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Abstract

The design of action recognition algorithms often relies
on knowledge of the particular problem, which is not al-
ways available. Moreover, algorithms usually incorporate
a number of parameters, which influence their performance.
To solve these problems, we explore the possibility of devel-
oping more general action recognition algorithms by sys-
tematic reduction of complexity of human motion, instead
of designing more and more complex algorithms. We see
the key to reducing complexity in systematic decomposition
of human motion to different scales, each representing dif-
ferent level of motion detail. We assume that human actions
influence different scales of motion, and they should be ob-
served that way. The features, obtained on different scales
of motion can be joined together to represent the complex
motion in uniform and manageable way. Our approach was
tested in the sports domain, on a particular problem of de-
tecting the action of athlete hitting the ball with a racquet in
the game of squash. Video recordings of actual tournament
match were used, and manual annotations were provided by
squash expert as a ground truth.

1. Introduction

Analysis of human motion is a challenging problem
mainly because of its complexity. Many researchers work
in the field of computer vision based human motion anal-
ysis. This is reflected in several surveys on this topic
[1, 6, 4], covering various areas of the field. Important
area of human motion analysis is recognition and detection
of human actions, with wide range of applications, from
automatic annotation of sports video to the fully automa-
tized security systems. However, design of action recog-

nition algorithms often relies on detailed knowledge of the
particular problem, which is not always available. More-
over, algorithms usually incorporate a number of parame-
ters, which influence their performance. Many researchers
[3, 2, 11, 12, 7] report high recognition rates for their par-
ticular action recognition problems. These solutions em-
ploy complex and sophisticated algorithms, which match
the complexity of human motion to the degree needed for
particular problem. The complexity of solutions however
raises the question of generality - namely, how deeply are
the actual problem and its specifics rooted in the proposed
solutions? Number of parameters, hidden in these algo-
rithms is usually large and the systematic analysis of their
influence is nearly impossible.

In this paper, we explore the possibility of developing
more general action recognition algorithms by systematic
reduction in complexity of human motion. We see the key
to reducing complexity in systematic decomposition of hu-
man motion to different scales, each representing different
level of detail. In this way, complex human motion can
be expressed as a combination of many simpler compo-
nents, which are clearly visible only when looking at the
right scale. The underlying assumption of presented work
is that human actions influence different scales of motion,
and should be observed that way. We argue that the proper
decomposition of human motion results in a number of sim-
pler problems that can be addressed with more general ap-
proaches. The features, obtained on different scales of mo-
tion can be joined together to represent the complex motion
in uniform and manageable way.

Not every action recognition problem needs multiscale
observations of human movement and we do not strive to
design a general action recognition algorithm, which will
be a difficult task for many years to come. However, we
believe that our approach will lead to faster application of
developed methods to real-world problems, which do not



require 100% recognition rates, such as sports video index-
ing, abstracting and highlighting. These areas would bene-
fit tremendously from automated video annotation systems,
however, they require simple and stable algorithms, given
the diverse nature of video recordings.

This paper is structured as follows: first, we present the
scale-based representation of human motion which allows
systematic classification of various human motion analy-
sis techniques. We present the reasons for choosing sport
match as our testbed. The next section describes our im-
plementation of scale-based decomposition of human mo-
tion: the simple tracking algorithm and the analysis of hu-
man motion using two complementary motion recognition
algorithms, which operate on two different scales of motion.
Before concluding, we show that the fusion of both sets of
features improves the recognition results.

2. Scale-based human motion representation

Classification of video-based human motion analysis
techniques is not uniform and largerly depends on interests
of a particlular author [1, 6, 4]. There are some common
points, for example the division to two large areas of mo-
tion analysis (analysis of whole body motion vs. analysis
of motion of the body parts), since these two problems are
seen as fundamentally different.

Such classification forms a basis for definition of human
motion scale. Analysis of whole body motion looks at the
human on the large (coarse) scale, essentially representing
its position with a single point. Tracking of the body parts
looks at a human at smaller (finer) scale, looking for de-
tails. Analogy with the classical scale-space [13] example
of ”looking at the trees” vs. ”looking at the forest” is obvi-
ous.

Scale-space representation of the world asserts that some
properties of the observed object appear only when ob-
served at a proper scale. In scale-space, every observation
has additional parameter - scale δ. However, human move-
ment is a complex spatio-temporal phenomenon which has
at least two spatial and one temporal dimension and the
scale of observation is defined by a number of parameters
- resolution, sampling rate, width of observation windows
and similar. One possible definition of human motion scale
is shown in Fig. 1. In the real world, the observer never sees
the full scale of the motion. The visible interval of scale
is determined by camera setup and geometry (zooming in
reveals finer scales of motion) and the sensor resolution -
observer cannot see the details that are below the resolution
of the CCD chip or are faster than video acquisition frame
rate.

Such representation of human motion offers possibility
for classification of human motion analysis methods, based
on the observed object - human body, regardless of their ac-
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Figure 1. Human motion scale as seen from
computer vision perspective.

tual implementation. For example, whole-body tracking of
people in a parking lot for security purposes operates mostly
in the coarsest part of the scale, observing just statistical
properties of human motion. Tactical sport analysis oper-
ates on a slightly finer scale, recording positions and veloc-
ities of players during the match. Gesture recognition ob-
serves even finer motion of arms and fingers. Video-based
human analysis algorithms essentially try to focus on the de-
sired interval of the scale, which provides the most usable
information. The structure of algorithm and its parameters
determine the interval of scale that is visible to them.

2.1 What is the right scale?

In the case of tracking, the scale of interest should be the
basic specification, determined even before the algorithm is
developed. Different tracking methods are focused to dif-
ferent scales, as demonstrated in [10]. They may be very
accurate within its scale of motion, however if the observa-
tion scale is wrong for the particular application, they will
be labeled as inaccurate.

In action recognition, the issue of the right scale becomes
more difficult. Most of the algorithms for action recognition
focus on the single scale. For example, [2] operates on the
trajectories of several larger body parts. Slightly finer scale
(movement of arms) is observed in [11]. Sometimes, algo-
rithms explicitly normalize video sequences around the per-
ceived body center to suppress whole-body motion [7, 12]
and discard the trajectories. Field of motion vectors across
the whole human body is observed in [3], capturing wider
range of scales, although their individual contributions to
action detection are not clear. We may ask, do actions re-
ally influence only narrow parts of the human motion scale?

We built on the hypothesis, that human actions and activ-
ities generally reflect on more intervals of the human motion
scale. For example, threat by street robber may be exhibited
as a sudden move, threatening gesture and appropriate facial
expression. We also think that the motion on the different
scales is uncorrelated, unless it is influenced by certain ac-
tion or activity. Walking person will exhibit motion of its



body center and its body parts. The presence of only body
center motion would suggest some other activity (perhaps
riding the moving walkway?)

The right scale for human action recognition should be
defined as the scale or the scales that contain useful infor-
mation for action recognition. For many action recognition
problems we simply do not know which scales carry infor-
mation. Therefore, for the recognition system to be general,
it should learn these in some automatic way. Our concept is
to build a system from several algorithms, focused on dif-
ferent scales, and then join the resulting information.

3. Input data

Our application domain is a squash match. Squash is an
indoor racquet sport, played on a well illuminated 9.75×6.4
m court by two athletes. Player wins the match by winning
three sets. As most of the sports, squash has well defined
rules and long record of research focused on player move-
ment. The most important action of a player is hitting the
ball with a racquet before it hits the ground. Cooperation
with the sports experts enabled us to obtain digital video
of a tournament match, along with annotations describing
the exact moment and type of a hit. One frame of video,
recorded at 384 × 288 pixel resolution and 25 frames per
second is shown in Fig. 2.

Figure 2. One frame of input video.

Detecting hits in squash match represents a well de-
fined real-world problem, as such annotations are needed
for match analysis. Fig. 3 shows a sequence of frames in
region of interest of a single player. The problem is however
difficult, since actions we are to detect are not dominant part
of the video.

Camera was calibrated and simple background subtrac-
tion algorithm was used to obtain player trajectories. Track-

Figure 3. Image sequence of player, hitting a
ball. Rows 1 and 2 show grayscale images,
rows 3 and 4 show the images with back-
ground subtracted. Image, marked by X was
annotated by expert as the exact moment of
hit.

ing of players was done under supervision of the sports ex-
pert, who had the ability to stop the tracking and correct
the obtained positions. The only parameter of the track-
ing was the desired number of pixels above the threshold in
difference images, which depends only on number of play-
ers in the scene. Algorithm corrected the threshold by one
after each frame was processed, based on the number of de-
tected positive pixels. Median filtering of thresholded im-
age was performed to obtain blobs. Their centers of gravity
were used as player positions. Players positions on previ-
ous frame were used to separate merged blobs when play-
ers collided. Such system is used for trajectory analysis by
the sports experts, and has been found to work well across
several tournaments. Video data, trajectory data (in the
court coordinate system) and expert annotations formed the
testbed for our action recognition algorithm.

4 Action recognition

Our aim is to build action detection system, which would
process the continous stream of video, and detect the mo-
ment when interesting action takes place. To develop and
test the approach, the intervals of both trajectory and video
were extracted and divided into the two classes: ω1 - player
is hitting the ball, and ω2 - player is not hitting the ball. First



class is defined by the expert annotations (we used all types
of hits except serves), and the second class was sampled at
the middle of intervals between the hits plus one arbitrar-
ily chosen sample, to obtain the classes with same number
of samples. This way, the problem was transformed to the
problem of classification between ω1 and ω2. It should be
noted that the apriori probability of ω1 is low (below 5%,
if we observe hits through 5 frame window), which we did
not take into the account. The training of the algorithm was
done on one set (S) of the match (19,980 frames, 158 ac-
tions), and the testing was done on another (test set T -
18,344 frames, 148 actions). Only one player was observed.

4.1 Obtaining the parameters

Trajectories and image sequences contain information
about coarse and fine scale of player motion, respectively.
We expected that trajectories will exhibit distinctive shapes,
and that image sequences would capture the movement of
player body parts in process of hitting the ball. Different na-
ture of these two types of input data requires different pro-
cessing. The choice of algorithms places each of the meth-
ods at its place within the scale-space of human movement
(Fig. 1), while the parameters of algorithms limit the cho-
sen scale more accurately. The right values of parameters
for certain task are difficult to guess, therefore we employed
exhaustive search within the reasonable range and accepted
the parameters which gave highest recognition rates. The
whole procedure can be outlined as follows:

1. Split the annotations from training set S into the sub-
sets S1 (75%1) and S2 (25%). Initialize parameters.

2. Based on annotations, extract the segments from input
data according to current parameter set. This defines
the scale!

3. Train the classifier on S1.

4. Test the classifier on S2, save the results, and return to
2, unless the search space is exhausted.

5. Accept the parameters with highest recognition rate for
both classes.

4.2 Training and classification

To classify the samples, we used Linear Discriminant
Analysis (LDA) [9]. Given the training set of m classes,
LDA provides the transformation matrix WLDA, which
transforms the input vectors into the m−1 dimensioned fea-
ture space, to ensure best classification. In our case (m =

1Since we use S1 to compute PCA or LDA representation of the class,
the number of samples in S1 has to be as large as possible.

2), we obtained one value for each sample. WLDA was cal-
culated on S1. The decision threshold between ω1 and ω2

was found using the nonlinear maximization (Nelder-Mead
simplex, Matlab FMINS) of total classification rate on S1.

4.3 Coarse scale - the trajectories

Three parameters control the extraction of the samples
from the continuous trajectory. Trajectory smoothing re-
duces noise and details in the trajectory. The amount of
smoothing is defined by width of the Gaussian smoothing
kernel (extending from −3σ to +3σ), which is the same for
x and y component. The width of observation window is the
second parameter. The third parameter is the delay between
the moment of annotation and the center of the observation
window. It takes into the account the fact that action may
resonate on different scales with some delay. The samples
of trajectories were normalized after the extraction to sup-
press the coarser parts of the motion scale (absolute position
and rotation). First, their mean value (for x and y compo-
nent) was normalized to zero. Their mean rotation around
the zero point was subsequently also normalized to zero. x
and y parts of trajectory were concatenated to single vector
before feeding them into the LDA.

The normalized trajectories for optimal set of parame-
ters are shown in Fig. 4. To help the reader visualize the
difference, manually sketched shapes are placed right to the
trajectories. Trajectories in the ω1 class (hits) exhibit more
bending (U-shape) than those from ω2. This is consistent
with the squash game - player will approach the ball, hit
it with the racquet and retreat to make space for the other
player. The classes overlap for significant amount - the
recognition rate for the test set T was 66% for ω1 and 70%
for ω2. The impact of parameters on recognition rate for
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Figure 4. Normalized trajectories for the train
set S.

S2 is shown in Fig. 5. Graphs have been obtained by iter-
ating one parameter through the search space and keeping
the others at their optimum position. The search space and
optimum set can be inferred from the presented graphs. The
whole iterative process took about 20 minutes in Matlab on
Intel Pentium II 400 MHz processor.
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Figure 5. Impact of parameters (first scale) to
the total recognition rate of S2. All values are
in frames (1/25 s).

4.4 Fine scale - the images

Four parameters control the extraction of the samples
from the image sequence. First, the sequence of difference
images was generated by subtracting each frame of video
from the image of the empty court. This was necessary, as
majority of hits take place near the wall, and algorithm tends
to learn the walls instead of action. The difference images
are shown in the last two rows of Fig. 2. The trajectories,
smoothed with the kernel of fixed width were used to extract
windows of size 80 × 80 pixels from the sequence. More
general approach would require inclusion of smoothing ker-
nel width into the parameter set, however, we relied on our
previous experiments to select the width of 25 samples. The
centers of image (pixel) gravity were calculated and images
were aligned, such that center of image corresponded to the
gravity center, to compensate possible inaccuracies in tra-
jectories.

The images were cropped to the size, defined by the first
extraction parameter and arranged into sequences, with se-
quence length being the second parameter. The delay be-
tween the annotation and the center of sequence is the third,
the downscaled size of (already windowed) image is the
fourth parameter. Downscaling has been performed by bi-
linear interpolation. It has the two benefits: it allows the
algorithm to run faster and supresses the finer part of the
motion scale. All pixels of each image sequence were then
arranged into vectors of length n. In contrast to first scale,
we cannot apply LDA on such vectors. By definition of
LDA, we need at least n training samples, otherwise com-

putational difficulties occur. The solution is to use PCA [9].
This is known concept of ”eigensequences”, as described
by [8].

We calculated PCA transformation matrix WPCA from
the samples from class ω1. The actions are not the dom-
inant part of the sequences, and we cannot use the eigen-
vectors that correspond to the first few largest eigenvalues
(PCA by itself provides optimal signal representation, not
classification, [5]). Our tests have shown that these capture
very little temporal action, which is visible only in lower-
valued eigenvectors. The solution [9] is to apply LDA on
top of the PCA-transformed features, to automatically ex-
tract those features that contribute most to classification.
The dimension of the intermediate space was limited to 119
(number of train samples less one) vectors due to compu-
tational implementation of the PCA. A quick look at the
WLDA revealed that LDA indeed favoured lower-valued
eigenvectors. The results of classification of the testing set
T were 72% and 81% for ω1 and ω2, respectively. The im-
pact of parameters on recognition rate for S2 is shown in
Fig. 5. Graphs have been obtained in the similar way than
those in Fig. 4. It should be noted that the process of iter-
ation takes considerably longer for this scale - 10 hours in
Matlab on AMD Athlon 1 GHz processor. The main reason
for this is inclusion of PCA in the iterative loop.

Both Fig. 4 and Fig. 5 show that some of the parame-
ters introduce distinct peaks in recognition rate, and others
do not. The procedure of searching through the parameter
space is usable to obtain the working subspace of parame-
ters when the details of motion and actions are not available.
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Figure 6. Impact of parameters (second scale)
to the total recognition rate of S2. Values are
in frames (1/25 s) and pixels.



4.5 Recognition on both scales

Our main assumption was that actions reflect themselves
on different scales of human motion. To obtain better re-
sults, we joined the information from both scales. The test
set T was transformed to the feature space, using algorithms
for both scales, trained on the train set S. Learned decision
boundaries for both algorithms were discarded, and both re-
sults were joined to form two dimensional vectors, one di-
mension for each scale. Fig. 7 shows the samples in this 2D
space.
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Figure 7. Clusters and decision boundary. ω1

- circles, ω2 - dots.

Clusters are still overlapping, however, it can be clearly
seen that they are placed along the diagonal. This shows
that the information from both scales works complemen-
tary. Test on this set of data has been performed by ran-
domly selecting 20% of the samples for learning decision
boundary by the means of Linear Least Squares method
and testing the classification on remaining 80% (the holdout
method). The test was repeated 100 times, and recognition
rates were 82% for ω1 and 81% for ω2.

5 Conclusion

Although the resulting recognition rates are lower than
in some of the reported work, they illustrate the importance
of observing the human actions on the wider spectrum of
scales, especially when facing such difficult problems. In
our case, actions are not well recognizable when looking at
one scale alone, since in some instances they simply may
not result in particular trajectory or particular type of body

motion. This problem has nothing to do with classifier de-
sign (since the information may simply not be there). We
expect that many real world problems will exibit such prob-
lems once closely examined, and that the proper way of ad-
dressing them is by fusing together information from many
motion scales.

Despite the low recognition ratios, such solution could
still help in some limited tasks. Used in video annotation,
it would for example reduce the amount of video data for
nearly five fold, and those 20% of video would still contain
80% of the actions, given the apriori probabilities of both
classes.
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