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Abstract

Color-based tracking is prone to failure in situations where visually similar tar-
gets are moving in a close proximity or occlude each other. To deal with the am-
biguities in the visual information, we propose an additional color-independent
visual model based on the target’s local motion. This model is calculated from
the optical flow induced by the target in consecutive images. By modifying
a color-based particle filter to account for the target’s local motion, the com-
bined color/local-motion-based tracker is constructed. We compare the com-
bined tracker to a purely color-based tracker on a challenging dataset from
hand tracking, surveillance and sports. The experiments show that the proposed
local-motion model largely resolves situations when the target is occluded by,
or moves in front of, a visually similar object.

Key words: Local-motion, Probabilistic visual models, Visual tracking,
Occlusion
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1. Introduction

In recent years, particle filters [1] have become a popular approach to track-
ing from video due to their ability to efficiently handle the uncertainties associ-
ated with the visual data and the target’s dynamics. Probabilistic trackers such
as particle filters usually use contour-based [2] or color-based [3, 4] appearance
models to locate and track the target. One drawback of these models is that
tracking may fail whenever the target gets in close proximity of another visually
similar object. In many applications, such as video surveillance, visual human-
computer interface and tracking in sports, the camera is often positioned such
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that the scene is viewed from the side only. In these situations, complete occlu-
sions between visually similar objects become quite frequent. Figure 1a shows
an example where a person’s right hand was tracked through an occlusion by
the left hand. Note that the color likelihood function (Figure 1c) is ambiguous
with respect to the position of the tracked hand – the mode stretches over both
hands, which usually causes tracking to fail.

One solution to disambiguate between similarly colored objects is to use
additional color-independent cues, such as edge-orientation histograms [5, 6],
point distribution models [7] or texture features [8]. Although these cues alle-
viate the ambiguities caused by the color similarity, they are intensity-related
and are still hampered by the visual similarity between different objects. For
that reason several authors have proposed to improve tracking by combination
of these models. Isard and Blake [9] use color and contours to track hands on
a cluttered background. Li and Chaumette [10] combine shape, color, structure
and edge information to improve tracking through varying lighting conditions
and cluttered background. Similarly, Stenger et al. [11] and Wang et al. [12]
combine color and edge features to make tracking robust to background clutter.
Recently, Brasnett et al. [8] proposed a weighted scheme to combine edge, color
and texture cues.

Another approach is to utilize an appearance-independent cue such as mo-
tion. The simplest way to detect motion in images is to calculate the differ-
ence between consecutive images. Viola and Jones [13], for example, improved
pedestrian detection by learning a cascade of weak classifiers on manually ex-
tracted patches of image differences. A probabilistic model of local differences
was proposed by Pérez et al. [14]. They partition the image into an array of
cells and assume that a cell contains motion if the differences in that cell are
approximately uniformly distributed. A Parzen estimator [15] is then applied
to produce a motion-based importance function, which is used within a particle
filter to guide particles into the regions of the image which contain motion. A
drawback of methods which rely on image differencing is that they are essentially
local-change detectors and therefore cannot resolve situations when a target is
occluded by a moving, visually similar, object. Du et al. [16] have proposed
a general multiple-cue integration framework based on Linked Hidden Markov
Models and integrated the detected local-changes with other visual features to
improve tracking when the tracked object does not exhibit any motion.

An obvious solution is thus to take into account the apparent motion in the
images – the optical flow. Various bottom-up approaches have been proposed
recently, which are based on clustering similar flows to yield moving objects.
An attempt to track solely by the optical flow was presented by Du and Piater
[17]. In their approach a Kanade-Lucas-Tomasi (KLT) feature tracker [18] was
implemented in the context of a mixture particle filter. Targets were identified
in each frame by clustering consistent optical flow features. A similar approach
was used in [19], where the flow vectors were clustered by region growing and
pruning using affine motion consistency as a criterion. Recently, an approach
was presented in [20] where the optical flow was used to extract stable trajecto-
ries of features. These were then clustered using a minimum-description-length
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Figure 1: A person’s hand (depicted by the ellipse) is tracked after being occluded by the
other hand (a). The optical flow induced by both hands is depicted in (b), while the color
likelihood and the optical flow likelihood are shown in (c) and (d), respectively. Bright colors
correspond to high likelihood, while dark colors correspond to low likelihood. Image (e) shows
the combined likelihood of (c) and (d). The position corresponding to the maximum likelihood
in (e) is depicted by a white cross in (a).

method to determine the number of independently moving bodies. A drawback
of the bottom-up approaches which are based on clustering flow vectors is that,
due to the clustering procedure and the nature of the optical flow data, they
cannot maintain correct identities of the targets after full occlusion even if the
targets are of different colors. Bugeau and Pérez [21] approach this problem
by also accounting for the color information in the clustering stage and apply
graph cuts to improve segmentation.

1.1. Our approach

We propose a new local motion model, based on the apparent motion in the
image, which can be probabilistically integrated with other features to improve
tracking in presence of occlusions between visually similar objects and other vi-
sual ambiguities. Recall the hand tracking problem from Figure 1. The induced
optical flow is shown in Figure 1b and an illustration of the local-motion like-
lihood, where we consider only the direction of motion, is shown in Figure 1d.
Note that, while one of the modes corresponds to the tracked hand, the other
hand is hidden by this distribution. The product of the local-motion and color
likelihoods is shown in Figure 1e, where a single clear mode corresponding to
the tracked hand remains, indicating that the visual ambiguity was resolved.

The main contribution of this paper is the novel probabilistic local-motion
model which improves tracking when a target is occluded by, or moves in prox-
imity of, a visually similar object. The proposed probabilistic model is composed
of three major parts. The first two are the novel local-motion feature, which
is calculated from the target’s optical flow, and the similarity measure which
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allows comparing the local-motion model to the observed motion in the image.
The third part is the adaptation scheme which considers the predicted velocity
from the tracker in adaptation of the local-motion model to the target’s motion,
and can cope with target occlusions. We also derive a probabilistic measure-
ment model of the local motion, which allows application within probabilistic
frameworks such as particle filters. As an example, we extend an existing color-
based particle filter to account for the local-motion using a simple data-fusion
approach, e.g., [22]. We demonstrate that the proposed local-motion model sig-
nificantly improves tracking on a challenging dataset using examples from hand
tracking, surveillance, and sports tracking.

The remainder of the paper is organized as follows. In Section 2 we give a
brief overview of the bootstrap particle filter. Section 3 introduces the optical-
flow-based local-motion feature, its probabilistic model, and the adaptation
scheme. The local-motion-based probabilistic tracker is described in Section 4,
and in Section 5 the results of the experiments are reported. We conclude the
paper in Section 6.

2. Bootstrap particle filter

We give here only the basic concept of the particle filters and notations, and
refer the reader to [23] for more details. Let xt−1 denote the state (e.g., position
and size) of a tracked object at time-step t − 1, let yt−1 be an observation at
t−1, and let y1:t−1 denote a set of all observations up to t−1. From a Bayesian
point of view, all of the interesting information about the target’s state xt−1 is
encompassed by its posterior p(xt−1|y1:t−1). During tracking, this posterior is
recursively estimated as the new observations yt arrive, which is realized in two
steps: prediction (1) and update (2),

p(xt|y1:t−1) =

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (1)

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1). (2)

The recursion (1,2) for the posterior, in its simplest form, thus requires a
specification of a dynamical model describing the state evolution p(xt|xt−1),
and a model that evaluates the likelihood of any state given the observation
p(yt|xt).

In our implementation we use a simple bootstrap particle filter [24, 2]. The
posterior at time-step t − 1 is estimated by a finite Monte Carlo set of states

x
(i)
t−1 and their respective weights w

(i)
t−1, p(xt−1|y1:t−1) ≈ {x

(i)
t−1, w

(i)
t−1}

N
i=1, such

that all weights in the particle set sum to one. At time-step t the particles
are first resampled according to their weights, in order to obtain an unweighted

representation of the posterior p(xt−1|y1:t−1) ≈ {x̃
(i)
t−1,

1
N
}N

i=1. Then they are

propagated according to the dynamical model p(xt|x̃
(i)
t−1), to obtain a repre-

sentation of the prediction p(xt|y1:t−1) ≈ {x
(i)
t−1,

1
N
}N

i=1. Finally, a weight is

assigned to each particle according to the likelihood function w
(i)
t ∝ p(yt|x

(i)
t ),
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all weights are normalized to sum to one, and the posterior at the time-step t is

approximated by a new weighted particle set p(xt|y1:t) ≈ {x
(i)
t , w

(i)
t }N

i=1. The
current state of the target x̂t can then be estimated as the minimum mean-
square error (MMSE) estimate over the posterior p(xt|y1:t)

x̂t =
∑N

i=1
x

(i)
t w

(i)
t . (3)

3. Optical-flow-based local-motion feature

The optical flow at a given point is calculated by estimating the optical
flow vector form the current image back to the previous image, and reversing
its direction. This approach was chosen since it relates the current image to
the previous image, which is in agreement with the scheme, described in the
following sections, by which we estimate the reference motion of the target.

In our approach, the optical flow is estimated using the pyramidal imple-
mentation [25] of the well known Lucas-Kanade method [18]. One drawback of
this method is that it fails to provide a reliable estimation of the flow vectors in
regions with poor local texture. We therefore apply Shi-Tomasi feature detec-
tion [26] to determine locations with sufficient local texture, and calculate the
optical flow only at those locations. The Shi-Tomasi feature at location (x, y) is
defined by the smallest eigenvalue of the covariation matrix of gray-scale inten-
sity gradients, which are calculated in the neighborhood of (x, y). The location
(x, y) is accepted as a valid Shi-Tomasi feature if the smallest eigenvalue exceeds
a predefined threshold ξth. An example of valid Shi-Tomasi features and the
corresponding flow vectors are shown in Figure 2.

(a) (b) (c)

Figure 2: Two players of a squash match are shown in (a). The valid Shi-Tomasi features are
depicted by white color in image (b) and the corresponding flow vectors are shown in (c). For
clarity, only every third flow vector is shown.

Let vt(x, y) = [r, φ] be the optical flow vector at location (x, y) in the current
image with amplitude r and orientation φ. The local-motion feature vE =
[rE , φE ] of a region E is then encoded as the weighted average of the flow
vectors

vE = f−1
v

∑

(x,y)∈E′

vt(x, y)K(x, y), (4)

5



where E′ ∈ E is a set of detected Shi-Tomasi features within region E, K(x, y)
is the Epanechnikov kernel [15] used to assign higher weights to those flow
vectors that are closer to the center of E, and fv =

∑

(x,y)∈E′ K(x, y) is a
normalization term. To avoid the pathological situations associated with vectors
with amplitude zero, the summation (4) is carried out in Cartesian coordinates.

3.1. Local-motion likelihood

Let vref = [rref , φref ] be a reference vector, which models the target’s local-
motion, and let vE be a local-motion vector calculated within region E. We
define the angular and amplitude similarity measure Gφ and Gr, respectively,
between vref and vE as

Gφ(vE ,vref) =

{

∠(vE ,vref)
π

; rE > δth ∧ rref > δth

1 ; otherwise
, (5)

Gr(vE ,vref) =

{

|rref−rE |
rref+rE

; rE > δth ∨ rref > δth

0 ; otherwise
, (6)

such that Gφ(·, ·) ∈ [0, 1], Gr(·, ·) ∈ [0, 1], ∠(·, ·) is the angle between two vec-
tors, | · | is the L1 norm, and δth is a threshold on the amplitude below which
the vectors are considered as noise2. If region E contains no valid Shi-Tomasi
features, the vector vE is undefined and the similarity measures are Gφ = 1.0
and Gr = 1.0.

We have observed, in a preliminary study, that, whenever the target is cor-
rectly located, the probability density functions (pdf) of (5) and (6) can be well
approximated by exponential distributions. However, in practice we approx-
imate the current reference motion using motions observed in previous time-
steps. This may impair the quality of tracking whenever the target suddenly
significantly changes its motion. To cope with such events, we introduce a
uniform component to the probability density function. The joint probabil-
ity density function of (5) and (6) with parameters θ = [λφ, λr, wnoise] is then
defined as

p(Gφ, Gr|θ) ∝ (1 − wnoise)e
−(

Gφ
λφ

+ Gr
λr

)
+ wnoise, (7)

where λφ and λr are the parameters of the exponential distributions and 0 <

wnoise < 1 is the weight of the uniform component.

3.2. Adaptation of the local-motion feature

After each tracking iteration, the current state x̂t of the target and its current
velocity v̂t are calculated, e.g., via the MMSE estimate (3) from the particle
filter. The new region E containing the target is determined and the local-
motion vector vEt = [φEt, rEt] (4) is estimated. If the region E contains at

2Note that the similarity measures Gφ(·, ·) and Gr(·, ·) are actually the distance measures

between the vectors vref and vE : in case vref and vE are equal, they yield a value 0 and
when vref cannot be considered close to vE , they yield a value greater than 0.
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least one valid Shi-Tomasi feature, then vEt is used to adapt the reference local-
motion model vref = [φref , rref ]. This is achieved by applying an autoregressive
scheme

φ+
ref = βφtφ

−
ref + (1 − βφt)φEt,

r+
ref = βrtr

−
ref + (1 − βrt)rEt, (8)

where the subscripts (·)− and (·)+, respectively, denote the reference model prior
and after the adaptation. The variables βφt and βrt are the current adaptation
intensities

βφt ∝ p(Gφ(v̂t,vEt), 0|θ),

βrt ∝ p(0, Gr(v̂t,vEt)|θ), (9)

such that βφt ∈ [0, 1], βrt ∈ [0, 1], and p(·, ·|θ) is defined in (7). If the region E

does not contain any valid Shi-Tomasi features, then vEt is undefined and the
reference is not adapted.

From (9) it follows that the reference local-motion model is adapted to local
changes in the target’s motion only when the velocity, with which the tracker
predicts the target is moving, is approximately in agreement with the observed
local-motion at the current estimated state. Otherwise the adaptation is low,
since the target is probably being occluded by another object.

4. Local-motion-based probabilistic tracking

We derive the combined color/local-motion-based tracker by extending a
color-based particle filter to account for the local-motion. As a reference tracker
we have used the closed-world tracker from [27, 28], where the target is modelled
by an ellipse and color histograms are used to encode the color cues. In our case,
a standard discrete-time-counterpart of the nearly-constant-velocity (NCV) dy-
namic model [29] with independent noise on horizontal and vertical directions
was used on the target’s position, and a random-walk (RW) model [29] was
used on the target’s size. Thus the reference tracker, we denote it by Tref , was
conceptually a color-based bootstrap particle filter with the target state defined
as xt = [xt, vxt, yt, vyt, at, bt]

T , where [xt, yt], [vxt, vyt], [at, bt] are the target’s
position, velocity and size, respectively. The state-transition model p(xt|xt−1)
was thus a composition of the NCV and RW models, defined by the relation

xt = Fxt−1 + Gwt, (10)

F = diag[F̃ , F̃ , 1, 1], G = diag[G̃, G̃, 1, 1],

F̃ =

[

1 1
0 1

]

, G̃ =

[

0.5
1

]

,

where wt is a discrete-time white noise sequence defined by a zero-mean normal
distribution, wt ∼ N (0,Λ), with covariance matrix Λ = diag[σ2

xy, σ2
xy, σ2

H , σ2
H ].

The parameter σH corresponds to the noise in the random-walk models on the
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target’s size. As in [28], we set this parameter in all our subsequent experiments
such that the size of the target does not change between two time-steps by more
than 15%. The parameter σxy corresponds to the noise in the nearly-constant-
velocity models on the target’s position. This parameter varies between exper-
iments since it largely depends on the target’s size (in pixels) and the volatility
of its motion.

We define the observation vector yt as a concatenation of the color (ytcol)
and motion (ytmot) observations, e.g., yt = [ytcol,ytmot]. Under the assumption
that the target’s color properties are independent of its motion, the likelihood
function for the particle filter can be written as

p(yt|xt) = p(ytcol,ytmot|xt)p(ytmot|xt) = p(ytcol|xt)p(ytmot|xt), (11)

where p(ytcol|xt) is the color likelihood at state xt, and p(ytmot|xt) presents
the local-motion likelihood at that state. Note that, in the case of the color-
based tracker Tref , the likelihood function is equal to p(ytcol|xt). The combined
color/local-motion-based tracker, we denote it by Tcom, is then obtained by
replacing the likelihood function in Tref by (11) and setting

p(ytmot|xt) = p(Gφ(vxt
,vref), Gr(vxt

,vref)|θ). (12)

In the equation above, p(·, ·|θ) is defined in (7), vxt
is the local-motion (4)

sampled at state xt, and vref is the reference local-motion. While for a hypoth-

esized state x
(i)
t the color histograms are sampled within the elliptical region

associated with that state, in practice we found it sufficient to sample the local-
motion feature (4) within a rectangular region superimposed over the ellipse.
The proposed combined color/local-motion-based probabilistic tracker Tcom is
summarized in Algorithm 1.

5. Experimental study

The trackers Tcom and Tref (section 4) were compared on experiments from
hand tracking, surveillance, and sports tracking (Figure 3) to demonstrate how
we can use the proposed local-motion model to improve intensity-related track-
ers. In each experiment, a single target was manually selected in the first frame
and tracked throughout the recording. All recordings were taken at the frame
rate of 25 frames/s, except for the recording used for hand tracking, which was
taken at 30 frames/s. The Shi-Tomasi feature detection from section 3 was
performed using 3 × 3 pixels neighborhoods and only features whose smallest
eigenvalue exceeded ξth = 10−3 were accepted. The size of the integration win-
dow in the Lucas-Kanade optical flow calculation was set to 9 × 9 pixels. The
amplitude threshold used in (5) and (6) was set to δth = 10−2 pixels. In all the
experiments, except for the experiment with the hand tracking, a single-level
pyramid was used to calculate the optical flow. The scale of motion in the ex-
periment with the hand tracking was larger than in the other experiments and
the optical flow could not be estimated well enough by a single-level pyramid.
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Algorithm 1 The combined color/local-motion-based probabilistic tracker.

Initialize:

1: Initialize the tracker by selecting the target (e.g., manually).
Tracking: For time-step k = 1, 2, 3, . . .

2: Execute an iteration of the particle filter using the likelihood function
p(yt|xt) defined in (11) and the current reference local-motion vref :

• Start from the N particles which approximate the posterior from the

previous time-step: p(xt−1|y1:t−1) ≈ {x
(i)
t−1, π

(i)
t−1}i=1:N

• Sample with replacement N particles,

x̃
(i)
t−1 ∼ p(xt−1|y1:t−1),

and propagate them using the dynamic model (10),

x
(i)
t ∼ p(xt|x̂

(i)
t−1).

• Extract the local-motion feature (4) v
x

(i)
t

at each predicted state x
(i)
t .

• Recalculate the weights of all N particles using (11):

π̃
(i)
t = p(ytcol|xt)p(Gφ(vxt

,vref), Gr(vxt
,vref)|θ)

• Normalize the weights π
(i)
t =

π̃
(i)
t

∑

N
i=1 π̃

(i)
t

.

3: Estimate the current MMSE state (3) x̂t and the current velocity v̂t.
4: Estimate the new reference vref according to section 3.2.
5: Update the color-based features (e.g., [28]).

Therefore, to compensate for the larger scale of motion, a two-level pyramid was
used instead. The parameters of the local-motion likelihood function (11) were
set experimentally to λφ = 0.1, λr = 0.3 and wnoise = 0.01. Note that, since λr

was chosen to be larger than λφ, the amplitude of the local motion had a smaller
impact on the value of the likelihood function in comparison to the angle. The
reasoning behind this is that during accelerated movement, typical for hands
and people, the amplitude of the optical flow changes more significantly than its
direction. In our implementation we use a standard discrete-time counterpart
of the nearly-constant-velocity dynamic model which requires specification of
the variance, σ2

xy, of the noise acting on the target’s velocity. We have set this
parameter to σxy = 1 pixel in x and y direction for all experiments except for
the case of hand tracking, where the noise of σxy = 3 pixels was used. The
number of particles in the particle filter was set to N = 50, and all other pa-
rameters were set as in [28]. The parameters were kept constant throughout the
experiments. For the videos demonstrating the results presented in this paper,
please see http://vicos.fri.uni-lj.si/data/matejk/pr08/index.htm.

In the experiment with hand tracking, a recording of a person waving his
hands was used (Figure 3a). Both hands were approximately 20×20 pixels large,
and were tracked five times independently of each other. The hands occluded
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(a) (b) (c)

(d) (e) (f)

Figure 3: Images from the recordings used in the experiments with hand tracking (a), surveil-
lance (b,c,d) and sports tracking (e,f).

each other 17 times with majority of occlusions occurring in front of the person’s
face. The reference tracker Tref failed on average 24 times, by either following
the wrong hand or the face after the hands were crossed. The proposed combined
tracker Tcom resolved a majority of occlusions, and failed only four times by
losing the hand and locking onto the person’s face. A detailed inspection of the
results showed that, in those situations where Tcom failed, the target’s color
model was strongly favoring the face, while the local-motion feature at the edge
of the tracked hand sufficiently supported the target’s reference motion. The
reference motion model deteriorated, which caused the tracker to drift from the
hand to the face. Figure 4a shows an example where Tref lost the hand after
it was occluded by another hand, while Tcom resolved the occlusion. Note that
there were situations in which Tref lost the tracked hand even though it was not
occluded, but was merely moving close to the other hand or the face; Tcom was
still able to resolve all of these situations. The resolution of the occlusions can be
completely attributed to the nature of the local-motion model and its adaptation
scheme: In cases when the target gets occluded by a differently moving object,
the observed local motion contradicts the predicted motion from the tracker’s
dynamic model, which stops the adaptation of the reference local-motion model.
Assuming that the target does not significantly change its motion during the
occlusion, the tracker can recover the target when it reappears. However, the
tracker is prone to fail in situations when the motion-consistency assumption is
violated. We discuss such situation in a later example of tracking a player of
squash.

Three recordings were used to demonstrate the performance of the pro-
posed model on a surveillance application. In the first recording, taken from
PETS 2006 database [30] (Figure 3b), a person walking in front of a group
of visually similar persons was tracked. The size of the person in the video
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Figure 4: Frames from the experiments with hand tracking (a) and surveillance (b,c,d). The
upper rows show results for tracking with the proposed combined tracker Tcom, and the lower
rows show results for the reference tracker Tref .
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was approximately 13 × 30 pixels. The results of the experiment are shown
in Figure 4b. Due to the visual similarity, the purely color-based tracker Tref

could not discern the tracked person from the group, even though the person
was walking in front of the group, and tracking failed. On the other hand, the
proposed combined tracker Tcom was again able to make use of the motion, and
successfully tracked the person throughout the recording. The second recording
was from PETS 2002 database [30] (Figure 3c) and contained a 30 × 80 pixels
large person slowly walking behind two other visually similar persons. This
recording was used to demonstrate the ability of the proposed tracker Tcom to
track objects even under lasting partial occlusion. Figure 4c shows the results,
where Tref loses the tracked person in occlusion. Again, the proposed tracker
Tcom successfully tracks the person throughout the entire sequence. These re-
sults are comparable to the results of the surveillance system [31] that was also
able to track the same person throughout the occlusion. However, that system
applied sophisticated appearance models, tracked all objects in the scene, and
used heuristics to explicitly handle occlusions between the targets. In contrast,
our method used a very simple color model and did not apply any occlusion
handling. However, it still successfully tracked the person through the occlu-
sion solely due to the proposed local-motion model. The third recording was a
thermographic (FLIR) video of a parking lot and contained a 10×20 pixels large
person which was occluded by another person (Figure 3d). Since the persons
could not be distinguished solely by their appearance, the reference tracker Tref

failed to track the correct person after the occlusion (Figure 4d). Tcom was able
to utilize the motion information and successfully tracked the person even after
the occlusion.

Two experiments were used to demonstrate the performance of the proposed
visual model with tracking in sports. In the first experiment we have tracked
a player of squash (Figure 3e) five times to evaluate how the proposed local-
motion model behaves in situations where the target does not have a simple
motion model and rapidly changes its direction. The player was approximately
25×45 pixels large and was occluded 14 times by another visually similar player.
The reference tracker Tref failed on average twelve times, while Tcom failed on
average three times thus significantly improving the tracking performance. Fig-
ure 5a shows five frames from the recording where, after the occluded player
appears (t = 418), the visual information becomes ambiguous, since both play-
ers wear white t-shirts, and Tref fails (t = 425). On the other hand, Tcom

successfully utilizes the local-motion information to resolve this ambiguity, and
tracks the correct player even after the occlusion. Note that during tracking
there were many situations in which the player radically changed the direction
of motion and instantly contradicted the tracker’s reference motion model. In
those cases the uniform component in (7) assigned a small motion probability
to all particles. When the player was not occluded, the color model was able
to localize him, thus recovering the position and the velocity from the tracker.
Since the reference motion is adapted only when the estimated velocity agrees
with the observed motion, the local-motion model was able to quickly adapt and
continue with tracking. In a few situations the player slowed down or changed
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Figure 5: Frames from the experiments with sports tracking. The upper rows show results
for tracking with the proposed combined tracker Tcom, and the lower rows show results for
the reference tracker Tref .

direction of motion while he was occluded by the other player. In those situa-
tions, the motion and the color information were both ambiguous, the tracker
degraded to a color-based tracker, and lost the player. To demonstrate how
the proposed visual model can help tracking through near collisions, we have
tracked a white, 9 × 9 pixels large basketball player (Figure 3f) which nearly
collided with another white player. As the tracked player approached the other
white player, Tref could not resolve the visual ambiguity and failed (Figure 5b).
On the other hand, the Tcol successfully tracked the player throughout the con-
tact. For a better overview of the performance of the trackers we summarize
their failure rates for the separate experiments in the third and fourth column
of the Table 1.

One drawback of the proposed tracker Tcom is that it entails additional com-
putation to calculate the optical flow features. We have therefore also recorded
the processing times required for a tracking iteration in the above experiments3.
The average execution times in, milliseconds per frame, are given in the fifth
and the sixth column of the Table 1 for the Tcol and Tcom, respectively. We see

3All the tests were performed on a laptop computer with 1.8GHz AMD Athlon CPU and
2GB RAM.
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Table 1: Quantitative results of experiments with the purely color-based tracker Tcol and the
combined tracker Tcom. The recording names in the first column correspond to the recordings
in Figure 3(a,b,c,d,e,f) in that order. The second column shows approximate object sizes in
the experiments. Failure rate denotes the average number of times that the trackers have
failed during the experiments. Execution time, shows the time spent for a tracking iteration,
and Execution time ratio shows the time ratio between the fifth and the sixth column.

object size Failure rate Execution time [ms] Execution
recording [pixels] Tcol Tcom Tcol Tcom time ratio
Hands 20 × 20 24 4 10 17 0.6
PETS 2006 13 × 30 1 0 11 14 0.8
PETS 2002 30 × 80 1 0 22 31 0.7
FLIR 10 × 20 1 0 10 13 0.8
Squash 25 × 45 12 3 15 26 0.6
Basketball 9 × 9 1 0 8 9 0.9

that all experiments exhibited a real-time performance, exceeding 30 frames per
second. The execution times varied, which is expected and can be attributed to
the varying size of objects in the experiments and the noise levels in the dynamic
models, which effectively determine the ”search areas” in the particle filter. To
quantify how much of the processing time is spent for the calculation of the flow
features in comparison to the entire tracking iteration in Tcom, we have used the
following rationale. We can assume that most of the processing time of a sin-
gle tracking iteration of Tcol and Tcom is spent on extraction, comparison and
calculation of the color and motion features. The execution time of Tcol thus
roughly measures the time spent for processing the color features, whereas the
execution time of Tcom then measures the processing of the color as well as the
local-motion features. By dividing the execution times of Tcol by Tcom, we can
approximately evaluate what portion of time is spent for operations other than
calculation of flow features. This is shown in the last column of the Table 1.
From that column we can say that, on average, the tracking iteration of the
Tcom spent approximately 70% of the processing time for calculation with color
features, while the remaining 30% was spent on the processing of the motion
features.

6. Conclusion

A novel method to track visually similar objects through (near) occlusion is
presented. Discrimination between the visually similar objects is achieved by
deriving a novel probabilistic local-motion model, which is calculated from the
optical flow induced by the objects. We show how this model can be proba-
bilistically combined with a color cue within the framework of particle filters
into a combined color/local-motion-based tracker. Examples from hand track-
ing, surveillance, and sports tracking have shown that the local-motion model
significantly improves tracking when the target is occluded by, or moves in front
of, a visually similar object. The experiments have also shown that the pro-
posed model deals well with situations when the target is rapidly changing its
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motion. While the proposed local-motion feature improves tracking when the
object’s motion is pronounced, the improvement diminishes when the object
slows down, since the discrimination power of motion also decreases. We have
observed such a behavior in an experiment of tracking a squash player. When
the player slowed down to a stop, and was located close to a visually-similar
player, the players could not be distinguished by motion well enough and the
tracking failed. This motivates the combination of the proposed local-motion
feature with other features than the color to improve tracking in these situations.
A drawback of the local-motion feature is, of course, that it entails additional
computational load on the tracking iteration. In our experiments, however, the
processing of the local-motion still required only a small portion of the tracking
iteration (on average 30%), and allowed real-time tracking with at least thirty
frames per second.

Since the proposed local-motion model can help resolve ambiguities associ-
ated with multiple visually similar targets, it can be used in existing probabilistic
multi-cue integration frameworks like [32, 8, 16], or as extension to multiple-
target tracking schemes, such as [31], to increase their robustness when tracking
visually-similar targets. Note also that the local-motion-based feature is general
enough to be used not only within the framework of particle filters, but also with
non-stochastic methods: For example, the discrimination-based trackers such as
the recently proposed AdaBoost tracker [33] or the level-set-based blob trackers
like [34, 35]. In particular, an appealing property of the AdaBoost tracker [33]
and the level-set-based tracker [35] is that they report a realtime operation and
allow for a straight-forward inclusion of the local-motion feature proposed in
this paper. These considerations will be the focus of future work.
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Closed-world tracking of multiple interacting targets for indoor-sports applications,
Comput. Vision Image Understanding In press.
doi:DOI:10.1016/j.cviu.2008.01.009.
URL http://www.sciencedirect.com/science/article/B6WCX-4S4JYW4-1/2/5608ea6fb41768ef4b5b5c569d780767

7, 8, 9

17

http://www.sciencedirect.com/science/article/B6WCX-4S4JYW4-1/2/5608ea6fb41768ef4b5b5c569d780767
http://dx.doi.org/DOI: 10.1016/j.cviu.2008.01.009
http://www.sciencedirect.com/science/article/B6WCX-4S4JYW4-1/2/5608ea6fb41768ef4b5b5c569d780767


[29] X. Rong Li, V. Jilkov P., Survey of maneuvering target tracking: Dynamic
models, IEEE Trans. Aerospace and Electronic Systems 39 (4) (2003) 1333–
1363. 7

[30] PETS: Performance Evaluation of Tracking and Surveillance, On-
line database, http://www.cvg.rdg.ac.uk/slides/pets.html, last visited:
4.4.2007 (2006). 10, 12

[31] A. Senior, Tracking people with probabilistic appearance models, in: Perf.
Eval. Track. and Surveillance in conjunction with ECCV02, 2002, pp. 48–
55. 12, 15

[32] I. Leichter, M. Lindenbaum, E. Rivlin, A probabilistic framework for com-
bining tracking algorithms, in: Proc. Conf. Comp. Vis. Pattern Recogni-
tion, Vol. II, 2004, pp. 445–451. 15

[33] H. Grabner, M. Grabner, H. Bischof, Real-time tracking via on-line boost-
ing, in: Proc. British Machine Vision Conference, 2006, pp. 47–56. 15

[34] A. X. L. Yilmaz, M. Shah, Contour-based object tracking with occlusion
handling in video acquired using mobile cameras, IEEE Trans. Pattern
Anal. Mach. Intell. 26 (11) (2004) 1531–1536. 15

[35] Y. Shi, W. Karl, Real-time tracking using level sets, in: Proc. Conf. Comp.
Vis. Pattern Recognition, Vol. 2, 2005, pp. 34– 41. 15

18


	Introduction
	Our approach

	Bootstrap particle filter
	Optical-flow-based local-motion feature
	Local-motion likelihood
	Adaptation of the local-motion feature

	Local-motion-based probabilistic tracking
	Experimental study
	Conclusion

