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Abstract

The interest in the field of computer aided analysis of
sport events is ever growing and the ability of tracking ob-
jects during a sport event has become an elementary task
for nearly every sport analysis system. We present in this
paper a color based probabilistic tracker that is suitable
for tracking players on the playground during a sport game.
Since the players are being tracked in theirnatural environ-
ment, and this environment is subjected to certain rules of
the game, we use the concept of closed worlds, to model the
scene context and thus improve the reliability of tracking.

1 Introduction

Computer aided analysis of human motion is becoming
an appealing tool for enhancing the training effect in the
domain of multiple player sports. The potential of the com-
puter integration with coaching is vast, since the problems
that demand a mass of computation can relatively easily be
dealt with using the computer. Tracking all players on the
playground during a game and obtaining their trajectories,
is thus the cornerstone for nearly every type of analysis that
is interesting for the sport experts.

In this paper we address the problem of multiple interact-
ing targets tracking in indoor sport games such as basket-
ball and handball, and present a system for tracking play-
ers using a static top-view plan. Since the sports domain
can be considered as a semi-controlled environment, we use
the closed world terminology presented in [4], and apply it
to the case of color based particle filtering. We show how
the concept of the closed world assumptions can be used to
combine multiple separate trackers to improve the tracking
performance.

The remainder of the paper is organized as follows: Sec-
tion 2 defines the assumptions of the closed world, and Sec-
tion 3 the engine of the tracker. In Sections 4 to 7, a tracker
using closed world assumptions for a single player is pre-
sented. Section 8 augments the set of closed world assump-
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tions by a new assumption, and extends the tracker to the
case of multiple players. Section 9 describes the experi-
ments for evaluation of the tracker, and in Section 10 we
draw some conclusions.

2 The closed world

Theclosed worldconcept has been introduced to the vi-
sion community by Intille and Bobick [4] in 1995. The main
premise is that for a given region in space and time, a spe-
cific context is adequate to explain that region (i.e. deter-
mine all objects within the region). This region is called
the closed world and the context is a boundary in space
of knowledge, outside of which knowledge is not helpful
in solving the tracking problem. Thus, by considering the
sport match as a closed world, we define the context as a set
of closed world assumptions:(i) The camera overlooking
the playground is static, and positioned such that it’s opti-
cal axis is approximately perpendicular to the floor. (ii) The
playground is bounded, and its model can be calculated.
(iii) The illumination is nonuniform in space and time. (iv)
The players’ textures are known in the beginning, and vary
during the game.An additional closed world assumption
will be defined later in the paper.

3 Particle filtering

The use of particle filters in computer vision is a rela-
tively new and popular method for tackling the problem of
tracking. In the domain of visual tracking, this approach has
been pioneered by the work of Isard and Blake [5] in 1998,
and numerous variations and extensions of the method have
been presented since. We present here only the basic con-
cept and notations, and refer the interested reader to [1, 3, 5]
for more details.

Let xt−1 denote the state of a tracked object at time-
step(t − 1), let yt−1 be an observation at that state, and
let y1:t−1 denote a set of all observations up to a time-step
(t−1). From a Bayesian point of view, all of the interesting
information about the target’s statext−1 is embodied by its
posteriorp(xt−1|y1:t−1). The aim of tracking is then to
recursively estimate this posterior as the new observations
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yt become available. This process is characterized by two
steps: prediction (Eq.1) and update (Eq.2).

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (1)

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (2)

The recursion for the posterior thus requires a specifica-
tion of a dynamical model describing the state evolution
p(xt|xt−1), and a model that evaluates the likelihood of any
state given the observationp(yt|xt).

In our implementation, we use the well known CONDEN-
SATION algorithm, where the posterior at time-stept− 1 is
represented by a finite particle set with normalized weights
w

(i)
t−1

p(xt−1|y1:t−1) ≈
{
x(i)

t−1, w
(i)
t−1

}N

i=1
, (3)

such that all the weights sum to one. At time-stept, the
particles are resampled according to their weights in or-
der to obtain an unweighted representation of the poste-

rior p(xt−1|y1:t−1) ≈
{
x̃(i)

t−1,
1
N

}N

i=1
and are then sim-

ulated according to the dynamical modelp(x(i)
t |x̃(i)

t−1), to
obtain a representation of the predictionp(xt|y1:t−1) ≈{
x(i)

t , 1
N

}N

i=1
. Finally, a weight is assigned to each parti-

cle according to the likelihood functionw(i)
t = p(yt|x(i)

t ),
all weights are normalized, and the posterior at time-step
t is approximated by a new particle setp(xt|y1:t) ≈{
x(i)

t , w
(i)
t

}N

i=1
.

4 The Player model

Our aim is to track players on the playground during
a sport event, which requires modelling the players them-
selves, or the regions that contain them. We chose an ellipse
to model these regions, since it provides a low-dimensional
presentation and is still robust enough to capture differ-
ent appearances of a player. A state of the tracked player
xt ∈ X , with X denoting the state shape-space, is thus pa-
rameterized by an ellipsext = (xt, yt, at, bt) with a center
at(xt, yt), and with parametersat andbt denoting the width
and height, respectively.

It is usually argued that the player’s aim is to act in an
unpredictable fashion to confuse the opponent, which im-
plies that the dynamics should be modelled by a Brownian
motion. The player’s motion, however, is restricted by his
taskandlaws of physics; i.e. a player’s task is to travel from
regionA to regionB, and during that traversal the position
cannot be changed instantly and arbitrarily due to the effects
of the inertia. We therefore define the state evolution model
p(xt|xt−1) as

p(xt|xt−1) = N (xt;xt−1 + dt,Λt), (4)

whereN (·;µ,Σ) is a normal distribution with meanµ and
covariance matrixΣ anddt is a drift constant at timet for
all particles.

The covariance matrix in Eq. (4) is a diagonal matrix

Λt = diag(σ2
xy, σ2

xy, σ2
ab, σ

2
ab) ·H2

t , (5)

whereHt =
√

a2
t + b2

t is the size of the ellipse belonging
to the statext.

The time-step constant driftdt is estimated on a set of
smoothed past estimates of the average states, which are
calculated as follows: Letot−T :t−1 = {ok}t−1

k=t−T denote
a set ofT past smoothed statesok = (oxk

, oyk
, oak

, obk
)

of a tracked target and letπt−T :t−1 = {πok
}t−1

k=t−T denote
the set of their weights. Let̃ot = ot−1 + dt denote the
current prediction on these sets. At time-stept, when the
approximation top(xt|y1:t) becomes available, an average
statex̂t = (x̂t, ŷt, ât, b̂t) is calculated as

x̂t =
N∑

i=1

w
(i)
t x(i)

t , (6)

and the weightswx̂t
= p(yt|x̂t) andwõt

= p(yt|õt) are
obtained via the likelihood function. The new smoothed
stateot is then calculated as a weighted sum

ot =
õt · wõt

+ x̂t · wx̂t

wõt + wx̂t

, (7)

and the corresponding weight is calculated asπot
=

p(yt|ot).
The new time-constant driftdt+1 is then estimated as

a weighted sum of successive past differences between the
smoothed average states

dt+1 = c−1
o

t∑
k=t−T+1

(ok − ok−1)Gk(t), (8)

where the weights are defined as

Gk(t) = πkπk−1e
− 1

2
(k−t)2

σ2
o , (9)

and whereco =
∑t

k=t−T+1 Gk(t) is the normalization fac-
tor. The first two terms in Eq. (9) are the weights of the cor-
responding smoothed states and the last term is a Gaussian,
which is used to assign higher a priori weights to the more
recent states. The number of smoothed states in Eq. (8) is
for practical applications set toT = 3σo, since the a priori
weights of all older smoothed states are negligible .

Assuming that a player can not radically change his or
hers direction and velocity within one half of a second, a
value for the parameterσo was chosen to comply with this
time frame. Since all our test sequences are recorded at a
frame rate of 25 frames per second, we have chosen this pa-
rameter to beσo = 4.3, which means, that in our application
only T = 13 past smoothed states are considered.

5 The Color cue

Usually, a player is depicted on an image only by a
small number of pixels, typically about 10x10, and its shape
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changes rapidly. We therefore model the player by a color
histogram within an elliptical region. Such an approach has
proven on many occasions [2, 6] to be a powerful and ro-
bust characterization of an object appearance. To increase
robustness to clutter, a weighting kernel as in [2] is em-
ployed, which assigns higher weights to the pixels that are
closer to the center of an ellipse, and lower weights to those
farther away. Furthermore, if some a priori knowledge of
which pixels are not likely to belong to the player is avail-
able, it should be used in the construction of the histogram;
i.e. these pixels should be ignored. An elegant way of dis-
carding the pixels that do not belong to the player is the use
of a mask function, which assigns an a priori zero weight
to those pixels that are not likely to have been generated by
the players and a value one to all the other pixels. A con-
struction of such a mask function will be explained in the
following sections.

Let E = (x, y, a, b) be an elliptical region at some state
xt = (x, y, a, b). The RGB color histogram withB bins
hx = {hix}B

i=1, sampled within the ellipseE, is then de-
fined as

hix = fh

∑
u∈E

K(u)M(u)δi(b(u)), (10)

whereu = (x, y) denotes a pixel within the elliptical re-
gion E, δi(·) is a Kronecker delta function positioned at
histogram bini, b(u) ∈ {1...B} denotes a histogram bin in-
dex associated with the color of a pixel at locationu, K(·)
is a weighting kernel as in [2] positioned at the center of an
ellipse,M(u) is some a priori binary mask function, andfh

is a normalizing constant such that
∑B

i=1 hix = 1.
The presence of a player in a given state is evaluated by

comparing some candidate histograms to a reference his-
togram of the tracked player. As a measure of distance be-
tween two histograms, sayh1 andh2, a Bhattacharyya dis-
tance was chosen due to its optimality when considering a
frequency coded data, and is defined as

%(h1,h2) = 2(1−
∑

i

√
h1ih2i). (11)

Since the model of the background can be obtained, we
define a measure that also considers some information from
the background. Let̂ht be a reference histogram of the tar-
get, letxt be some hypothesized state of the target and let
hA andhB be the histograms at that state, sampled on the
current and the background image, respectively. Further-
more, letβ denote a portion of all pixels within the elliptical
region, that are not assigned to the background by the mask
functionM(·). The proposed measure is then defined as

D(hA, ĥt;hB) = β−1Dn(hA, ĥt;hB), (12)

whereDn(hA, ĥt;hB) is the normalized distance between
hA andĥt given the background histogramhB and is de-
fined as

Dn(hA, ĥt;hB) =
%(hA, ĥt)√

%(hB , ĥt)2 + %(hA, ĥt)2
. (13)

We have observed by empirical evaluation that the distance
in Eq. (12) follows a Gamma like function and we define
the likelihood function of statext as

p(yt|xt) ∝ D(hA, ĥt;hB)γ1−1e
−D(hA,ĥt;hB)

γ2 , (14)

where the parametersa and b were estimated on a large
number of successfully tracked objects and are given by

γ̂1 = 2.242, γ̂2 = 0.055. (15)

6 Generating mask

While histograms are powerful color cues for tracking
textured objects, they can fail severely when the object is
moving on a similarly textured background. This is usually
due to their lack of the ability to capture the spatial relations
in texture, and the fact that they are always sub-sampled, in
order to increase their robustness. There is, however, still
some useful information left in the current and the back-
ground image; the difference between the two. By thresh-
olding this difference image with some appropriate thresh-
old, we can construct a mask image, which filters out the
pixels that are likely to belong to the background. Since
the lighting conditions and the background color vary heav-
ily across the playground, the threshold has to be estimated
dynamically.

We propose a simple solution to estimating this thresh-
old. At time t, a smoothed stateot is calculated via Eq. (7)
and histogramshA andhB are sampled at that state from
the current imageA(·) and the background imageB(·),
respectively. If a distance%(hA,hB) exceeds some pre-
scribed threshold value%thresh then a mask function

MD(u) =
{

1 ; ‖A(u)−B(u)‖ ≥ Tmask

0 ; otherwise
(16)

is generated with a thresholdTmask calculated such that at
least 25 percent of pixels in the mask functionMD(·) within
the state’sot ellipse are assigned to the background. If the
threshold%thresh is not exceeded, the mask is set to unity,
i.e. MD(u) = 1 for all pixelsu.

7 Adaptation

As the player moves across the playground, its texture
varies due to nonuniform lighting conditions, influences of
the background and variations in the player’s pose. To im-
prove tracking under these conditions, we adapt the refer-
ence histogram̂ht at time-stept with the histogramhot

,
sampled at the current smoothed stateot (Eq.7) of the tar-
get. The extent by which the model adapts to the target is
determined by the normalized distance function defined in
Eq. (13); that is, if the smoothed state is likely to have been
falsely estimated, then the model histogram should be up-
dated by a very small amount, or not at all, and it should be
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adapted by some larger amount otherwise. The adaptation
equation follows the form of

ĥt = αhot
+ (1− α)ĥ−t , (17)

where the superscript in̂h−t denotes the reference histogram
prior to adaptation. LethA be a histogram sampled at a
stateot on the current image and lethB be a histogram
sampled at the same state but on the background image. The
adaptation parameterα is then defined as

α = Ωmax · (1.0−Dn(hA, ĥ−t ;hB)), (18)

whereΩmax denotes the maximal adaptation.

8 Tracking multiple players

The closed world assumption about the camera position
imposes a restriction, that players are viewed from above.
Since it is usually not a valid situation when one player ends
up on top of another, we can assume that it is highly unlikely
to observe a complete occlusion during the match.

This forms a new closed world assumption:(v)At a given
time-step, two players can not occupy the same position.

With this in mind, we devise a framework for combin-
ing separate particle filters by incorporating a spatial infor-
mation of the neighboring players. For the sake of the ar-
gument, let’s presume that at a given time-step, the states
of all players are known. Let(j)x denote the state of the
jth player and let there beNp players present on the play-
ground. The player with an indexj is presented in the cur-
rent image by some set of pixels(j)K . Assume that for all
pixels from the set(j)K , the closest center among all play-
ers is the one of thejth player. Hence, if the true states
{(j)x}Np

j=1 at a given time-step were in fact known, it would
be possible to partition the image into pairwise-disjoint re-
gions, such that each region would contain exactly one of
the sets(j)K .

A partitioning of the space which achieves this kind of
topology is the Voronoi partitioning [7], mainly used by the
surface triangulation and obstacle avoidance algorithms. A
Voronoi partitioning amongNp points, called seeds in the
triangulation terminology, is completely defined by a set of
points S = {sj}

Np

j=1 and generates a set ofNp pairwise-

disjoint convex partitionsP = {Pj}
Np

j=1, where each parti-
tion contains exactly one seed and for every point in a par-
ticular partition, the closest seed is the one included by that
partition. For illustrative purposes an example of a Voronoi
two-dimensional space partitioning by four seeds is shown
in Fig. (1).

In reality, at time-stept+1, prior to the tracking iteration,
the true states of the players are not known, however, the
predictions of type

(j)x̃t+1 = (j)ot + (j)dt+1 (19)

are available, whereot is the smoothed estimate of the
jth player’s state from the previous time-step (Eq.7) and

s1

s2

s3

s4

Figure 1. Four seeds divide the space into
four pairwise-disjoint convex Voronoi parti-
tions.

(j)dt+1 is the jth player’s drift at the current time-step
(Eq.8).

Prior to a tracking iteration, therefore, an image can be
partitioned intoNp Voronoi regions based on the predic-
tions of allNp players. The idea is then to track each player
only within a region that contains its prediction. Restriction
of a tracker for thejth player to its partitionPj can easily be
achieved by use of an additional mask function(j)MV (u)
defined as

(j)MV (u) =
{

1 ; u ∈ Pj

0 ; otherwise
, (20)

whereu is a pixel contained by the regionPj . The mask
function(j)M(u) in Eq. (10) is then defined as an intersec-
tion of masks(j)MD(·) (Eq.16) and(j)MV (·)

(j)M(u) = (j)MD(u) ∩ (j)MV (u), (21)

where by superscript(·)(j) we emphasize that all masks are
player-dependent.

The closed world tracking scheme for multiple players
with separate particle filters is described in the following
section.

8.1 The Algorithm

Let there be a set ofNp separate particle filter trackers,
each for one player, defined by{

(j)ĥt,
(j)p(xt−1|y1:t−1), (j)p(xt|xt−1)

}Np

j=1
, (22)

where thejth tracker is defined by its posterior from the
previous time-step(j)p(xt−1|y1:t−1), its transition distribu-
tion (j)p(xt|xt−1) and the model histogram(j)ĥt. This is
the initial input data for the tracking iterations at the current
time-stept.

A one time-step iteration of the multiple-player tracking
algorithm can be summarized as follows: Firstly, a set of
seedsS = {sj} is initialized at the predictions of all play-
erssj = (j)x̃t (Eq.19) and the corresponding Voronoi par-
titionsP = {Pj} are calculated. A tracker with indexj = 1
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is selected, its mask function(1)M(u) (Eq. 21) is con-
structed and its CONDENSATION iteration is processed. Af-
ter completing this iteration, a smoothed estimate of the first
player’s average state(1)ot becomes available (Eq.7) and
its corresponding weight is calculated asπot = p(yt|ot).
A histogram is sampled at that state on the current image
and the model(1)ĥt is adapted according to Eq. (17). As
described in the Sect. (6) a treshold for the mask function
(1)MD(·) is calculated within the ellipse of the state(1)ot.
Finally, the seeds1 in the setS is replaced by the smoothed
average state(1)ot and the Voronoi partitioning is recalcu-
lated. This procedure is repeated for the tracker with index
j = 2 and continued in the same manner, until all of the
trackers are processed. The algorithm is depicted by the
Alg. (8.1).

Algorithm 1. The multiple player tracking algo-
rithm.

• For all j set:S = {sj}
Np

j=1; sj = (j)x̃t

• For j = 1 : Np

1. Construct a set of Voronoi regionsP =
{pj}

Np

j=1 on a set of seedsS.

2. Construct the Voronoi mask(j)MV (u) via
Eq. (20).

3. Construct the difference image mask
(j)MD(u) as described in Sect. (6).

4. Run the classical CONDENSATION iteration on
thejth tracker (Sect.3).

5. Calculate the smoothed average state(j)ot

(Eq.7).

6. Sample a histogram at(j)ot and adapt the
model to that histogram as in Sect. (7).

7. If needed, calculate the threshold for the mask
MD(u) (Sect.6).

8. Update thejth Voronoi seed by the smoothed
average state:sj = (j)ot.

• End Forj

9 Experiments

Tests were conducted on a sequence of 948 images with
size of 384x288 pixels, from a recorded handball match
where the players were approximately 9x9 pixels large. The
frame rate of the sequence was 25 frames per second, which
was equivalent to approximately 38 seconds of the match.
All images comprised twelve players, where six of them

wore white dresses, and the other six wore dark dresses.
The playground was mainly yellow and blue, with a few
advertisements, and it influenced the colors of the players
severely: white players looked yellow on the yellow part
of the playground and became blue when they moved on
the blue part. Since the handball is a sport where contacts
and near-occlusions happen frequently and some players of
the same team often move close to one another, we feel it
is a good testing ground for multiple-player trackers. In
Fig. (2), an image from the entire test sequence is presented,
along with some of the contacts that happened during that
sequence and two examples of players moving over the ad-
vertisement.

1 2

3

4 5 6

7

8

9
10

11

12

(a)

(b) (c)

(d) (e)

Figure 2. A typical image with 12 players from
the test sequence for evaluation of tracker (a),
an example of colliding players (b) and corre-
sponding Voronoi partitions (c), and two oc-
casions of player moving over the advertise-
ment (d),(e).

Two tests were conducted to compare the Alg. (8.1) to
the one that considers each player separately and indepen-
dently of one another. The parameters for both trackers are
listed in Tab. (1). In the first experiment, the tracker was
manually initialized on a single player and the tracking pro-
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Table 1. Tracker parameters used in experiments.
ellipse size parameter space Hx,Hy ∈ [6, 10]
standard deviations of dynamics σxy = 0.3, σab = 0.05
standard deviation for the state smoothingσv = 4.3frames or σv = 0.172s
color likelihood parameters γ̂1 = 2.242, γ̂2 = 0.055
number of cells in a color RGB histogram B = 8x8x8
maximal histogram adaptation Ωmax = 0.04
number of samples in a single particle filter N = 20
threshold for masking %thres = 1.56
the state smoothing parameter σo = 4.3

Table 2. The average failure rates for track-
ing twelveplayers with a single-player and a
multiple-player tracker. The symbols Fr/(38s)
and Fr/(1min) denote the expected failure
rates for 38 seconds of the game and recal-
culated to a 1 min of the game, respectively.

tracker type Fr/(38s) Fr/(1min)
single-player 21.6 34.1
multiple-player 3.8 6.0

ceeded over the entire sequence of the match; this experi-
ment was conducted five times for each of the twelve play-
ers, and the number of instances when the tracker failed,
and had to be reinitialized was recorded. The tracking fail-
ure was regarded as an occasion, when the tracker obviously
lost the player, and did not seem to be able to properly con-
tinue with tracking. As a result, the expected failure rate
was computed for the given sequence and is reported in
Tab. (2).

In the second experiment, the tracker was initialized
manually on all of the twelve players, and all players were
tracked simultaneously over the entire sequence. When a
particular player was lost, it was reinitialized manually and
the tracking proceeded. Again, this experiment was con-
ducted five times, and the expected failure rate was calcu-
lated (Tab.2).

From the Tab. (2) it is obvious that the failure-rate de-
creased dramatically when the information about the neigh-
boring players was taken into account, thus rendering the
multiple-player tracker superior to the single-player tracker.

10 Conclusion

An algorithm for tracking multiple interacting players is
presented in this article. The problem of tracking is formu-
lated as a set of closed world assumptions, and the tracker
based on particle filtering is built such, to satisfy each as-
sumption. A multiple player tracker is proposed as a set of
separate trackers, one for each player, which are combined
by inferring a Voronoi partitioning among all players at each
time-step, and tracking each player within its Voronoi cell.
The multiple-player tracker was compared on a very de-

manding data-set with a single-player tracker and came out
as being superior. The sequence on which the trackers were
tested is indeed an arduous one, and one must not be mis-
led to think that the single-player tracker performed poorly.
The only difference between the single- and multiple-player
tracker is that the latter considered the spatial relations be-
tween all players, while still tracking each player separately.
Thus, the decrease in failure-rate of a multi-player tracker is
mainly due to the ability of taking into account the clashes
and near-occlusions among the players. Conversely, if a
tracker performed poorly on this sequence it would not nec-
essarily mean that it has poor tracking capabilities, whereas
good performance certainly implies good tracking capabili-
ties.

In the future research, we plan to conduct more tests and
compare our trackers to some reference trackers presented
in the literature. We are also considering a possibility for a
tracker to automatically reinitialize when the tracking fails.
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