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Faculty of Electrical Engineering, University of Ljubljana, Slovenia
{matej.kristan, janez.pers, matej.perse, stanislav.kovacic}@fe.uni-lj.si

http://vision.fe.uni-lj.si

Abstract. An efficient algorithm for tracking a single player in a sport-
ing match is presented in this paper. The sporting event is considered as
a semi-controlled environment for which a set of closed-world assump-
tions regarding the visual as well as dynamical properties is derived.
We show how these assumptions can be used in the context of particle
filtering to arrive at a computationally-fast and reliable tracker. The pro-
posed tracker was evaluated on a demanding data set. When compared
to several similar trackers that did not utilize all of the closed-world
assumptions, the proposed tracker, on average, resulted in a better per-
formance regarding the failure rate as well as position and prediction
estimation.

1 Introduction

Tracking players in a sporting match and obtaining their trajectories on the
playground offers useful insight into properties that make a certain player/team
a winner or a loser, which is why the interest of sport experts in the computer-
aided analysis is increasing. When designing a tracker capable of tracking players
in multiple-player sports, usually two important features need to be addressed.
One is the concept for multiple-target management, of which some interesting
examples with application to football and hockey can be found in [1,2,3,4] and
[5], respectively. However, if an elaborate multiple-target tracker is based on an
inefficient single-target tracker, the overall performance can be rather poor. Thus
the second important feature is the method to maintain a successful track of a
particular player. The latter is the focus of this paper.

We argue that by considering a sporting match as a semi-controlled envi-
ronment, certain assumptions can be made, which may lead to an improved
tracking performance. Using these assumptions, an algorithm based on a well-
known particle filter is designed for tracking a single player in a sporting match.
The strength of the proposed tracker is demonstrated on a demanding data set.

The remainder of the paper is organized as follows. Section 3 introduces a
sporting event as a semi-controlled environment and in Section 2 the engine of
the tracker is presented. Sections 4 and 5 are concerned with the visual and
dynamical properties of the tracked player. In Section 6 a scheme for learning
player’s motion is presented and in the Section 7 the results of the experiments
are described and discussed. Finally, Section 8 concludes the paper.



2 Particle filtering

In recent years, particle filters have been shown to provide efficient means of
visual tracking in various situations. Since their first appearance in the vision
community [6], they soon gained on their popularity by proving to be robust and
having the ability to handle the uncertainties usually present in visual data. For
the same reasons we use a particle filter as the engine of our tracker. We provide
here only the basic concept and notations, and refer the interested reader to [6,7]
for more details.

Let xt−1 denote the state of a tracked object at time-step t − 1, let yt−1

be an observation at t − 1, and let y1:t−1 denote a set of all observations up to
t − 1. From a Bayesian point of view, all of the interesting information about
the target’s state xt−1 is embodied by its posterior p(xt−1|y1:t−1). The aim of
tracking is then to recursively estimate this posterior as the new observations yt

arrive. This process is characterized by two steps: prediction (1) and update (2).

p(xt|y1:t−1) =

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (1)

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (2)

In our implementation, we use the well-known Condensation algorithm
[6], which is a simple particle filter, where the posterior at time-step t − 1 is
represented by a finite set of weighted particles and where the recursions (1) and
(2) are carried out via Monte Carlo simulations. This approach requires only a
specification of the dynamical model describing the state evolution p(xt|xt−1),
and a model that evaluates the likelihood of any state given the observation
p(yt|xt).

3 The closed world

Treating a sporting event as a semi-controlled environment is a concept previ-
ously introduced by Intille and Bobick [8] under the name closed world (CW).
The main premise is that for a given region in space and time, a specific context
is adequate to explain that region. In our case, the context is a set of the follow-
ing CW assumptions: (CW1) The camera overlooking the playground is static.
(CW2) The playground is bounded, and its model can be calculated. (CW3) The
illumination is nonuniform in space and time. (CW4) The players’ textures vary
during the game, and are known in the beginning. (CW5) The player cannot
change his/her position completely arbitrarily due to the effects of inertia.

Based on these assumptions, a sports-domain-specific tracker will be pre-
sented in the following sections.

4 The visual cues

In our implementation, players are considered as an elliptical regions as in [9],
since an ellipse provides a low-dimensional representation and is still robust



enough to capture different appearances of a player. A state of the tracked player
xt ∈ X , with X denoting the state space, is thus parameterized by an ellipse
xt = (xt, yt, at, bt) with a center at (xt, yt), and with parameters at and bt

denoting the width and the height, respectively.
Let E = (x, y, a, b) be an elliptical region at some state xt = (x, y, a, b).

Following [9], the color model of the state xt is encoded by the RGB color
histogram hx = {hi}512

i=1 with eight bins per color channel, sampled within the
ellipse E. The strategy of building the histogram follows that of [9], with the
extension of using a mask function M(u), meaning that only those pixels u

within E that are assigned to the foreground by the M(u) are considered.
According to the CW2, the background image can be modelled, thus we

define the measure which evaluates whether a player with a predefined reference
histogram ĥt is present at some state xt as

D(hA, ĥt;hB) = β−1Dn(hA, ĥt;hB), (3)

where hA and hB are histograms sampled at the state xt on the current and the
precalculated background image, respectively, β is the portion of pixels within
the elliptical region of xt, that are assigned to the foreground by the mask
function M(u), and Dn(hA, ĥt;hB) is the normalized distance between hA and

ĥt given the background histogram hB , defined as

Dn(hA, ĥt;hB) =
̺(hA, ĥt)

√

̺(hB , ĥt)2 + ̺(hA, ĥt)2
, (4)

where ̺(h1, ĥ2) = 1 − ∑

i

√
h1ih2i is the Hellinger distance [10].

In order to carry out the update step (2) of the particle filter, the analytical
form of the probability density function of (3) needs to be known. For this reason,
a number of players were tracked using a reference tracker [9] and by manual
marking. This enabled us to obtain approximately 115 thousand values of (3),
typical for the players during the match; these are depicted by the histogram
in Fig. 1. To identify the best model for the gathered data, a model selection
was carried out using Akaike information criterion (AIC) [11] among four test
models of density functions: exponential, gamma, inverse gamma and zero-mean
gaussian. The test with the AIC has shown, that the gamma function explained
the data significantly better than the other functions, and for this reason the
probability density function of (3) was chosen in the form of

p(yt|xt) ∝ D(hA, ĥt;hB)γ1−1e
−D(hA,ĥt;hB)

γ2 , (5)

with the parameters γ̂1 = 1.769 and γ̂2 = 0.066, which were the maximum
likelihood estimates of the parameters γ1 and γ2 calculated from the data.

4.1 The mask function

In addition to histograms, we employ a mask function M(u), which is calcu-
lated simply by thresholding the differences between the current and the back-
ground image using some threshold κt. Since the illumination of the playground



D(hA, ĥt;hB)

Fig. 1. The figure shows the empirical probability density function of the mea-
sure (3) in form of the histogram and overlaid is the maximum-likelihood fitted
gamma distribution

is nonuniform in space and time (CW3) and since the visual properties among
players vary, the threshold has to be estimated dynamically for a specific player:
Let x̃t denote the estimated state of a particular player at time-step t and let
hA and hB be the histograms sampled at that state on the current and the
background image, respectively. If the condition ̺(hA, ĥB) < ̺thresh is fulfilled,
then the similarity between the player’s visual model and the background is
significant and the threshold κt+1 for the next time-step is estimated as the
threshold, which in the current time-step produces such a mask function that at
least some predefined percentage η0 of the pixels in the current image that lie
within the ellipse of the state x̃t are assigned to the background. Otherwise, the
mask function is not generated for that player in the next time step.

The parameters η0 and ̺thresh were estimated empirically by manually se-
lecting players on heavily cluttered parts of the playground and were set to
η0 = 25% and ̺thresh = 0.8, respectively.

4.2 Adaptation of the visual model

According to the CW4, the player’s texture varies during a match, therefore the
color model, i.e. the player’s current reference histogram ĥt, has to be able to
adapt to these changes. Let x̃t denote the estimated state of a player at the
current time-step and let hA and hB be the histograms sampled at that state
on the current and the background image, respectively. The adaptation equation
then follows the form of

ĥt = αthA + (1 − αt)ĥ
−
t , (6)



where the superscript in ĥ−
t denotes the reference histogram prior to adaptation.

The intensity of the adaptation is defined with respect to the normalized distance
between hA and ĥ−

t as

αt = Ωmax · (1.0 − Dn(hA, ĥ−
t ;hB)), (7)

where Ωmax denotes the maximal adaptation. Again, this parameter was esti-
mated by means of a controlled experiment, and was set to Ωmax = 0.05.

5 Dynamic modelling

Most of the time during the game, the player’s aim is to act in an unpredictable
fashion in order to confuse the opponent. This implies that the dynamics might
be modelled by a random-walk model [12] as p(xt|xt−1) = N (xt;xt−1, Λt), where
N (·; ·, ·) denotes the normal distribution with mean xt−1 and a diagonal covari-
ance matrix Λt = diag(σ2

xy, σ2
xy, σ2

ab, σ
2
ab).

Note, that the variances in Λt determine the amount by which the player’s
state is expected to change between consecutive time-steps and depend on the
size of the player in the current image. We account for this dependence by writing

σxy = Ht−1 · αxy , σab = Ht−1 · αab, (8)

where Ht−1 =
√

a2
t−1 + b2

t−1 is a measure of size of the elipse from the previous

state xt−1. The equations in (8) require some sensible estimates for the αxy and
αab; we derive these next.

Based on the findings in [13,14] regarding the dynamics of handball and bas-
ketball players during a match, we estimated the highest velocity of a player as
vmax = 8.0m/s, or, at a frame rate of 25frames/s, as vmax = 0.32m/frames. Dur-
ing the tracking, the player is usually determined by an ellipse approximately
the size of his/her shoulders which is estimated to be Ht ≈ 0.4m. Assuming the
Gaussian form on the velocity distribution, the highest velocity can be approxi-
mated with three standard deviations as vmax = 3σxy/frame, and the parameter
for σxy in (8) is then αxy = 0.8

3

.
= 1

4 . Thus the expected change of the ellipse cen-
ter within two consecutive time steps is approximately one fourth of the ellipse’s
size.

The changes in the shape of the player’s ellipse occur mainly due to tilting of
the player, and thus we can assume that within two consecutive time-steps the
size along each axis can change at most by 15 percent. Following similar line of
thought as above, the parameter for σab can be estimated as αab = 0.05.

While it is true that the intention of a player is to move in a way to appear
unpredictable to the opponent, the motion itself, however, is not entirely unpre-
dictable since it is constrained by the player’s task and the physical limitations,
which enforce a sort of inertia on the motion (CW5). We therefore define the
state-evolution model to be

p(xt|xt−1) = N (xt;xt−1 + dt, Λt), (9)



where dt is a time-step-constant drift modelling the influence of the inertia. The
method for estimating the drift is described in the next section.

6 Local smoothing

In order to satisfactory estimate the drift dt at time-step t, a reliable estimation
of the past few states is needed. Since we are using a particle filter to recursively
estimate the posterior of the target in time, the variance of the estimated state
will usually depend on the number of particles used and the strategy by which the
particles are propagated. For example, in order to cope with the sudden changes
in motion, the common strategy is to increase the variance of the noise in the
dynamical model. This, however, results in many particles having low values
and contribute very little to the final estimation of the current state. The logical
solution is then to increase the number of particles and/or use a clever strategy
to concentrate particles in regions with high probability. Such strategies might
be application of an auxiliary-variable particle filter [7], or perhaps methods of
local likelihood sampling [15] to name just two. Even though each of the above
methods are likely to result in an efficient tracking, they introduce an additional
computational complexity which slows down the tracking. We propose here an
alternative approach, where at each time-step the current state estimated from
the particle filter is smoothed according to a locally-in-time learned dynamical
model, which assumes that the player is not likely to change his/her velocity
abruptly.

Let ot−T :t−1 = {o(k)}t−1
k=t−T denote a sequence of the T past smoothed states

of the tracked target, let πt−T :t−1 = {π(k)}t−1
k=t−T denote the set of their weights

and let v(k) = o(k) − o(k−1) denote the shift between two successive smoothed
states. We define a local shift distribution based on the past smoothed states as

p(v|ot−T :t−1) =

t−1
∑

k=t−T

δ(v(k) − v)G(k)(t), (10)

where δ(·) is the dirac-delta function and where the weights G(k)(t) are defined
as

G(k)(t) = c0π
(k)π(k−1)e

− 1
2

(k−t+1)2

σ2
o . (11)

The first term c0 in the above equation is the normalizing constant ensuring that
∑t−1

k=t−T G(k)(t) = 1, the second and the third terms reflect the likelihood of the

states o(k) and o(k−1), respectively, and the last term is a Gaussian that assigns
higher a priori weights to the more recent shifts.

The current drift dt is then estimated as the expected value over the local
shift distribution

dt = 〈v〉p(v|ot−T :t−1), (12)

where 〈·〉p(v|ot−T :t−1) denotes the expectation operator over p(v|ot−T :t−1).



The number of the smoothed states used in (10) is for practical applications
set to T = 3σo, since the a priori weights of all older states are negligible.
Assuming that a player can not radically change his/her velocity within one half
of a second, a value for the parameter σo is chosen to comply with this time
frame. Since all our test sequences are recorded at a frame rate of 25fps, we have
chosen this parameter to be σo = 4.3, which means, that in our application only
T = 13 past smoothed states are considered.

The smoothed state is calculated as follows. At time-step t, when the ap-
proximation to p(xt|y1:t) becomes available from the particle filter, the mean
square estimate (MSE) x̂t of the state is calculated from this distribution and
fused with the prediction on the smoothed states õt = o(t−1) + dt according to
their likelihoods wx̂t

= p(yt|x̂t) and wõt
= p(yt|õt), respectively, as

o(t) =
õt · wõt

+ x̂t · wx̂t

wõt
+ wx̂t

. (13)

The corresponding weight of the new smoothed state o(t) is then evaluated by
the likelihood function π(t) = p(yt|o(t)).

The proposed closed-world single-player tracker with local smoothing is sum-
merized in the Algorithm 1. An example of tracking a player in a squash match
is shown in Fig. 2, where the evolution of the local shift distribution with re-
spect to the player’s movement is illustrated. The first image (Fig. 2a) shows the
player standing still, with the samples of the local shift distribution spreading
around the his center indicating no preferable direction. As the player begins to
move towards the center of the playground (Fig. 2b), the samples gather around
the direction of the travel. In Fig. 2c, when the player suddenly stops, the sam-
ples spread around his center and as he begins to move towards the upper right
corner (Fig. 2b), the samples again gather in that direction.

Algorithm 1 The proposed closed-world tracking algorithm

– Calculate the background image, e.g. pixel-wise by means of a median filter along
the temporal axis.

– Initialize the tracker by selecting the player. (e.g. manually)
– For t = 1, 2, 3 ... do:

1. Construct the mask function Mt(u) according to the Section 4.1.
2. Calculate the drift dt by (12).
3. Run the conventional Condensation iteration (Section 2) using the dy-

namical model from (9).
4. Calculate the new smoothed state o

(t) following (13).
5. Sample the histogram at state o

(t) and adapt the reference histogram to
that histogram as described in the Section 4.2.

6. If needed, estimate the threshold for the mask function in the next time-step
(Section 4.1).



frame 2995 frame 3031

(a) (b)

frame 3047 frame 3056

(c) (d)

Fig. 2. The figures (a-d) show the tracked player during a squash match. The
current smoothed state is depicted by an ellipse superimposed on the player and
the arrow indicates the current drift (dt). The local shift distribution is presented
by the dots on the circle of the player’s enlarged image, where the size of each

dot corresponds to the appropriate weight G
(k)
t . For better visualization only the

angular shift distribution is shown here, i.e. the p(v|ot−T :t−1) integrated over
the radius



7 Experimental study and results

Several experiments were conducted to illustrate the performance of the proposed
closed-world tracker from the Algorithm 1; for brevity, we will denote the tracker
by CWls.

The first experiment was designed to quantify the effect of the local smooth-
ing (Section 6) in the CWls. This experiment considered seven players of dif-
ferent colors sprinting on a path drawn on the playground (Fig. 3a) while per-
forming sharp turns. The average size of each player was approximately 10× 10
pixels. To establish a performance criterion, each player was manually tracked
five times and the average of the five trajectories obtained for each player was
taken as the ground truth. In this way, approximately 273 ground truth positions
pt = (xt, yt) per player were obtained. The performance was evaluated in terms
of the average RMS error

E =
1

7

7
∑

i=1

1

R

R
∑

r=1

(
1

T

T
∑

t=1

‖(i)pt − (i)p̃
(r)
t ‖2)

1
2 , (14)

where (i)pt is the ground truth position at time-step t for the i-th player, (i)p̃
(r)
t

is the corresponding estimated position for r-th replication of the experiment
and ‖ · ‖ is the l2 norm.

The CWls tracker was compared to a tracker that did not employ smoothing
and where the adaptation and the background subtraction steps 5 and 6 in the
Algorithm 1 were conducted directly on the MSE of the player’s state from
the particle filter. This tracker employed a random-walk model on the ellipse
size with the standard deviation (std) of 5% of the current size, and a nearly
constant velocity (NCV) dynamical model [12] on the position. The variances of
the NCV velocity noise were learned on the ground-truth data and were set to
σẋ = σẏ = 0.94pixel/frame. We denote this tracker by CWncv.

The ellipse width and height in both trackers was constrained to lie within
the interval of [8, 12] pixels. Each player was tracked thirty times (R=30) with
the CWls and CWncv. For each tracker, a RMS error (14) on the current
position and prediction was calculated with respect to the ground-truth data.
In order to evaluate the repeatability of the trackers, the average stds of the
position estimates were also calculated. The form of the equation for calculating
the average std is similar to (14), where the ground truth (i)pt is replaced by
the tracker’s average estimate of the current position, obtained over all thirty
repetitions.

The results are presented in Fig. 4. The CWls tracker in general outper-
formed CWncv attaining smaller errors on position and prediction as well as
resulting in a smoother tracking. Using only 25 particles, the CWls performed
equally well as the CWncv at 75 particles with respect to the RMS error on
position (Fig. 4a) and outperformed CWncv even when the number of parti-
cles in both trackers was increased. Regarding the RMS error on prediction, the
CWls generally achieved smaller errors than CWncv. As the number of parti-
cles increased, the errors became virtually the same (Fig. 4b), however, CWls
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Fig. 3. The left image (a) shows seven players and the path used in the first two
experiments. The right image (b) shows an example of a tracked squash player
from the third experiment

still maintained a smoother track (Fig. 4c). An important thing to note here, is
that the CWls outperformed the CWncv even though the dynamics in CWncv

were learned on the test data. This implies powerful capabilities of using local
smoothing of Section 6 in the closed-world tracking.

In the second experiment, all seven players were tracked with a reference
tracker Tref from [9] thirty times and the average failure rate was calculated. The
conceptual difference between this tracker and the CWls was that the reference
tracker did not make use of the background information and employed a NCV
dynamical model. The number of particles used in this experiment was 25, the
parameters of the dynamical model in Tref were set as above, the variance in
the likelihood function was set to σ2 = 0.04, and the parameters for the model
adaptation were set as in [9]. The reference tracker produced on average 2.2
failures per a player, while both CWls and CWncv never lost any player.

To demonstrate the generality of the CWls, an experiment was conducted on
a recording of a squash match (Fig. 3b) from the CVBASE data set [16]. Two
players were separately tracked with CWls using the same parameters as in
the first experiment, with the ellipse width and height constrained to lie within
the interval of [16, 24] pixels. The tracker, again, maintained a successful track
using only 25 samples. The videos demonstrating the results of all experiments
are available online at [17].

8 Conclusion

A computationally efficient algorithm for tracking a single player in a sporting
match was presented in this paper. The effectiveness of the tracker was achieved
by considering the sporting event as a semi-controlled environment for which
certain closed-world assumptions can be derived. The proposed tracker was eval-
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Fig. 4. RMS estimation errors on position (a) and prediction (b) for the CWncv

(dotted) and CWls (full) as a function of the number of particles, and the
corresponding average standard deviations of the position estimates (c)

uated on a demanding data set and exhibited good capabilities of learning the
player’s dynamics, while attaining a successful track.

Since the proposed tracker is based on a simple particle filter, i.e. the Con-

densation algorithm, it is expected to improve in performance if a more efficient
particle filter is considered. Note also that the proposed algorithm is general
enough to allow extensions to the case of multiple targets.

References

1. Needham, C.J., Boyle, R.D.: Tracking multiple sports players through occlusion,
congestion and scale. In: BMVC01, Manchester, UK (2001) 93–102
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