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Abstract

Algorithms for human action recognition usually ob-
serve human motion only on particular level of detail.
This approach requires complex algorithms to match the
complexity of motion. High recognition rates are possible,
when actions are distinct and clearly visible. However,
this is not the case in many practical applications. To
solve this we explore the possibility of developing more
general action recognition algorithms by systematic re-
duction of complexity of human motion. The key to re-
ducing complexity is in systematic decomposition of hu-
man motion to different scales, each representing differ-
ent level of motion detail. Our approach was tested in
the sports domain, on a particular problem of detecting
the action of athlete hitting the ball with a racquet in the
game of squash. Video recordings of actual tournament
match were used, and manual annotations were provided
by squash expert as a ground truth.

1 Introduction

Analysis of human motion is a challenging problem
mainly because of its complexity. Many researchers work
in the field of computer vision based human motion anal-
ysis. This is reflected in several surveys on this topic
[1, 2, 3], covering various areas of the field. Impor-
tant area of human motion analysis is recognition and
detection of human actions, with wide range of applica-
tions, from automatic annotation of sports video to the
fully automatized security systems. Many researchers
[4, 5, 6, 7, 8] report high recognition rates for their par-
ticular action recognition problems. These solutions em-
ploy complex and sophisticated algorithms, which match
the complexity of human motion to the degree needed for
the particular problem.

In this paper, we explore the possibility of developing
more general action recognition algorithms by systematic
reduction in complexity of human motion. Complex hu-
man motion can be expressed as a combination of many
simpler components, which are clearly visible only when
looking at the right scale. The underlying assumption is
that human actions influence different scales of motion,
and should be observed that way. The features, obtained
on different scales of motion can be joined together to
represent the complex motion in uniform and manageable
way.

2 Scale-based human motion representa-
tion

Classification of video-based human motion analysis
techniques is not uniform [1, 2, 3]. Nevertheless, the divi-
sion to analysis of whole body motion vs. analysis of mo-
tion of the body parts is mainly undisputed. The first type
of analysis looks at the human on the large (coarse) scale,
essentially representing its position with a single point.
Tracking of the body parts looks at a human at smaller
(finer) scale, looking for details. Scale-space represen-
tation of the world asserts that some properties of the ob-
served object appear only when observed at a proper scale.
However, human movement is a complex spatio-temporal
phenomenon, and the scale of observation is defined by a
number of parameters - resolution, sampling rate, width of
observation windows and similar. One possible definition
of human motion scale is shown in Fig. 1.
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Figure 1: Human motion scale as seen from computer vi-
sion perspective.

In the real world, the observer never sees the full scale
of the motion. The visible interval of scale is determined
by camera setup and geometry (zooming in reveals finer
scales of motion) and the sensor resolution - observer can-
not see the details that are below the resolution of the CCD
chip or are faster than video acquisition frame rate.

Such representation of human motion offers possibil-
ity for classification of human motion analysis methods,
based on the observed object - human body, regardless of
their actual implementation. Video-based human analysis
algorithms essentially aim to focus on the desired interval
of the scale, which provides the most usable information.
The structure of algorithm and its parameters determine
the interval of scale that is visible to them.

2.1 What is the right scale?

In the case of tracking, the observation scale is the
main property of the tracking algorithm. If the scale is



wrong for the particular application, algorithm will be la-
beled as inaccurate [9].

In action recognition, the issue of the right scale be-
comes more difficult. Most of the algorithms for action
recognition focus on the single scale (movement of ex-
tremities, whole body motion, motion of facial muscles).
However, do actions really influence only narrow parts of
the human motion scale?

We built on the hypothesis, that human actions and ac-
tivities generally reflect on more intervals of the human
motion scale. For example, threat by street robber may
be exhibited as a sudden move, threatening gesture and
appropriate facial expression. We also think that the mo-
tion on the different scales is uncorrelated, unless it is in-
fluenced by certain action or activity. Our concept is to
build a system from several algorithms, focused on differ-
ent scales, and then join the resulting information.

3 Input data

Our application domain is a squash match. Squash
is an indoor racquet sport, played on a well illuminated
9.75×6.4 m court by two athletes. Player wins the match
by winning three sets. As most of the sports, squash has
well defined rules and long record of research focused on
player movement. The most important action of a player
is hitting the ball with a racquet before it hits the ground.
Cooperation with the sports experts enabled us to obtain
digital video of a tournament match, along with annota-
tions describing the exact moment and type of a hit.

Detecting hits in squash match represents a well de-
fined real-world problem, as such annotations are needed
for match analysis. Fig. 2 shows a sequence of frames
in region of interest of a single player. The problem is
however difficult, since actions we are to detect are not
dominant part of the video.

Camera was calibrated and simple background sub-
traction algorithm, similar to [10] was used to obtain
player trajectories. Tracking of players was done under
supervision of the sports expert, who had the ability to
stop the tracking and correct the obtained positions. Such
system is used for trajectory analysis by the sports experts,
and has been found to work well across several tourna-
ments. Video data, trajectory data (in the court coordinate
system) and expert annotations formed the testbed for our
action recognition algorithm.

4 Action recognition

Our aim is to build action detection system, which
would process the continous stream of video, and detect
the moment when interesting action takes place. To de-
velop and test the approach, the intervals of both trajec-
tory and video were extracted and divided into the two
classes: ω1 - player is hitting the ball, and ω2 - player
is not hitting the ball. First class is defined by the ex-
pert annotations (we used all types of hits except serves),

Figure 2: Image sequence of player, hitting a ball. Rows
1 and 2 show grayscale images, rows 3 and 4 show the
images with background subtracted. Image, marked by X
was annotated by expert as the exact moment of hit.

and the second class was sampled at the middle of inter-
vals between the hits plus one arbitrarily chosen sample,
to obtain the classes with same number of samples. This
way, the problem was transformed to the problem of clas-
sification between ω1 and ω2. It should be noted that the
apriori probability of ω1 is low (below 5%, if we observe
hits through 5 frame window), which we did not take into
the account. The training of the algorithm was done on
one set (S) of the match (19,980 frames, 158 actions),
and the testing was done on another (test set T - 18,344
frames, 148 actions). Only one player was observed.

4.1 Training and classification

The training set S was split to two subsets, S1 and S2.
S1 (120 annotations) was used for training the classifier
(LDA and PCA coefficients, decision boundaries), while
S2 (38 annotations) was used to estimate the preprocess-
ing parameters which define the observation scale, by us-
ing exhaustive search in parameter space.

To classify the samples, we used Linear Discriminant
Analysis (LDA) [11]. Given the training set of m classes,
LDA provides the transformation matrix WLDA, which
transforms the input vectors into the m − 1 dimensioned
feature space, to ensure best classification. In our case
(m = 2), we obtained one value for each sample. WLDA

was calculated on S1. The decision threshold between ω1

and ω2 was found using the nonlinear maximization of
total classification rate on S1.

4.2 Fine scale - the images

The motion of player arms carries significant amount
of information about his actions. Due to low video reso-



lution, appearance based method was used to extract this
information.

The sequence of difference images was generated by
subtracting each frame of video from the image of the
empty court. This was necessary, as majority of hits take
place near the wall, and algorithm tends to learn the walls
instead of action. The difference images are shown in
the last two rows of Fig. 2. The trajectories, smoothed
with the kernel of fixed width were used to extract win-
dows of size 80 × 80 pixels from the sequence. The cen-
ters of image (pixel) gravity were calculated and images
were aligned, such that center of image corresponded to
the gravity center, to compensate possible inaccuracies in
trajectories.

The images were cropped, and the size of window was
the first scale parameter. They were arranged into se-
quences, with sequence length being the second param-
eter. The delay between the annotation and the center of
sequence is the third, the downscaled size of (already win-
dowed) image is the fourth parameter. Downscaling has
been performed by bilinear interpolation. It has the two
benefits: it allows the algorithm to run faster and supresses
the finer part of the motion scale. All pixels of each image
sequence were then arranged into vectors of length n. We
cannot apply LDA on such vectors. By definition of LDA,
we need at least n training samples, otherwise computa-
tional difficulties occur. The solution is to use PCA [11].
This is known concept of ”eigensequences”, as described
by [12].

We calculated PCA transformation matrix WPCA

from the samples from class ω1. The actions are not the
dominant part of the sequences, and we cannot use the
eigenvectors that correspond to the first few largest eigen-
values (PCA by itself provides optimal signal representa-
tion, not classification, [13]). Our tests have shown that
these capture very little temporal action, which is visible
only in lower-valued eigenvectors. The solution [11] is
to apply LDA on top of the PCA-transformed features, to
automatically extract those features that contribute most
to classification. The dimension of the intermediate space
was limited to 119 (number of train samples less one) vec-
tors due to computational implementation of the PCA.
A quick look at the WLDA revealed that LDA indeed
favoured lower-valued eigenvectors. The results of classi-
fication of the testing set T were 72% and 81% for ω1 and
ω2, respectively.

4.3 Middle scale - the trajectories

Player actions may also cause typical motion of his
body center, which is provided by our tracking algorithm.
Therefore, trajectory shortly before and after the action
was observed for typical patterns.

Trajectory smoothing reduces noise and details in the
trajectory. The amount of smoothing is defined by width
of the Gaussian smoothing kernel (extending from −3σ
to +3σ), which is the same for x and y component. This
is the first scale parameter, and the width of observation
window is the second. The third parameter is the delay

between the moment of annotation and the center of the
observation window. It takes into the account the fact that
action may resonate on different scales with some delay.
The samples of trajectories were normalized after the ex-
traction to suppress the coarser parts of the motion scale
(absolute position and rotation). First, their mean value
(for x and y component) was normalized to zero. Their
mean rotation around the zero point was subsequently also
normalized to zero. x and y parts of trajectory were con-
catenated to single vector before feeding them into the
LDA.

The normalized trajectories for optimal set of param-
eters are shown in Fig. 3. To help the reader visualize
the difference, manually sketched shapes are placed right
to the trajectories. Trajectories in the ω1 class (hits) ex-
hibit more bending (U-shape) than those from ω2. This
is consistent with the squash game - player will approach
the ball, hit it with the racquet and retreat to make space
for the other player. The classes overlap for significant
amount - the recognition rate for the test set T was 70%
for ω1 and 75% for ω2.
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Figure 3: Normalized trajectories for the train set S.

4.4 Coarse scale - statistical properties

Player motion exhibits certain statistical properties,
when observed through long intervals of time. Due to the
nature of the game, he is more likely to perform actions in
certain areas of the court. This ”apriori” probability dis-
tribution may be learned and used in action detection as
well.

The player trajectory for the training set S was used
to sample the probability of player presence at particu-
lar position, P (pos). Joint probability, P (hit, pos) was
sampled from player trajectories at the moments of hits in
S1. Estimation of conditional probability of hit at particu-
lar position P (hit/pos) was estimated using the formula
P (hit/pos) = P (hit, pos)/P (pos). Sampling was done
by building 2D histogram, and smoothing it with 2D gaus-
sian kernel. Kernel width (the only parameter) was estab-
lished by observing its influence on classification of S2.
The samples from ω1 and ω2 were transformed to features
simply by reading probabilities P (hit/pos) at their spa-
tial coordinates, and the decision threshold was learned
from S2. Using only this feature, the results of classifica-
tion of the testing set T were 65% and 90% for ω1 and ω2,
respectively.



4.5 Recognition on more scales

Our main assumption was that actions reflect them-
selves on different scales of human motion. To illustrate
this, we joined the information from more scales. The
test set T was transformed to the feature space, using al-
gorithms for two scales at a time, trained on the train set
S. Learned decision boundaries for both algorithms were
discarded, and both results were joined to form two di-
mensional vectors, one dimension for each scale. Fig. 4
shows the samples in this 2D space, for 3 different scale
combinations.
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Figure 4: Clusters and decision boundaries for 3 different
combinations of scales. ω1 - circles, ω2 - crosses.

Diagonal placement of clusters show that the informa-
tion from both scales works complementary and thus re-
sults in higher recognition rates. Test on this set of data
has been performed by randomly selecting 20% of the
samples for learning decision boundary by the means of
Linear Least Squares method and testing the classification
on remaining 80% (the holdout method). The test was re-
peated 100 times, and recognition rates for the three com-
bination of scales are shown in Fig. 4.

5 Conclusion

Although the resulting recognition rates are lower than
in some of the reported work, they illustrate the impor-
tance of observing the human actions on the wider spec-
trum of scales, especially when facing such difficult prob-
lems. In our case, actions are not well recognizable when
looking at one scale alone, since in some instances they
simply may not result in particular trajectory or particu-
lar type of body motion. This problem has nothing to do
with classifier design (since the information may simply
not be there). We expect that many real world problems
will exibit such problems once closely examined, and that
the proper way of addressing them is by fusing together
information from many motion scales.
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