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Abstract

Radial lens distortion prohibits use of simple pinhole camera models in computer
vision applications, especially when using wide-angle lenses, which result in barrel-
type distortion. Usual approach to radial distortion is by the means of polyno-
mial approximation, which introduces distortion-specific parameters into the camera
model and requires iterative methods for their calculation. Based on the properties
of distorted images, an alternative approach is proposed in this paper. The basic
assumption is that distortion occurs due to transformation of the observed differen-
tial of radius and is locally dependent of the angle of principal rays. The geometric
relations which result from this assumption are complemented with the equations of
the perspective radial lens projection function to derive model of radial distortion
with single parameter - focal length. Experiments were conducted to illustrate the
validity and performance of this approach.
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1 Introduction

Lens distortions are long-known phenomena that prohibit use of simple pinhole camera
models in the most of the computer vision applications. Being the most stubborn type of
lens aberrations, they do not influence quality of the image, but have significant impact
on image geometry [4]. Several types of lens distortions exist, however, radial distortion
is usually the most severe part of the total lens distortion, especially when inexpensive
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wide-angle lenses are used. Effect of radial distortion on image geometry is illustrated in
Figure 1.

(a) (b)

Figure 1: Effect of radial distortion on image geometry. Dashed line represents the
rectangular object as it would appear in absence of radial distortion. Solid line shows the
object shape in the presence of (a) barrel and (b) pinchusion distortion.

There are two major types of radial distortion [4]. When image points get displaced
from its desired location to the position closer to the optical axis (negative displacement),
barrel distortion occurs. Alternatively, image points can get displaced to the position fur-
ther away from the optical axis (positive displacement), in this case pinchusion distortion
occurs. Barrel distortion is common in wide angle lenses and it therefore dominates the
distortion-related research, as far as computer vision is considered.

1.1 Related work

The science of precise measurement using optical instruments has developed long time
before first computer vision-based measuring systems became available [4]. Major part
of photogrammetric work was performed manually and high-quality optical equipment
was prerequisite for accurate measurements. These instruments are today referred to
as ”metric” equipment, in contrast to ”non-metric” or consumer equipment, which now
dominates the field of computer vision. Expensive metric cameras usually incorporated
complex optics, which included correcting elements aimed at correcting lens distortions.
Radial distortions of these cameras were small (in the range of micrometers), but were
nevertheless fully documented in camera documentation [4]. Calibration of these high-
precision cameras was performed using highly specialized equipment.

Advent of computer vision brought off-the-shelf cameras and lenses into the field of
visual inspection and measurement. This required different calibration procedures, which
could be carried out on inexpensive, but computer-supported equipment. Radial distor-
tions of these lenses were much higher (several percent at the image boundary, see [8]).
Polynomial model for radial distortion, which originated in photogrammetry was adopted,
as demonstrated by Tsai [8].

In the following years, many authors tried to compensate for radial lens distortion.
Some of them used wide-angle lens for image acquisition, which resulted in radial distor-



tions evidently exceeding 20% [7]. This called for some kind of radial distortion correction
even when no precise measurements were performed. Most approaches used polynomial
approximation model for radial distortion, with rare exceptions [1], such as FET (Fish-Eye
Transform) model by Basu and Licardie and FOV (Field-Of-View) model by Devernay
and Faugeras. The FET model is based on the observation that fish-eye have a high reso-
lution at the fovea, and a non-linearly decreasing resolution towards the periphery. FOV
model is based on simple optical model of fish-eye lens and introduces field of view ω as
distortion parameter. However, neither FET nor FOV model provides relations between
the distortion parameters and the physically measurable lens parameters.

Most of the radial distortion-focused research is still based on polynomial models and
their variations, for example [2].

1.2 Our approach

Several authors label radial distortion as an error of the lens design and manufacturing.
However, it is inherent property of any lens [3] and has to be compensated for, either
mathematically or optically. In this paper we derive a mathematical model of radial dis-
tortion which is based on the camera and lens projection geometry and does not introduce
any distortion-specific parameters into the camera model.

This paper is structured as follows: first, we define ideal (linear) camera model and
expand it with the polynomial-based (classical) radial distortion model. Next, we present
a concept of radial projection function, which is used in lens design and mathematics
to study lens properties. In the next step, we propose new approach for modeling lens
distortion, which is subsequently used to derive alternative model of radial distortion,
based on the most widely used, perspective projection function. Next, we present some
results of tests on the real images, that demonstrate the effectiveness of this approach,
and finally we conclude the paper with comments on properties of this alternative radial
distortion model.

2 Linear camera and polynomial distortion model

Pinhole camera can be represented by the following linear model [3]:[
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where ul = [ul, vl]
� are the coordinates of the image point, which is a projection of a

scene point with coordinates X = [X,Y, Z]�. K is the calibration matrix, containing
all intrinsic camera parameters. R and t are rotation matrix and translation vector, the
extrinsic camera parameters. This is an idealized camera model - ul cannot be directly
measured due to distortions.

Therefore, we can extend the linear camera model with radial distortion, which could
be generally represented as [3]:



u = d(ul,p), (2)

where ul are the coordinates of the undistorted image point and u = [u, v]� are the
coordinates of the distorted image point. d is the distortion function and p is the vector
of distortion parameters. u is directly measurable, for example as distances on the surface
of the photographic film, or as coordinates of a pixel in an image from the CCD camera.

Polynomial approximation has been thus far the preferred method of modeling radial
distortion function d. Polynomial model of radial distortion can be then expressed by the
following equations:
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where the polynomial on the right-hand side is given by
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The point u0 = [u0, v0]
� is the image center, k = [k1, k2 . . . kn]� are the distortion

coefficients and rl = ‖ul − u0‖ = [(ul − u0)
2 + (vl − v0)

2](1/2) is the radius of ul, or the
distance from ul to u0. The length of the vector k is denoted by n, and 2n is the order
of the distortion polynomial D. Most of the authors, including [8], concluded that for
most of the practical tasks, second order (n = 1) or fourth order (n = 2) polynomial
is sufficient. However, this may not be case for wide-angle lenses, as illustrated in [6].
In addition, independently of the number of the coefficients used, this model of radial
distortion always requires iterative approach to obtain the coefficients, which is its major
drawback. Furthermore, if the inverse of function d(ul,p) is needed it has to be computed
iteratively as well [3].

3 Camera model-based radial distortion function

Polynomial approximation of radial distortion function, as defined in Equations (3) and (4)
is based on the assumption that the underlying distortion function is not known and that
it cannot be obtained by analytical means. This is probably true for high-quality lens with
distortion-correcting elements, where polynomial function approximates the inaccuracies
in the lens manufacturing. However, this may not be true for simple, widely-used lenses
which have significant distortions that result from the lens geometry itself.

3.1 Camera models

The projection geometry of most cameras can be modeled as perspective projection of the
3D world onto a sphere (the viewing sphere), followed by a projection of the sphere onto a
plane [5]). Five ideal radial projection functions are used in lens design and mathematics
to map an angular distance α from the optical axis onto a distance r(α) from the image
center u0, [5]: perspective, r(α) = k tan α, stereographic, r(α) = k tan (α/2), equidistant,



r(α) = kα, equi-solid angle, r(α) = k sin (α/2) and sine law, r(α) = k sin (α/2). The
coefficient k corresponds to the focal length f of the lens used for image acquisition, [4].

3.2 Correcting the distortion

We can formulate our problem as follows: we are looking for the radial distortion function
d, as defined in Equation (2). To stress the radially symmetric nature of d, we can rewrite
it as

r′ = d(r′l,p), (5)

where r′l = ‖u′
l −u′

0‖ = [(u′
l −u′

0)
2 +(v′

l − v′
0)

2](1/2). The prime signs denote the variables
which are defined on the image plane, not in the object space.

Although polynomial approximation is sometimes thought of as being the only way to
model the unknown distortion function, this is not the case. Model of ideal camera can
be changed to incorporate the radial distortion, even if such model does not correspond
closely to the actual physics of the real camera. Example of such approach is the principle
of variable focal length [4], which assumes that focal length of the camera changes with
respect to the the radial distance rl, which causes radial distortion. This principle was
successfully employed in certain types of photogrammetric instruments [4].

Similarly, we propose another model of radial lens distortion, which can be constructed
by observing the effects of radial distortion on images, acquired using wide-angle lens. Let
us look at the typical, barrel-distorted image, shown in Figure 2a. Significant distortion
manifests itself through intense bending of otherwise straight lines of the planar pattern.

(a) (b)

Figure 2: (a) Image of the planar pattern (handball/basketball court), acquired using
wide-angle lens. (b) Three enlarged sections of the original image look similar as they
were acquired with the tilted camera, using lens with the smaller viewing angle.

Closer look at the three enlarged sections of the original image, shown in Figure 2b
reveals similar appearance, as if these images were acquired separately, with the help of



tilted camera, using lens with the smaller viewing angle. If tilted camera would be used,
distances on these images would appear shorter than they are on the observed plane due
to tilt. Then, the following assumption can be formulated:

Assumption. Barrel distortion of wide-angle lens occurs due to the transformation of
radius on the observed plane to the radius on the image plane under the influence of the
viewing angle α.

Certain geometric relations can be established on the basis of this assumption, as illus-
trated in Figure 3.
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Figure 3: Geometry related to tilted camera assumption.

Position of the observed point on the image plane is marked by X, and its image on the
image plane is marked X ′. We can then define the following quantities: F ′L = FL = f ,
the focal length of the lens. OX = rl is the true radial distance of the point X in object
plane. XY = drl is the length of differential of the radius in the object plane. Similarly,
X ′Y ′ = dr′l, is the length of the image of the radius differential drl in the image plane.
α1 and α2 are angles of principal rays originating at the opposite ends of drl and ending
at the opposite ends of dr′l. Let us additionally assume the position of observed object in
infinity1, which causes the image plane to appear exactly at the focal point F ′. We also
assume that the observed drl part of radius rl in the object plane is infinitely small. As
a consequence, principal rays are parallel, therefore α1 = α2 = α.

1In practice, this means that object distance is much larger than focal length f of the lens used,
LO � f.



To account for radial distortion with accordance to the tilted camera assumption, we
introduce the concept of imaginary tilted camera, which is tilted for angle α from optical
axis of our (real) camera, observing the point X on the image plane. Optical axis of tilted
camera is intersecting with the object plane near the point X - it is intersecting the plane
exactly at the point X if drl is infinitely small.2 Similarly, let us also assume that the
image plane of tilted camera intersects with the image plane of real camera exactly in
point X ′. The radial distance r of point X ′ on the image to the image plane center F ′ is
equal to F ′X ′. Due to camera tilt α, the differential dr′l is then projected to the image
plane of our tilted camera according to the following formula:

dr′ = cos(α) · dr′l, (6)

as shown in the enlarged part of the Figure 3. By changing the angle α, we can obtain
distortion for every differential dr′(r′), along the radius r′. Relation between the angle
α and radial distance r′ along the image plane can be obtained from camera models,
described in Section 3.1. For the most frequently used perspective model, we can write

r′l = f tan α, (7)

α = arctan
r′l
f

. (8)

By combining Equation (6) and Equation (8) we get:
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]
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Total radial distance r′ from the point X ′ on the image plane to the image center F ′

can be obtained by integration of the Equation (9),
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This is essentially the distortion function r′ = d(r′l,p), as defined in Equation (5),
derived for perspective camera model with accordance to the tilted camera assumption.
It is obvious that its parameter vector p contains only one parameter - focal length f .
By solving the Equation (11) for rl, we can obtain the inverse formula, which defines the

2Then, our tilted camera has zero viewing angle, and is distortion free.
3Symbolic integration and function inversion were performed using Matlab 5 and its Symbolic Math

Toolbox.



transformation of distorted radial distance r′ to the undistorted radial distance r′l in the
image plane,

r′l = −f

2

(e−
2r′
f ) − 1

e−
r′
f

. (12)

4 Experiments

We tested the performance of the derived distortion model by using two lenses with
focal lengths of 6.5 and 8.5 mm. Several images of calibration pattern were acquired
with each of the lens and standard, linear 3D calibration was performed for each lens.
Additionally, image of the checkerboard pattern was taken through each of the lens,
resulting in grayscale image of 768 × 576 pixels. Positions of square corners in image
pixel coordinates were obtained by convolving the image with the checkerboard operator;
several (not more than six) missed points were added manually. Obtained points were
grouped into the array of vertical and horizontal lines, which are shown in Figure 4.
Four lines (two verical and two horizontal) were chosen for radial distortion evaluation.
Two lines pass near the image center and serve as reference, since they are not heavily
distorted. Two lines are located at image border and measure the actual improvement in
grid linearity. For each of the four lines, marked with asterisks, residual error before and
after RMS line fit was measured. Array of pixels was compensated for radial distortion
using the formula (12) and measurements were repeated. Tables and graph in Figure 4
show the results.

3D calibration provided us with two focal lengths for each lens (for vertical and hori-
zontal direction) since pixels are not square. The average of those two values in pixels was
used for distortion correction as parameter f . Center of distortion was set to the center
of image.

Results clearly show that derived distortion model closely resembles radial distortion
of both tested lenses. Diagrams in Figure 4e and Figure 4f confirm that radial distortion
for border lines decreased significantly. On the other hand, only marginal increase in
distortion of center lines can be observed.

5 Conclusion

Derived distortion functions (11) and (12) have built-in implication that the lens radial
projection function is close to the perspective projection. Projection function of particular
lens can be closer to some other model [5], however, similar derivation could be done for
any of the projection functions, provided that the corresponding integral (10) exists.

The distortion functions (11) and (12) need focal length f to model the radial distor-
tion of particular lens. However, unlike the distortion parameters k1, k2 . . . kn, the focal
length is closely related to the camera geometry and is as such part of the parameter
set of every 3D calibration. Therefore, our distortion correction function introduces no
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Figure 4: Experiment results. Only lower-right quadrant of the grid is shown. First row:
6.5 mm lens, faverage=818 pixels. (a) before, (b) after the correction. Second row: 8.5
mm lens, faverage=1067 pixels. (c) before, (d) after the correction. Third row: numerical
results for (e) 6.5 mm lens and (f) 8.5 mm lens. VC - vertical centerline, VB - vertical
borderline, HC - horizontal centerline, HB - horizontal borderline. Parts of VC, VB and
HC are visible in a) through d) and marked with crosses.

distortion-specific parameters to the camera model. This has important implications.
The calibration of lens which have moderate radial distortion can be simplified by not
including the radial distortion into the original model. The camera parameters can be
then obtained using a closed-form algorithm, for example DLT, and radial distortion can
be removed afterwards, with a help of focal length, calculated during the first calibration
phase. For wide-angle lenses, the linear camera model can be extended to incorporate
radial distortion, which would require iterative nonlinear parameter search, however the
dimension of the search space is reduced for at least two parameters of the radial dis-
tortion polynomial. Many advanced cameras (for example digital photographic cameras)
can measure focal length used for each exposition, and therefore this measurement can



be used to reduce radial distortion. In the case that radial distortion correction is desired
from purely cosmetical reasons, approximate focal length in pixels can be calculated from
the nominal focal length of the lens used and from the dimensions of the image sensor. We
successfully employed this technique for some wide-angle images from our lab, however,
due to lack of space, results are not presented here.

From the viewpoint of computer vision field, lenses have two important properties:
radial projection function and focal length. Both of these properties were taken into the
account in the derivation of radial distortion functions, which emphasizes the view that the
radial distortion really is an inherent property of any lens, not an error in manufacturing
process or lens design. It is most likely that for some applications the derived radial
distortion functions do not provide sufficient accuracy; in this case the need for additional
polynomial model remains. However, such polynomial model would probably model the
true errors of the lens, not the camera and lens geometry.
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