steps: (i) generating a “conservative
prediction” of the target’s position from the conservative
model, (ii) generating the “liberal measurement” from the
liberal model in the particle filter (estimated mean value
of the posterior) and (iii) fusing the “prediction” and the
“measurement” into a single estimate using the visual data
(likelihood). The concept of fusing prediction and measure-
ment by linear (weighted) combination is, for example, a

3The visual likelihoodsp(yk|x̂k) and p(yk|x̃k) refer to the likelihood
function, which we also use in the particle filter and which evaluates the
likelihood that a target is located at some position or a state, e.g., the color-
based likelihood function.
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central approach of the Kalman filter [8]. There, the weights
for fusing prediction and measurement by linear interpolation
are computed from the covariance of the prediction’s and
measurement noise. In the two-stage dynamic model, the
weights are provided directly from the visual model which
tells us how well each hypothesis (conservative prediction and
the liberal measurement) is supported in the visual data. The
linear interpolation between various estimates is also central to
the particle filter: each particle produces a state and a belief
that the target is actually in that state. While each particle
is in itself an estimator of the target’s position, the variance
of this estimator is usually very large. However, the linear
averaging of particles gives a mean value of the posterior,
which is an estimator with a reduced (but potentially still large)
variance. By enforcing regularization from our conservative
prediction, the variance can be further reduced. In particular,
the regularization (implemented here as linear interpolation)
can be viewed as adding additional (conservative) samples to
the particles from the particle filter, appropriately weighting
them (using the visual data) and calculating their mean value.
Effectively, this combination of two alternative hypotheses
allows the two-stage dynamic model to handle constant as
well as nonconstant motions. The reduction in the variance of
the estimator and improved tracking of the various motions
are validated in our experiments in the sectionIV .

D. Application to blobtracking

Here we present an implementation of the two-stage dy-
namic model on an example of particle-filter-based blob
tracker. This tracker is used in our experiments to compare
the performance of the proposed model with common dynamic
models used for blob tracking. In a probabilistic blob tracker,
the target is commonly modelled by an elliptical or rectangular
region and its appearance is encoded by a color histogram
(e.g., [43], [44], [26], [45], [30]). The color-based likelihood
function for the particle filterp(yk|xk) is thus calculated
through comparison of reference color histograms to the
histograms extracted at the target’s statexk (see, e.g., [45]).
We use two one-dimensional two-stage models for modelling
the motion of target’s horizontal and vertical position (i.e., el-
lipse’s center) and two one-dimensional random-walk models
for the target’s width and height. The target’s state is thus
defined asxk = [xk, vxk, yk, vyk,Hxk,Hyk]T , where[xk, yk],
[vxk, vyk], [Hxk,Hyk] are the target’s position, velocity and
size, respectively. The liberal model (9), which is also used
for the state transition modelp(xk|xk−1) in the particle filter,
is therefore defined as

xk = ΦLxk−1 + ΓLv̂k−1 + WLk, (30)

ΦL = diag[Φ,Φ, 1, 1], ΓL = [diag[Γ,Γ], 02×1]
T ,

whereΦ and Γ are defined in (9)4, 02×1 = [0, 0]T , v̂k−1 =
[v̂xk−1, v̂yk−1]

T are the horizontal and vertical input veloci-
ties, andWLk is a discrete-time white noise sequence defined
by a zero-mean normal distribution,WLk ∼ N (0, QL), with
covariance matrix

QL = diag[Q,Q, I2×2σ
2
H ], (31)

4Without loss of generality the time-step size inΦ andΓ is set to∆t = 1

with Q defined in (10) andI2×2 = diag[1, 1]. The parameter
σH corresponds to the noise in the random-walk models on
the target’s size. As in [46], we fix this parameter in all
our subsequent experiments such that the target’s size does
not change between two time-steps by more than15%. The
conservative model uses sequences of the pastK regularized
stateŝok−K:k−1 and weightsπk−K:k−1 to fit a linear model to
the regularized positions (SectionIII-B ) and estimateŝvok−1

and âôk−1. A conservative prediction of the target’s position
x̃k at time-stepk is then defined as

x̃k = v̂ôk−1k + âôk−1. (32)

The liberal model provides a liberal estimate of the target’s
position x̂k, which is fused with the conservative prediction
x̃k into a regularized position. The conservative estimate of
the velocity v̂ôk−1 is recalculated and combined with the
regularized position into a new regularized state

ok = [oxk, ovxk, oyk, ovyk, oHxk, oHyk]T . (33)

This is the output of the two-stage dynamic model. The
prediction of the two-stage dynamic model is made under the
assumption of constant velocity and is defined as

õk+1 = FT ok ; FT = diag[F, F, F ], (34)

with F is defined in (34). Following the above description, we
summarize the particle-filter-based blob tracker with a two-
stage dynamic model in Algorithm1.

1) The parameters: Since the two-stage dynamic model in
Algorithm 1 is composed of the liberal and the conservative
model, there are a few parameters that have to be set. Two
parameters have to be set for the liberal model (9): the
parameterβ and the spectral densityqc of the process noise.
A detailed discussion of how the parameterβ influences the
structure of the liberal model was provided in SectionIII-A1 .
There we have concluded, that the required dynamic properties
of the liberal model are met atβ = 2. The remaining parameter
of the liberal model, the spectral densityqc, has to be specified
for the problem at hand and we have proposed a principled
way to selectingqc in SectionIII-A2 . The conservative model
requires setting a single parameterσo, which effectively de-
termines the number of the recent regularized states which
are considered in the linearization. We set this parameter
using the following rationale. We can assume that the objects
which are considered in our applications do not usually change
their velocity drastically within a half of the second. Since
most of our recordings used in the experiments are recorded
at 25 frames per second, this means that we consider only
K = 1

225 ≈ 13 recent regularized states. We have noted in
SectionIII-B that K = 3σo, which means thatσo = 4.3. For
convenience, we summarize the parameters in TableI.

TABLE I
PARAMETERS OF THE TWO-STAGE DYNAMIC MODEL.

The liberal dynamic model (Section III-A)
• Parameterβ = 2.
• Spectral densityqc selected by the rule from SectionIII-A2
The conservative dynamic model (Section III-B)
• Parameterσo = 4.3.
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Algorithm 1 A probabilistic blob-tracker with a two-stage
dynamic model.

Input:
• p(xk−1|y1:k−1) . . . estimate of the posterior pdf from

the previous time-step
• k − 1.
• ôk−K:k−1, πk−K:k−1 . . . sequence of the previousK

regularized positions and weights.
• v̂ôk−1, âôk−1 . . . parameters of the conservative

model from time-stepk − 1.
• The current image.

Output:
• ok . . . the new regularized state.
• p(xk|y1:k) . . . the new estimate of the posterior pdf.
• ôk−K+1:k, πk−K+1:k . . . augmented sequence of reg-

ularized positions and weights.
• v̂ôk, âôk . . . new parameters of the conservative

model.

Iteration:
1: Approximate the input velocitŷvk−1 of the liberal model

(30) by a conservative estimatêvôk−1.
2: Execute an iteration of the particle filter using a color-

based likelihood functionp(yk|xk) and the liberal model
(30) for the state transition modelp(xk|xk−1). The result
is the approximation of the new posteriorp(xk|y1:k).

3: Calculate the liberal estimate of the statêxk =
〈xk〉p(xk|y1:k) (3).

4: Calculate the conservative predictionx̃k (32).
5: Fuse the liberal and conservative estimates into a regu-

larized positionôk according to SectionIII-C, calculate
the weight πk = p(yk|ôk) and augment the weighted
sequence of regularized positions intôok−K+1:k and
πk−K+1:k.

6: Recalculate parameterŝvôk and âôk from ôk−K+1:k and
π̂k−K+1:k.

7: Construct a regularized stateok (33) as a concatenation
of the regularized position̂ok and conservative velocity
v̂ôk.

IV. EXPERIMENTAL STUDY

We carried out two sets of experiments to evaluate the
performance of the proposed two-stage dynamic model from
SectionIII-C. In the first set of experiments (SectionIV-A )
we have tracked persons moving on a predefined path on
the ground. This experiment was designed for quantitative
and qualitative comparison of the estimation accuracy of the
proposed two-stage dynamic model and the two commonly-
used dynamic models. The second experiment was designed to
demonstrate the generality of the proposed dynamic model and
to demonstrate how it can help to reduce the visual ambiguity
which occurs when the target is moving close to another
visually similar object (SectionIV-B). In that experiment,
we have applied the two-stage dynamic model to tracking
person’s palms and to tracking a person in a squash match. In
all the experiments, the target was described by an elliptical
region and its visual properties were encoded by a color his-

togram (see, e.g., [42], page 39). For the videos demonstrating
the results presented in this paper and additional examples
of the tracker’s performance, please see http://vicos.fri.uni-
lj.si/data/matejk/tracking/DynamicModel/Sub/index.html.

A. Experiment 1: accuracy of estimation

Seven players of handball were instructed to run on a
predefined path drawn on the court (Figure3). The path was
designed such that the observed motion involved accelerations,
decelerations and rapid changes in the direction of motion.The
scene was recorded with a camera mounted on the ceiling
of the sport’s hall, such that the size of each player was
approximately10 × 10 pixels. The video was recorded at the
frame rate of 25 frames per second. Each player was manually
tracked thirty times through each frame and the average of
the thirty trajectories obtained for each player was taken as
the ground truth. In this way approximately 273 ground-truth
positionspk = (xk, yk) per player were obtained.

1 2 3 4 5 6 7

Fig. 3. Seven players and the path used in the first experiment.

All seven players from Figure3 were then tracked with three
trackers: Two reference trackers and the proposed tracker.The
only difference between these trackers was in the dynamic
models they used for modelling the dynamics of the player’s
position. The proposed tracker, we denote it byTTS, was
the two-stage probabilistic tracker from SectionIII-D . The
reference trackers were essentially the color-based particle
filters from [42](chapter 3), which employed two widely-used
dynamic models on the player’s position. The first reference
tracker,TRW, used the random-walk model, while the second
reference tracker used the nearly-constant-velocity model; we
denote this tracker byTNCV. All three trackers used random-
walk models to model the dynamics of the player’s size.

The parameters of the RW and NCV dynamic models in
TNCV and TRW were learned from the ground truth. In
particular, the only parameter of the RW and NCV model that
has to be specified is the spectral density of the process noise.
The spectral densities were estimated using a linear-dynamic-
system learning method (see, e.g., [7] pages 635-644) from
7 × 30 = 210 ground truth trajectories. The method yielded
the spectral densityqRW = 4.6 for the RW model and the
spectral densityqNCV = 0.4 for the NCV model. We have
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observed in experiments that the estimated spectral density
for RW was too small and, in practice, the tracker was failing
frequently for some of the players. For that reason, the spectral
density in the RW model was increased toqRW = 6 in the
experiments.

The spectral densityqc of the liberal model (9) in TTS

was determined using the rule-of-thumb rule, which we have
proposed in SectionIII-A2 . Recall that the rule requires us
to provide an estimate of the squared distanceσ2

m that the
objects under consideration are expected to travel betweentwo
time steps. Since we track sports players in our experiment,
we can findσ2

m as follows. Based on the findings of Bon
et al. [47], who refer to Kotzamanidis [48], Erdmann [49]
and Bangsbo [50] regarding the dynamics of handball/soccer
players, we can estimate the highest velocity of a player as
vmax = 8.0m/s. At a frame rate of 25frames/s we can say that
vmax = 0.32m/frame. During tracking, the player is usually
determined by an ellipse that is approximately the size of
his/hers shoulders. We estimate this size to beHt ≈ 0.4m.
Assuming a Gaussian form of the velocity distribution, the
highest velocity can be approximated with three standard
deviations of the Gaussian. This givesvmax = 3σxy/frame
and the parameterσm = Ht

0.32
3·0.4

.
= Ht

1
4 . Using the rule-of-

thumb rule (20) the spectral density of the liberal model is
thus estimated as

qc = (Ht
1
4 )2(q11 + q22(

1−e−β

β
)2)−1, (35)

whereq11 andq22 are defined in (10).
1) Quantitative evaluation: Using the parameters given

above, all seven players from Figure3 were tracked thirty
times with the trackersTRW, TNCV andTTS. ThusK = 30
trajectories per player were recorded for each tracker. Note
that TRW and TNCV have failed during tracking on a few
occasions by losing the player. In those situations, tracking
was repeated and only the trajectories where tracking did not
fail were considered for evaluation. In all experimentsTTS

never failed.
A standard one-sided hypothesis testing [19] was applied

to determine whether the accuracy of estimation byTTS was
greater than the accuracy of the reference trackersTRW and
TNCV. In the following, when not referring to a specific
tracker, we will abbreviate the reference trackers byTREF.
The performance of the trackers in ther-th repetition was
defined in terms of the root-mean-square (RMS) error as

C(r)∆
=

1

7

7
∑

i=1

(
1

K

K
∑

k=1

‖(i)pk − (i)p̂
(r)
k ‖2)

1
2 . (36)

In (36) (i)pk denotes the ground-truth position at time-step
k for the i-th player, (i)p̂

(r)
k is the corresponding estimated

position and‖ · ‖ is thel2 norm. At each repetition, asample-
performance-difference

∆(r) = C
(r)
REF − C

(r)
TS (37)

was calculated. The termC(r)
TS was the cost value (36) of TTS ,

while C
(r)
REF presented the cost value of the reference tracker

TREF .

In our case the null hypothesisH0 was thatTTS is not
superior toTREF. For each tracker we calculated the sample-
performance-difference mean

∆̄ =
1

R

∑R

r=1
∆(r) (38)

and its standard error

σ∆̄ =

√

√

√

√

1

R2

R
∑

r=1

(∆(r) − ∆̄)2. (39)

The null hypothesis was then tested against an alternative
hypothesisH1, that TTS is superior to the reference tracker
TREF , using the statistic∆̄

σ∆̄
. Usually, the alternative hypothe-

sis is accepted at a significance level ofα if ∆̄
σ∆̄

> µα, where
µα represents a point on the standard Gaussian distribution
corresponding to the upper-tail probability ofα. As is standard
practice in hypothesis testing, we set the significance level to
α = 0.05.

The results of the hypothesis testing on position and pre-
diction with respect to a different number of particles in the
particle filter are shown in TableII and TableIII . Table II
shows the results for testing the hypothesis thatTTS is
superior toTRW, while TableIII shows the results for testing
the hypothesis thatTTS is superior toTNCV. The second and
third column in TableII and TableIII show the test statistic
∆̄
σ∆̄

. In all cases the test statistic is greater thanµ0.05 = 1.645.
From TableII we can thus accept the hypothesis thatTTS is
superior toTRW in estimating the position and the prediction
at theα = 0.05 level. Similarly, from TableIII we can also
accept the hypothesis that the trackerTTS is superior toTNCV

in estimating the position and the prediction at theα = 0.05
level. Note that these hypotheses could have been accepted
even at levels lower thanα = 0.01 (µ0.01 = 3.090). Since the
only difference between theTTS , TRW andTNCV was in the
dynamic model of the player’s position, we can conclude that
the two-stage dynamic model is superior to both, the random-
walk, as well as the nearly-constant-velocity model.

TABLE II
THE TEST STATISTIC ∆̄

σ∆̄
FOR THE ALTERNATIVE HYPOTHESIS THAT

“TTS is superior to TRW”, CALCULATED FROM 30 RUNS. THE

HYPOTHESIS MAY BE ACCEPTED AT SIGNIFICANCE LEVELSα = 0.05 AND

α = 0.01.

no. particles Position (∆̄
σ∆̄

) Prediction (∆̄
σ∆̄

)

25 19.2 32.8
50 24.5 54.9
75 71.0 148.6
100 62.9 149.2

2) Qualitative evaluation: To further illustrate the perfor-
mance of the trackers, the RMS errors (36) were averaged over
all thirty repetitions for each tracker and are shown in Fig-
ure4(a,b) and Figure5(a,b). To visualize how the smoothness
of the obtained trajectories changes with the number of par-
ticles, we have also calculated the mean-absolute-differences
(MAD) on positions for different numbers of particles in the
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TABLE III
THE TEST STATISTIC ∆̄

σ∆̄
FOR THE ALTERNATIVE HYPOTHESIS THAT

“TTS is superior to TNCV”, CALCULATED FROM 30 RUNS. THE

HYPOTHESIS MAY BE ACCEPTED AT SIGNIFICANCE LEVELSα = 0.05 AND

α = 0.01.

no. particles Position (∆̄
σ∆̄

) Prediction (∆̄
σ∆̄

)

25 14.4 14.7
50 7.5 7.7
75 8.6 7.7
100 6.0 4.8

particle filter,

MAD
∆
=

1

30

30
∑

r=1

1

7

7
∑

i=1

1

K

K
∑

k=1

|(i)p̄k − (i)p̂
(r)
k |, (40)

where(i)p̄k = 1
30

30
∑

r=1

(i)p̂
(r)
k was the position of thei-th player

at k-th time-step, averaged over thirty tracking repetitions;the
MADs are shown in Figure4c and Figure5c.

Figure4 thus shows the results for the average RMS errors
of position and prediction and MAD values of position when
the number of particles used in the particle filter is varied.
Using only 25 particles the proposed dynamic model inTTS

achieved smaller RMS errors for position (Figure4a) and
prediction (Figure4b) than theTRW, even when four times as
many particles were used in theTRW. TTS also consistently
produced smaller MAD values thanTRW for all numbers of
particles (Figure4c).

In Figure 5, we can compare the average RMS errors
and MAD values betweenTTS and TNCV. Using only 25
particles, theTTS achieved equal average RMS errors for
position (Fig.5a) and prediction (Fig.5b) as theTNCV with
100 particles.TTS also consistently produced smaller MAD
values thanTNCV for all numbers of particles (Figure5c) and,
again, using only 25 particlesTTS achieved approximately
equal MAD value as NCV at 100 particles. An important point
to note here is that theTTS outperformed theTRW andTNCV

even though the spectral densities for theTRW and TNCV

were estimated from the test data. In fact, sincev̂k−1 was not
taken into account in the derivation of the rule-of-thumb rule
(20), the obtained spectral density forTTS was overestimated,
and presents an upper bound on the actual density. Neverthe-
less, the two-stage model outperformed both, the RW and the
NCV model. This implies powerful generalization capabilities
of the proposed two-stage dynamic model.

B. Experiment 2: robustness of tracking

As mentioned in the introduction of this paper, a good
dynamic model can not only provide a better accuracy of
estimation but can also improve tracking in situations of high
visual ambiguity. These situations arise, for example, when
the target is moving close to another visually similar object,
or when the target is occluded by such an object. Even though
the tracking can be improved by applying a better visual model
to reduce the visual ambiguity by itself, the dynamic model
canfurther improve the tracking by preferring the target which
corresponds to the model’s dynamics, thus alleviating the

effect of the visual ambiguity. To demonstrate the performance
of the two-stage dynamic model in those situations, we have
first applied it to tracking hands of a person (Figure6).
The person was facing the camera, waving his hands, and
the hands occluded each other 17 times with majority of
occlusions occurring in front of the persons face. Both hands
were approximately20 × 20 pixels large, and were tracked
with the two-stage tracker from the previous experiment.
All parameters of the tracker remained the same as in the
previous experiment, except for the spectral densityqc. The
spectral density was estimated using the rule-of-thumb rule
from sectionIII-A2 and assuming that the expected distance
that the hand travels between two time-steps is approximately
σm = 5 pixels. The number of particles in the particle filter
was set to onlyN = 25 particles. We denote this tracker
by TTS. For reference, the hands were also tracked using
a tracker which applied a nearly-constant-velocity (NCV)5

model instead of the two-stage dynamic model and which used
N = 100 particles in the particle filter; we denote this tracker
by TNCV.

The hands were tracked separately five times withTTS and
TNCV, and an average times that the tracker lost a hand was
recorded. The results of tracking are shown in the second and
third row of the TableIV. There we see thatTNCV lost a
hand on average 27 times, while the two-stage dynamic model
in TTS reduced the number of failures approximately by 10
failures. All the failures occurred when the tracked hand was
moving in front of a person’s face, or was moving close to the
other hand. An example of such situation is shown in Figure6.
In those situations, the visual ambiguity was highest, since
the hands and the face were of similar color, which caused
spurious modes in the visual likelihood function. Since the
tracker which used the proposed two-stage dynamic model
reduced the failure rate in comparison to a NCV model, this
means that the two-stage dynamic model helped to reduce the
visual ambiguities simply by better modelling the motion of
the hand. However, there were still 15 hand overlaps, where
the visual ambiguity was too high and could not be resolved
merely by the motion model. We have therefore repeated the
experiments, but instead of using a simple color-based visual
model, we used the recently proposed local-motion [51], which
uses optical flow to resolve the color ambiguities. The results
are shown in the last two rows of the TableIV. We see that
while the visual model by itself reduced the number of failures,
its combination with the proposed two-stage dynamic model
even further decreased the failure rate. Note, that not onlydid
the two-stage dynamic model reduce the number of failures in
comparison to the NCV model, but was able to do so requiring
a quarter as many particles in the particle filter as the NCV
model.

To demonstrate how the two-stage dynamic model performs
when tracking an object which rapidly changes its motion, we
have applied it to tracking a player of squash (Figure7). Due
to frequent occlusions between the players, we have used the
local-motion visual model [51] in this experiment. The player

5The NCV model was used in preference to the RW model, since the hand
motion was closer to a nearly-constant-velocity motion than the random-walk
motion.
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Fig. 4. Graphs on (a) and (b) show the average RMS errors (denoted by C̄) of position (a) and prediction (b), respectively, as a function of the number of
particles. Graphs in (c) show the mean-absolute-differences (denoted byMAD) values of position estimates. The results forTRW are depicted by thedotted
lines, while solid lines depict the results forTTS.
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Fig. 5. Graphs on (a) and (b) show the average RMS errors (denoted by C̄) of position (a) and prediction (b), respectively, as a function of the number
of particles. Graphs in (c) show the mean-absolute-differences (denoted byMAD) values of position estimates. The results forTNCV are depicted by the
dotted lines, while solid lines depict the results forTTS.

t=22

t=22

t=32

t=32

t=45

t=45

Fig. 6. Frames from the experiments with hand tracking using a NCV
dynamic model with 100 particles (upper row) and using the two-stage
dynamic model with only 25 particles (lower row). The white ellipse depicts
the tracked region.

TABLE IV
RESULTS OF TRACKING HANDS USING THENCV AND THE TWO-STAGE

DYNAMIC MODEL .

tracker visual model dynamic number number
model of particles of failures

TTS color-based two-stage 25 15
TNCV color-based NCV 100 27
TTS combined two-stage 25 2

TNCV combined NCV 100 4

was approximately25× 45 pixels large and was occluded 14
times by another visually similar player. The sequence was
especially difficult to track due to frequent occlusions and
rapid changes in the player’s motion. All parameters of the

trackerTTS remained the same as in the previous experiment.
The spectral densityqc was again estimated using the rule-
of-thumb rule from sectionIII-A2 and assuming that the
expected distance that the player travels between two time-
steps is approximatelyσm = 5 pixels. For reference, the player
was also tracked using the recently proposed state-of-the-art
tracker [51] which applied a nearly-constant-velocity (NCV)
and the local-motion visual model. We denote this tracker by
TNCV. The player was tracked five times with each tracker
and the number of times the tracker failed was recorded. All
the failures occurred when the player was occluded by the
other visually similar player.

t=94 t=99 t=101

t=103 t=105 t=109

Fig. 7. An example from tracking the squash player in which theplayer gets
occluded.

Table V shows the average number of times each tracker
failed with respect to the number of particles used in the
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particle filter. Using 25 particles, the NCV model failed on
average four times, while the two-stage model failed only three
times. When the number of particles was increased to 50, the
NCV model improved in performance by reducing the failure
rate to three failures, while the two-stage model reduced the
failure rate to two failures. However, when the number of
particles was increased to 100, the failure rate of the NCV
model remained at three failures, while the two-stage model
further reduced the failure rate to only a single failure. The
two-stage dynamic model consistently outperformed the NCV
model by producing a smaller failure rate for all the selected
number of particles. Note also that, using only 25 particles,
the two-stage dynamic model achieved an equal failure rate
as the NCV model with 100 particles. As the number of the
particles was increased, the two-stage model further decreased
the failure rate. Note that the improvements in tracking come
from two sources. One source is that the TS model reduces
the ambiguity by better modelling the target’s motion despite
the rapid changes in motion. The second source is that the
local-motion visual model [51] relies on updating its model
by using the target velocity estimated from the tracker. Since
the TS produces better estimates of the velocity than NCV, the
result is an improved visual model and improved tracking.

TABLE V
THE AVERAGE NUMBER OF TIMES THE TRACKER FAILED TO CORRECTLY

TRACK THE PLAYER OF SQUASH WHEN USING ANCV (TNCV ) AND THE

TWO-STAGE DYNAMIC MODEL (TTS).

tracker dynamic model number number execution
of particles of failures times [ms]

TTS two-stage 25 3 21
TTS two-stage 50 2 27
TTS two-stage 100 1 37

TNCV NCV 25 4 19
TNCV NCV 50 3 26
TNCV NCV 100 3 35

As noted in the introduction, a very important aspect of
every tracker is its processing speed. In particular, the particle
filters are Monte Carlo methods, which rely on estimating
distributions using simulations of particles and evaluations of
the likelihood function. While simulation from the dynamic
model is a fast operation, evaluating the likelihood function
for each particle presents a bottle-neck in the processing
speed – the processing time of each iteration increases with
increasing the number of particles. We have therefore recorded
average execution times per time-step for the experiment in
Table V. Given the same number of particles in the filter,
the processing times ofTTS are practically equal to those of
TNCV. Note, however, thatTTS required only 25 particles to
achieve performance ofTNCV at 100 particles. This means
that TTS achieved an equal performance toTNCV but with
40% reduction in the processing time.

From the results in TableIV and TableV we see that the
two-stage dynamic model can improve tracking by reducing
the number of failures by reducing the visual ambiguity, while
at the same time requiring only a small number of particles
in the particle filter, which effectively reduces the processing
time. We can also conclude that the two-stage dynamic model
is general enough to improve tracking not only when tracking

rapidly moving persons but also parts of persons, such as
hands. For further examples of tracking with the two-stage dy-
namic model please see the online videos at http://vicos.fri.uni-
lj.si/data/matejk/tracking/DynamicModel/Sub/index.html.

C. Sensitivity to parameters

There are two main parameters in the two-stage dynamic
model. The first parameter is the parameterβ in the liberal
model (9). We have studied this parameter in some detail
in section III-A and chose its valueβ = 2. Note that this
value has been fixed forall our experiments reported here,
which also practically justifies the value we have chosen in
the sectionIII-A . The other very important parameter is the
spectral density of the liberal model. This parameter, however,
very much depends on the given application and the setup and
is in standard dynamic models related directly or indirectly
to the variance of the state estimates. In particular, in a
standard particle-filter-based tracker, using a large spectral
density necessarily requires increasing the number of particles
to maintain a low variance of the final estimate (e.g., accuracy
of position). To make setting the spectral density in the two-
stage dynamic model a more intuitive matter, we have related
it to the distance a target is expected to travel in consequent
time-steps,σm, and derived the corresponding rule-of-thumb
rule in the sectionIII-A2 .

To gain a further insight of how different values of the
parameterσm affect the performance of the two-stage dynamic
model, we have revisited the experiment from sectionIV-A . In
that experiment the spectral density was set using the rule-of-
thumb rule with the average-distance parameterσm estimated
from the sports literature. To see how the results vary with this
parameter the experiment was repeated for theTTS with 25
particles in the particle filter. The parameterσm was decreased
by some factorα to a point where the tracker started to fail
and then increased to a point where it started to fail.

When lowering theα, the tracker started to fail atα = 0.5
and then, when this parameter was increased, the tracker
started to fail again atα = 1.4. The results for the values
α = {0.5, 0.7, 1.0, 1.2, 1.4} are shown in Figures8. That
figure shows that the optimum is reached atα = 0.9 which
means that the optimum parameterσm is 90% of that estimated
by the rule-of-thumb rule. We also see that parameter values
around the value estimated by the rule-of-thumb rule do not
significantly deteriorate the tracker’s performance. Thismeans
that despite of increased variance of the noise in the liberal
dynamic model, the variance of the tracker’s estimate (e.g.,
position and prediction) remains low when using the two-stage
dynamic model.

To further demonstrate the accuracy of tracking with an
overestimated noise and with low number of particles in
the particle filter, we have have considered an example of
tracking in cluttered environment as shown in Figure9. The
tracked person was performing rapid movements and was
occluded many times by other persons. The person was first
tracked with a color-based tracker that used the two-stage
dynamic model (TTS) with 25 particles in the particle filter.
The noise parameterσm was estimated as in (35) and was
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Fig. 8. Graphs on (a) and (b) show the average RMS errors (denoted by C̄) of position (a) and prediction (b), respectively, as a function of parameterα.
Graphs in (c) show the mean-absolute-differences (denoted by MAD) values of position estimates. The solid lines depict the results for TTS while dotted
line depicts performance ofTNCV.

Fig. 9. An example of tracking with highly overestimated noisein the
dynamic model. The upper row shows the tracked (yellow) playerin sequence
of images with indexes 202, 212 and 225. The middle row shows an example
in which theTNCV fails due to a large variance of the estimate during the
occlusion. The lower row shows the same sequence in which the the TTS

does not fail. The ellipses depict the tracked region and thearrow shows the
estimated velocity.

multiplied by a factorα = 2 to grossly overestimate it.
The same person was then tracked using a NCV dynamic
model (TNCV) with comparably overestimated noise. We have
observed that the variance of the estimates (position as well
as prediction) provided by theTNCV was significantly higher
than those ofTTS tracker. Despite the overestimated noise,
the TTS tracker was able to track the person throughout
the sequence, whereas theTNCV failed when the person
was completely occluded by other persons. This is shown
in Figure 9 and for the full video demonstrating this per-
formance, see the paper’s homepage at http://vicos.fri.uni-
lj.si/data/matejk/tracking/DynamicModel/Sub/index.html.

V. CONCLUSION

We have proposed a two-stage dynamic model, and a
corresponding two-stage probabilistic tracker, that can account
for various types of motions which we usually encounter when

tracking persons. The proposed model is composed from two
separate dynamic models. The first dynamic model is called
the liberal dynamic model which was derived in SectionIII-A
from a non-zero-mean Gauss-Markov process. An analysis
of the parameters of the liberal model in SectionIII-A1
has shown that two widely-used models, the random-walk
(RW) model and the nearly-constant-velocity (NCV) model,
are obtained at the limiting values of the model’s parameters.
We have also noted that the liberal model can explain even
motions which are in between the RW and the NCV model. An
important parameter of the liberal model is the spectral density
of the Gauss-Markov process, which depends on the dynamics
of the class of objects to be tracked. In SectionIII-A2 we
have therefore derived a rule-of-thumb rule to selecting this
density, which requires only a vague estimate of the target
dynamics. Furthermore, by controlling the mean value of the
Gauss-Markov process, the liberal model can even further
adjust to the dynamics of the tracked target. To efficiently
estimate this mean value in the liberal model, another dynamic
model, which we call the conservative model, was proposed
in SectionIII-B . In contrast to the liberal model which allows
greater perturbations in target’s motion, the conservative model
assumes stronger constraints on the target velocity. In Sec-
tion III-C we have proposed a two-stage probabilistic tracker
which uses the liberal dynamic model within a particle filter
to efficiently explore the state space of the tracked target.On
the other hand, the conservative model is used to estimate the
mean value of the Gauss-Markov process in the liberal model
as well as for regularizing the estimations from the particle
filter.

Two sets of experiments were designed to evaluate the
performance of the proposed two-stage dynamic model. The
first set of experiments involved tracking persons running
on the path which was drawn on the floor. The path was
designed such that the observed motion included acceler-
ations, decelerations, short runs in a certain direction and
sudden changes in the direction of motion. All persons were
tracked with the proposed dynamic model as well as with two
reference trackers which employed one of the two widely-
used dynamic models – the RW model and the NCV model.
The results have shown that the proposed dynamic model
performed significantly better than the RW as well as NCV
model. In particular, the two-stage dynamic model yielded a
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better accuracy of tracking in comparison to the RW and NCV
models, and at the same time required significantly smaller
number of particles in the particle filter. In the second set
of experiments we have tracked person’s hands and a player
in squash using the proposed dynamic model and a NCV
model. These experiments were designed to demonstrate the
performance of the two-stage dynamic model when the target
is moving in a close proximity of a visually similar object.
In the experiment of tracking a person’s hands, the proposed
dynamic model was able to use half as many particles in
the particle filter as the NCV model while still reducing the
number of times that tracking failed in comparison to the
NCV model. This shows the ability of the two-stage dynamic
model to reduce the visual ambiguity in the target’s position
by better modelling the target’s dynamics. To demonstrate the
performance of the two-stage dynamic model when tracking
a person who rapidly changes its motion, we have applied
it to tracking a squash player. The results again showed that
the two-stage model allows smaller number of particles in the
particle filter to achieve a comparable of better performance
than the NCV model achieves with a large number of particles.
The results of the two sets of the experiments imply a
superiority of the two-stage model over the RW and NCV
in accounting for various dynamics of moving persons as well
as parts of persons such as hands.

We have seen in the experiment of tracking hands and a
squash player that the two-stage dynamic model can help
to resolve some of the visual ambiguities which occur when
the target is moving close to another visually similar object.
However, there were situations in which the dynamic model
could not resolve the ambiguity by it self. Since the dynamic
model was implemented within a standard particle filter, the
visual model which was used in the experiment can be easily
replaced or augmented by more powerful existing visual mod-
els, e.g., [52], [53], [54], [55], which may better handle some
of the visual ambiguities. The performance of the proposed
two-stage dynamic model strongly depends on the selected
noise parameter of the dynamic system (the spectral density).
Improper values of this parameter might lead to failed tracking
in certain situations. If the spectral density in the liberal model
is set too low, then the dynamic model will not be able to
account for the abrupt motions and will act as having a great
inertial properties. Consider an example in which the target
is quickly moving to the left for a while and then abruptly
changes its direction and starts moving to the right. A very
low spectral density will likely result in tracker not beingable
to keep up with the target even from the start and it will
lose the target. By slightly increasing the spectral density (but
still keeping it low), the tracker will exhibit strong inertial
properties and initially keep up with the target, but then, when
the target changes its motion, it will continue approximately
in the direction in which it was initially moving, and again
lose the target. Note that these are pathological situations.
Indeed, we have observed that the two-stage model is robust
to variations of the spectral density around the one which is
calculated by the rule-of-thumb. Therefore, if a designer of
a tracking algorithm wishes to fine tune the spectral density
for a given application, a good starting point is the equation

(35). Another pathological case is when the spectral density
is severely overestimated and the particles in the particle
filter spread far beyond the target. Having a small number of
particles this inevitably increases the variance of the estimator
and the motion model becomes weaker. As a result, the target’s
motion is poorly modelled and if a visually-similar object is
somewhere in the target’s surrounding, chances are that the
tracker will fail to keep a lock on the correct target.

A convenient property of the two-stage dynamic model is
that, since it typically requires a smaller number of particles in
the particle filter, it allows faster tacking with more complex
visual models in comparison to other dynamic models which
require more particles. Note also that the implementation of
the two-stage model allows adopting existing solutions for
improved particle filtering, like the ones mentioned in the
introduction [10], [11], [12], [13], [32]. These can be used to
even further improve the tracker’s performance, both in terms
of improved estimation accuracy as well as in reduction of the
failure rate. These topics are the focus of ongoing research.

ACKNOWLEDGMENT

This research has been supported in part by: Research
program P2-0214 (RS), research program P2-0095 (RS), M3-
0233 project PDR sponsored by the ministry of defense of re-
public of Slovenia, and EU FP7-ICT215181-IP project CogX.
We would also like to thank the editor and the anonymous
reviewers for their constructive comments, which helped usto
improve our paper.

REFERENCES

[1] J. K. Aggarwal and Q. Cai, “Human motion analysis: A review,” Comp.
Vis. Image Understanding, vol. 73, no. 3, pp. 428–440, 1999.1

[2] D. M. Gavrila, “The visual analysis of human movement: A survey,”
Comp. Vis. Image Understanding, vol. 73, no. 1, pp. 82–98, 1999.1

[3] P. Gabriel, J. Verly, J. Piater, and A. Genon, “The state of the art in
multiple object tracking under occlusion in video sequences,” in Proc.
Advanced Concepts for Intelligent Vision Systems, 2003, p. 166173.1

[4] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual
surveillance of object motion and behaviors,”IEEE Trans. Systems, Man
and Cybernetics, C, vol. 34, no. 30, pp. 334–352, 2004.1

[5] T. B. Moeslund and E. Granum, “A survey of computer vision-based
human motion capture,”Comp. Vis. Image Understanding, vol. 81, no. 3,
pp. 231–268, March 2001.1

[6] T. B. Moeslund, A. Hilton, and V. Kruger, “A survey of advances in
vision-based human motion capture and analysis,”Comp. Vis. Image
Understanding, vol. 103, no. 2-3, pp. 90–126, November 2006.1

[7] C. M. Bishop,Pattern Recognition and Machine Learning, ser. Informa-
tion Science and Statistics. Springer Science+Business Media, LCC,
2006. 1, 8

[8] R. E. Kalman, “A new approach to linear filtering and prediction
problems,”Trans. ASME, J. Basic Engineering, vol. 82, pp. 34–45, 1960.
1, 7

[9] A. Doucet, N. de Freitas, and N. Gordon, Eds.,Sequential Monte Carlo
Methods in Practice. New York: Springer-Verlag, January 2001.1

[10] M. K. Pitt and N. Sheppard, “Filtering via simulation: Auxiliary particle
filters,” J. Amer. Stat. Assoc., vol. 94, no. 446, pp. 590–599, 1999.2,
14

[11] P. Torma and C. Szepesvari, “On using likelihood-adjusted proposals in
particle filtering: Local importance sampling,” inProc. Int. Symp. Image
and Signal Processing and Analysis, September 2005.2, 14

[12] K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D.G. Lowe,
“A boosted particle filter: Multitarget detection and tracking,” in Proc.
European Conf. Computer Vision, vol. 1, 2004, pp. 28–39.2, 14

[13] A. Naeem, T. Pridmore, and S. Mills, “Managing particle spread
via hybrid particle filter/kernel mean shift tracking,” inProc. British
Machine Vision Conference, 2007. 2, 14



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B: CYBERNETICS 15

[14] H. Sidenbladh, M. J. Black, and L. Sigal, “Implicit probabilistic models
of human motion for synthesis and tracking,” inProc. European Conf.
Computer Vision, 2002, pp. 784–800.2

[15] A. Agarwal and B. Triggs, “Tracking articulated motion with piecewise
learned dynamical models,” inProc. European Conf. Computer Vision,
vol. 3, 2004, pp. 54–65.2

[16] R. Urtasun, D. Fleet, and P. Fua, “3d people tracking with gaussian pro-
cess dynamic models,” inProc. Conf. Comp. Vis. Pattern Recognition,
vol. 1, 2006, pp. 238–245.2

[17] B. Li, Q. Meng, and H. Holstein, “Articulated pose identification with
sparse point features,”IEEE Trans. Systems, Man and Cybernetics, B,
vol. 34, no. 3, pp. 1412–1422, 2004.2

[18] X. Rong Li and V. Jilkov P., “Survey of maneuvering targettracking:
Dynamic models,” IEEE Trans. Aerospace and Electronic Systems,
vol. 39, no. 4, pp. 1333–1363, October 2003.2

[19] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan,Estimation with Appli-
cations to Tracking and Navigation. John Wiley & Sons, Inc., 2001,
ch. 11, pp. 438–440.2, 4, 9

[20] W. R. Li and Y. Bar-Shalom, “Performance prediction of theinteracting
multiple model algorithm,” IEEE Trans. Aerospace and Electronic
Systems, vol. 29, no. 3, pp. 755–771, 1993.2

[21] Y. Bar-Shalom, Ed.,Multitarget/Multisensor Tracking: Applications and
Advances. YBS Publishing, 1998, vol. 2.2

[22] K. J. Bradshaw, I. D. Reid, and D. W. Murray, “The active recovery of
3d motion trajectories and their use in prediction,”IEEE Trans. Pattern
Anal. Mach. Intell., vol. 19, no. 3, pp. 219–234, 1997.2

[23] S. McGinnity and G. Irwin, “Multiple model bootstrap filter for maneu-
vering target tracking,”IEEE Trans. Aerospace and Electronic Systems,
vol. 36, no. 3, pp. 1006–1012, 2000.2

[24] H. A. P. Blom and E. A. Bloem, “Exact bayesian and particlefiltering
of stochastic hybrid systems,”IEEE Trans. Aerospace and Electronic
Systems, vol. 43, no. 1, pp. 55–70, 2006.2

[25] J. Xue, N. Zheng, J. Geng, and X. Zhong, “Tracking multiple visual
targets via particle-based belief propagation,”IEEE Trans. Systems, Man
and Cybernetics, B, vol. 38, no. 1, pp. 196–209, 2008.2
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