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Abstract. A mixture model clustering algorithm is presented for robust
MRI brain image segmentation in the presence of partial volume averag-
ing. The method uses additional classes to represent partial volume vox-
els of mixed tissue type in the data with their probability distributions
modeled accordingly. The image model also allows for tissue-dependent
variance values and voxel neighborhood information is taken into account
in the clustering formulation. The final result is the estimated fractional
amount of each tissue type present within a voxel in addition to the la-
bel assigned to the voxel. A parallel implementation of the method is
evaluated using both synthetic and real MRI data.

1 Introduction

A fundamental operation in many applications of medical image analysis remains
image segmentation, the object of which is to associate with each image voxel a
particular class based on its attributes, neighborhood information, or geometric
characteristics of objects belonging to the class. This classification is then used by
or to constrain higher-level image analysis and processing algorithms, thus robust
and accurate image segmentation is a key element of many medical imaging
applications.

In this work we consider the problem of segmenting magnetic resonance (MR)
images, which is made difficult by the existence of partial volume (PV) averaging
and intensity shading artifacts due to limited spatial resolution of the scanner
and RF field inhomogeneity, respectively. To improve the quantitative precision
of our segmentation, we focus on the former factor and develop a method for
determining the fractional content of each tissue class for so-called partial volume
voxels of mixed tissue type. Of specific interest in the current work are the
primary tissue constituents of the brain: gray (GM) and white matter (WM) as
well as cerebrospinal fluid (CSF).

To our knowledge, two general approaches have been applied to address the
problem of partial volume (PV) segmentation. A mixel model [1, 2] assumes that
every voxel in an image is a PV voxel, consisting of a mixture of pure tissue



classes. The object of segmentation in this case is to determine the relative frac-
tion of each tissue class present within every image voxel. Because of the number
of parameters that must be estimated at each voxel, either multi-channel data
and/or additional constraints are required to obtain the segmentation solution.

A second approach [3, 4] to dealing with partial volume voxels has been to
marginalize over the variables describing the fractional portions of each pure
tissue class. This produces an additional, new set of partial volume classes, with
which each image voxel may be associated. In this way, partial volume voxels
may be separately identified using existing “binary” segmentation algorithms.
However, an additional estimation step is necessary to obtain the fractional
amount of the pure tissues in each voxel. In the current work, this method is
used to adapt the maximum likelihood mixture model clustering algorithm [5–7]
for segmentation of partial volume voxels in MR images of the brain.

2 Image Model

We generalize the image model proposed in [3, 4] to account for tissue-dependent
intensity variations. Experiments on MRI data show that differences in intensity
variation across tissue type are not insignificant: the intensity values for CSF
voxels always having the largest amount of variability, followed by GM and
WM.

Let Ii = (Ii,1, Ii,2, . . . Ii,M )T be the M -channel observation of the i-th voxel in
an input image. Voxels of pure tissue class are described by a particular intensity
distribution associated with the image appearance of that tissue type. Partial
volume voxels, on the other hand, are represented as a linear combination of the
intensity distributions associated with the K possible tissue types that can be
found in those voxels:

Ii =
K∑

k=1

ti,kN(µk,Σk);
K∑

k=1

ti,k = 1 , (1)

where the voxel intensity I for pure tissue class k is represented as an M -element
column vector of random variables, which are distributed according to the mul-
tivariate Gaussian distribution N with µk = (µk,1, µk,2, . . . , µk,M )T the vector
of mean intensity values (M channels) for pure tissue class k, and Σk is the
associated M by M covariance matrix for the M -channel observation. Term ti,k
represents the fraction of pure tissue class k that is present at the i-th voxel.
Note that the mean intensity values (µk) and variances (Σk) do not change with
spatial location i; that is, we assume that any intensity shading artifacts in the
MRI data are first removed in a preprocessing step.

2.1 Image model simplification

To determine the fractional amount of specified pure tissue classes within every
image voxel, we must solve for N×(K−1) unknowns ti,k from N vector equations



(1), one for each voxel and there are N voxels in the image. Since each vector Ii

has M components, we have N × M equations. Assuming that the tissue class
parameters (µk and Σk) are known, a solution can be found if M ≥ (K − 1). In
practice, we are interested in the three classes: CSF, GM and WM. Multi-echo
images of high resolution are generally not available and even these would be
partially correlated and noisy, so that the problem remains ill posed.

Additional constraints are therefore necessary and same as in [3, 4], we make
the assumption that each partial volume voxel is a mixture of only two tissue
types, which introduces negligible error in practical applications that use high-
resolution T1 data. Formally we define a number of sets Gk each containing
indices of pure classes that are present in the k-th PV class:

Gk = {k1, k2}; k = 1 . . . KPV , k1, k2 ∈ {1 . . . K} , (2)

where KPV is the number of PV classes in an image while K is the total number
of pure tissue classes. For voxels of pure tissue class k and PV voxels consisting
of pure classes k1 and k2, respectively, (1) reduces to:

Ii = N(µk,Σk) (3)

and
Ii = ti,k1N(µk1

,Σk1) + ti,k2N(µk2
,Σk2) ; ti,k1 + ti,k2 = 1 . (4)

3 Mixture Model Clustering

To determine the parameters (µk, Σk) for the pure tissue classes, an extended
version of the maximum likelihood mixture model algorithm [5–7] was developed.
First, appropriate probability density functions are described for the pure tissue
and PV classes. Second, we introduce a Gibbs model as the weighting function
to favor spatially extended classifications [4]. Finally, P (k|Ii) is determined and
used to estimate the parameters µk and Σk.

3.1 Probability density functions

The intensities of voxels belonging to pure tissue class k conform to a multivariate
normal distribution: Ii = N(µk,Σk). The corresponding probability density
function for observing intensity Ii given tissue class k is therefore given by:

P (Ii|k) =
exp

(
− 1

2 (Ii − µk)TΣk
−1(Ii − µk)

)
√
(2π)M |Σk|

; k = 1 . . . K . (5)

The probability density function for PV voxels containing a mixture of pure
tissue classes k1 and k2 is derived from the model (4) and involves a linear



combination of two Gaussian distributions:

PPV (Ii|k1, k2, t) =
exp

(
− 1

2

(
Ii − µ̂k(t)

)T
Σ̂k(t)−1

(
Ii − µ̂k(t)

))
√
(2π)M

∣∣∣Σ̂k(t)
∣∣∣ ; (6)

µ̂k(t) = tµk1
+ (1− t)µk2

,

Σ̂k(t) = t2Σk1 + (1− t)2Σk2 .

As in [3, 4], we then marginalize (6) over t to obtain the probability density
function for PV classes:

P (Ii|k) =
∫ 1

0

PPV (Ii|k1, k2, t)dt ; (7)

k = K + 1 . . . K + KPV , k1, k2 ∈ Gk−K , k1 	= k2 .

To generalize the notation, we have numbered the PV classes from K + 1 to
K +KPV , so that P (Ii|k) expresses the probability density for both pure tissue
and PV classes. The integral in (7) does not have a closed form solution and
must therefore be evaluated by numerical integration.

Shape of PV probability density function depends largely on parameters of
the gaussians that define pure classes, which are present in PV class. This is
particularly noticeable, when the difference in mean values of two pure classes
is of the same order as standard deviation. Sample probability density functions
are shown in Fig. 1.
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Fig. 1. Sample probability density functions for pure and partial volume voxels

3.2 Weighting functions

In [5, 6] the probability density function for class k is weighted by the current
estimate of the voxel count for that class. This weighting is used to update the
probabilities in a manner similar to that of a Bayesian prior. Here we introduce
an alternative weighting function that favors segmentations which are spatially



extended. Specifically, we use the familiar Potts model that is also applied in [4]:

Pi(k) =
1
Z
exp

(
− β ·

∑
j∈Ni

δ(k, kj)
d(i, j)

)
; k = 1 . . . K + KPV , (8)

kj = argmax
k′

(
P (Ij |k′)

)
,

where

δ(k1, k2) =




−2 if k1 = k2

−1 if k1 ∈ Gk2−K ∨ k2 ∈ Gk1−K

−1 if Gk1−K ∩ Gk2−K 	= {}
+1 otherwise

; k1, k2 ∈ {1 . . . K + KPV } ;

(9)
ki is the current ML class estimate for the voxel at location i in the image; k is
the class for which we are updating the prior; Ni is the set of D18 neighborhood
voxels of voxel i; β is a parameter of the distribution, controlling the amount of
influence the weighting function should exert on the likelihood function; and Z is
a normalizing constant. Function d(i, j) represents the distance between voxels
i and j, which is used to limit the influence of distant neighborhood voxels.

3.3 Parameter Estimation

Given the probability density and weighting functions, the conditional probabil-
ity P (k|Ii) is calculated, from which an estimate of the parameters µk and Σk

for each pure tissue class k can then be estimated as follows:

P (k|Ii) =
Pi(k)P (Ii|k)∑K+KP V

k′=1 Pi(k′)P (Ii|k′)
; k = 1 . . . K + KPV (10)

µk =
∑N

i=1 P (k|Ii) · Ii

hk
; hk =

N∑
i=1

P (k|Ii) , k = 1 . . . K . (11)

Σk =
∑N

i=1 P (k|Ii) · Ii · IT
i

hk
− µk · µT

k

These parameter estimates then yield new probability density functions and
the process is repeated until the voxel count in each pure tissue class does not
change from one iteration to the next. This approximation to maximizing the
likelihood [5, 6] can also be seen as a special case of an Expectation Maximization
(EM) algorithm, suited for Gaussian distributions. In steady state at least a local
likelihood maximum is guarantied.

3.4 Initialization

Based on extensive experimentation on real and simulated MR images, we have
found that the clustering algorithm can be made robust to initialization values by



specifying a sufficiently large class variance. Therefore, without additional prior
information about the mean and variance values of the classes, the parameters
are initialized as follows:

µk,l =
k

K + 1

(
max

i
(Ii, l)−min

i
(Ii, l)

)
+min

i
(Ii, l) (12)

σk,l, l =
(
max

i
(Ii, l)−min

i
(Ii, l)

)2

; k = 1 . . . K, l = 1 . . . M

Initial mean intensity values are equally distributed between the minimum
and maximum intensity values found in the image. Diagonal elements of the
covariance matrix are all set to the image intensity range, whereas off-diagonal
elements are set to zero.

4 Partial Volume Tissue Classification

The clustering algorithm determines µk and Σk by iterating over the estimation
of P (k|Ii), until convergence is achieved. Once the intensity distribution and all
class parameters are known for each tissue type, the fractional portion ti,k1 for a
PV voxel at location i consisting of tissues k1 and k2 can then be obtained from
(4) via maximum likelihood estimation (MLE):

ti,k1 =
(µk1

− µk2
)T (Ii − µk2

)
(µk1

− µk2
)T (µk1

− µk2
)

. (13)

To allow us to produce a segmentation without having to specify a threshold
for distinguishing between partial volume and pure tissue voxels, we need to
modify (13) to include the information about pure tissue classes. We can write:

t∗i,k = P (k |Ii ) +
∑
k′

P (k′ + K |Ii )
(µk − µk2

)T (Ii − µk2
)

(µk − µk2
)T (µk − µk2

)
; (14)

k2 ∈ Gk′ ∧ k2 	= k

where summation index k′ runs over all PV classes that contain pure class k (for
which k ∈ Gk′ is true). We must also normalize the portions of pure classes so
that they sum to unity over all classes k:

ti,k =
t∗i,k∑K

k′=1 t∗i,k′
; k = 1 . . . K (15)

5 Implementation

Two preprocessing steps must be performed prior to clustering and segmentation.
First, we extract the brain parenchyma from the MR image of the head using
the Brain Extraction Tool – details of the method can be found in [8]. Intensity



shading artifacts in the extracted image are then removed with the MNI-N3
method [9].

A parallel version of the clustering algorithm was implemented by subdividing
the image into a number of segments, which are then processed in separate
threads, one for each processor available. All threads are synchronized at 3 time
points: before and after the calculation of the weighting values and before the
estimation of the new class parameters. The algorithm is outlined below:

1. Initialization
• Select number of pure tissue classes K.
• Define PV classes, represented as sets Gk, by specifying the corresponding
combinations of pure tissue classes.

• Set initial estimates of class parameters (µk,Σk) using (12).
2. Calculate the probability densities for all classes using (5) and (7) in multiple

threads. Wait until all threads complete their processing before proceeding.
3. Calculate the weighting values in multiple threads using (8). Wait until all

threads complete their processing before proceeding.
4. Calculate the updated probabilities using (10) for each class k and the new

estimates for the class parameters using (11). Wait until all threads complete
their processing before proceeding.

5. If the current voxel count for each pure tissue class is different from that
found in the previous iteration, or the maximum allowed number of iterations
have not been processed, return to step 2. We terminate the loop when the
change in

∑K
k=1 hk between iterations is less than 1 or number of iterations

is 50. hk is defined in (11).
6. Segment the image by determining the fractional amount of each tissue type

with every image voxel using (14) and (15).

The algorithm was implemented in standard ANSI C code. Moreover, our
multithreading support conforms to both the POSIX-PTHREADS standard and
Microsoft Windows multithreading API, so the code will compile on both UNIX
and Windows workstations.

6 Experimental Results

The segmentation algorithm was evaluated using both synthetic and real data.
In each of the reported experiments, β was set to 0.3 and algorithm convergence
usually occurred after 10-20 iterations.

6.1 Synthetic Image

We constructed a square, 100 by 100, image and subdivided the image into 3
regions, each separated by a vertical boundary. The left and right most regions
were considered pure “tissues” and their image values were drawn from normal
distributions with the following mean and variance values, respectively: µ1 = 70,
Σ1 = 10 and µ2 = 150, Σ2 = 20. The middle strip of the image, 30 pixels



Fig. 2. Synthetic data. (Left) Image to be segmented. (Right) Plotted in dashed line
is the horizontal intensity profile obtained along line 50 of the image; solid thin line is
the mean horizontal intensity profile averaged over all lines in the image; and in solid
thick line is the ideal horizontal profile (without noise added).

wide, contained partial volume pixels, which modeled a smooth linear transition
between the two pure classes. The synthetic image is shown in Fig. 2.

The following are the estimated mean and variances for the tissue classes:
µ1 = 70.35, Σ1 = 10.05; µ2 = 148.34, Σ2 = 19.22. The segmentation results or t
values for the first “tissue” class are shown in Fig. 3. The figure also shows the
squared error between the ideal and estimated t values for the class – the total
error was E1 = 26.65, where

Ei,k =
(
ti,k − tideal

i,k

)2
, Ek =

N∑
i=1

Ei,k . (16)

Fig. 3. Segmentation results for the synthetic data. (Left) Fractional values t for the
first class at each voxel plotted as an 8-bit gray-scale image with intensity = 0 corre-
sponding to t = 0.0 and intensity = 255 to t = 1.0. (Middle) Plotted in dashed line is
the horizontal intensity profile obtained along line 50 of the segmentation; solid thin
line is the mean horizontal intensity profile averaged over all lines in the segmentation
image; and thick line is the ideal horizontal profile. (Right) Image of pointwise squared
error between estimated and ideal t values for the first class



We can see that the errors occur only at the boundaries where the region
with PV voxels meets the regions containing pure classes. We contribute this
error largely to noise because it decreases when we reduce the amount of noise
variance for the pure classes. This also explains the smaller amount of error in
the segmentation of the left half of the image, where the noise variance for the
first pure class was smaller.

6.2 Simulated T1-weighted Brain Volume

A second, more realistic synthetic dataset of an MRI head scan was created using
the Brain-Web simulator [10–13]. Each simulation was a 1mm3 isotropic MRI
volume with dimensions 181x217x181. Three datasets incorporating different
amounts of noise were segmented and the mean absolute error between the ideal
and estimated t values over all voxels were as follows:

• 9% noise: GM: 0.08458 (σ=0.11885); WM: 0.04399 (σ=0.08759); CSF: 0.04157 (σ=0.09795)
• 3% noise: GM: 0.05435 (σ=0.08597); WM: 0.02923 (σ=0.06414); CSF: 0.02585 (σ=0.06517)
• 0% noise: GM: 0.03874 (σ=0.06301); WM: 0.01936 (σ=0.03755); CSF: 0.02077 (σ=0.05612)

A segmented slice for the synthetic brain volume with 9% noise level is shown
in Fig. 4. Although there appears to be minimal partial volume averaging in the
results, the segmentation obtained without using PV classes (KPV = 0) had
errors about 2 times larger and the algorithm took much longer to converge
(> 50 iterations).

Fig. 4. Partial volume segmentation of simulated brain volume. (Left) Cerebrospinal
fluid, where fractional values t at each voxel are plotted as an 8-bit gray-scale image
with intensity = 0 corresponding to t = 0.0 and intensity = 255 to t = 1.0 (Middle)
Gray matter. (Right) White matter.

6.3 Manually Segmented Real T1 MR Images of the Brain

Twenty normal brain MRI datasets and their manual segmentations were ob-
tained from the Center for Morphometric Analysis at Massachusetts General
Hospital – these IBSR datasets are publicly available on Internet [14]. The vol-
umes were preprocessed to extract brain parenchyma and corrected for intensity



inhomogeneities. However, 7 of the preprocessed volumes still exhibited strong
shading artifacts that the MNI-N3 method [9], was unable to remove.

Since the manual segmentations for this set of images do not contain any
information about fractional tissue content, we calculated a similarity index for
each class by thresholding our partial volume segmentation results. Specifically,
we report below the values for the Jaccard similarity = |Se∩Sideal|/|Se∪Sideal|,
where Se and Sideal are the estimated and “true” sets of voxels, respectively, for
a given tissue class:

Image 100 23 110 3 111 2 112 2 11 3 12 3* 13 3 15 3* 16 3 17 3
GM 0.8339 0.8216 0.8115 0.7563 0.7982 0.7102 0.8455 0.4029 0.7203 0.7341
WM 0.7528 0.7078 0.7391 0.6799 0.7238 0.5848 0.7777 0.001 0.6408 0.6283

Image 191 3 1 24* 202 3 205 3 2 4* 4 8* 5 8* 6 10* 7 8 8 4
GM 0.8195 0.5693 0.8426 0.8237 0.5334 0.5551 0.3764 0.4333 0.7761 0.7395
WM 0.7408 0.4405 0.7633 0.7687 0.2679 0.2697 0.1309 0.2237 0.6842 0.6657

Table 1. Jaccard similarity measure between estimated and ’true’ segmentation of
IBSR datasets. With star (*) are marked images, for which the intensity inhomogeneity
couldn’t be properly corrected.

It is evident in the results above which of the volumes were the seven for which
intensity inhomogeneity was still prevalent in the data. Excluding these volumes,
the mean Jaccard index was 0.7837 and 0.6985 for GM and WM, respectively,
and these are superior to the results reported for other methods in [4, 15].

7 Conclusion

We have presented an algorithm for partial volume segmentation of MR images
of the brain. Experimental results are comparable or superior to other published
algorithms. Our method is an extension of a probabilistic clustering algorithm
[5, 6], to accommodate partial volume voxels and to allow class-dependent model
values for the intensity variance. Although the convergence properties of the
original technique are generally unknown, we have observed robust performance
from our implementation as a function of the estimates used to initialize the
class parameters. In the current work, the weighting function was augmented
to favor spatially contiguous regions in the segmentation but other possibilities
are being examined, including the use of prior anatomic information as in [7].
Another, more important feature that is under implementation is the simultane-
ous correction of intensity inhomogeneities to not only obviate the need for this
preprocessing step but to improve on existing techniques.
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