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Abstract. In this paper we present a method for fully automatic tra-
jectory based analysis of basketball game in the form of large and small
scale modelling of the game. The large-scale game model is obtained
by dividing the game into several game phases. Every game phase is
then individually modelled using mixture of Gaussian distributions. The
Expectation-Maximization algorithm is used to determine the parame-
ters of the Gaussian distributions. On the other hand, the small-scale
modelling of the game deals with specific basketball actions which can
be defined in the form of action templates that are used by the basketball
experts to pass their instructions to the players. For the recognition pur-
poses we define the basic game elements which are the building blocks
of the more complex game actions. These elements are then used to se-
mantically describe the observed basketball actions and the templates.
To establish if the observed action corresponds to the template, the sim-
ilarity of descriptions is calculated using Levenstein distance measure.
Experiments show that the proposed method could become a powerful
tool for the recognition of various basketball actions.

1 Introduction

Every coach’s goal is to be in possession of information that could give him a
tactical advantage over his opponents. This is the reason for increasing volume
of research concentrated on the problem of automatic or semi-automatic game
analysis using different sources of data, e.g. using statistical data produced dur-
ing the game [1], or manually labelled events from game videos [2]. Even though
these methods proved to be very successful in discovering different complex in-
teractions which are sometimes hidden even to the eye of experienced coach [2],
they all had a crucial deficiency of tedious manual event detection and labelling.
Labelling usually has to be done by one or more sport experts - not only very
time consuming and potentially very expensive task. This has motivated our
work towards a system, which would be able to automatically recognize and
evaluate team behavior from the player trajectories obtained by the means of
computer vision based tracking algorithms [3], see Fig. 1.

For this purpose, we decided to build a game model on two scales - a large
and a small scale. The main purpose of the large-scale model is to segment the
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Fig. 1. System configuration and game processing pipeline.

game into several phases (e.g. offense, defense). This is important for small-scale
game recognition, since there is a fundamental difference between analyzing for
example the offensive phase or the defensive phase of the game.

In this work we present the recognition of small-scale events in the offensive
phase of the game. We adopt the concept of event recognition in the form of
action templates, which can be interactively defined by the game expert (Fig. 2).

Fig. 2. Example of a ”Flex” action template designed with Play designer module (see
Fig 1).

We developed a special tool - the Play Designer module, that allows us to enter
the spatial (the position on the court) and temporal (the duration and order of
the events) properties of the basic events that are the building blocks of a more
complex structure which is called an (offensive) action. Once the properties of
these events are determined they are stored in the action database (playbook).
The reason for using this approach is that the game experts usually do not
possess the engineering knowledge, but are already used to design and to com-
municate their knowledge in the form of templates such as the one shown in Fig.
2.

This paper is structured as follows. In Section 2 the modelling and recognition
of the large-scale basketball game is presented. Then, we present the detectors
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of the basic basketball elements and describe how these detectors can be used to
semantically describe the offensive phase of the game and use these descriptions
to recognize the more complex actions. In Section 4 we present the experimental
results of our method. Finally, we discuss the advantages and disadvantages of
the proposed game analysis approach.

2 Modelling the large-scale team behavior

Although different sports have very different rules and the goals of the game are
diverse, there are some common large-scale properties, which can be observed in
almost any type of a multi-player sport game. Many sport games can be regarded
as a process consisting of some number of discrete phases such as offensive game,
defensive game, time outs, inactive game, etc. We decided to build the game
model consisting of three game phases: offensive game (m1), defensive game
(m2) and time outs (m3):

M = [m1,m2,m3]
T ; (i = 1, 2, 3) . (1)

The probabilistic phase model was defined as a mixture of Gaussian model:

p(x|mi) =
n∑

i=1

αip(x|μi, Σi) , (2)

where parameters αi represent mixing coefficients such that
n∑

i=1

αi = 1, and the

multivariate Gaussian density function is defined as

p(x|μ,Σ) =
1

(2π)d/2|Σ|1/2
e−

1
2 (x−μ)T Σ−1(x−μ) . (3)

We base our phase models solely on the observation of player positions and their
movement. Similar to the work of Erdmann [4], we model the game phases simply
by observing the team gravity center. Therefore the state vector x is

x = [xt, yt, δxt, δyt]T , (4)

where xt and yt represent the position of the team gravity center and δxt and
δyt represent the velocity of the gravity center at time t:

xt =
1
m

m∑
i=1

xi , yt =
1
m

m∑
i=1

yi , (5)

where m stands for the number of active players on the court.
To determine the number of Gaussian distributions used in the phase model

and their parameters we use the Expectation Maximization (EM) algorithm [5]
on manually labelled sequences. The labelling of every sample into one of the
three phases was done by using the expert knowledge.
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Fig. 3. (a) Labelling of sequences into one of the three phases. (b) Likelihood functions
of the probabilistic game phase models obtained with EM algorithm (p(x|m1) - full
line, p(x|m2) - dashed line, p(x|m3) - dotted line). The arrows show the direction and
size of velocity component in the state vector.

Once the model of the game is built, we can classify a given sample at time t

into one of the three game phases simply by determining the highest a posteriori
probability using Bayes formula:

m∗(t) = max
i∈M

(p(mi|x(t))) = max
i∈M

{
p(x(t)|mi)p(mi)

p(x(t))
∝ p(x(t)|mi)p(mi)

}
, (6)

where p(mi) is the a priori probability that sample x belongs to the phase mi.
These probabilities were set in advance using expert knowledge,

p(M) =
[
0.45, 0.45, 0.10

]T
. (7)

Since the analysis is an off-line process, the information of past and future
samples can be used. Therefore, once all the samples are individually labelled
into one of the three categories, a nonlinear filter is used to incorporate the time
continuity of the game into the model. This way, the t-th sample is assigned
the phase label that receives the highest score among all the phases inside the
observed filter window of length N ,

m∗∗(t) = max
i∈M

⎧⎨
⎩

t+N/2∑
k=t−N/2

D(k)

⎫⎬
⎭ , D(k) =

{
1; m∗(k) = mi

0; m∗(k) 
= mi

}
. (8)

The filter window should not be too wide, but should be wide enough to cover the
shortest possible phase length. This way we reduce the unwanted effect of rapid
model switching produced by not taking into account the neighboring samples
and at the same time we preserve the phase boundaries.

3 Definition and detection of small-scale team behavior

Once the large-scale segmentation of the game is completed the analysis of small-
scale team behavior can take place.
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At this scale of the game, the specific game elements can be observed. These
elements vary significantly from sport to sport and depend on the game rules
and the ultimate goal of the team. For example in the offensive part of the
basketball or handball game there are typical situations where a player tries to
make the space for his teammate by blocking his teammate’s defender and by
doing so giving him a better chance to fulfill a given task. This element is called
screening. Another example (cutting) can be observed in basketball or soccer,
where players try to cut their way into the empty space on the court where they
have a better chance of receiving the ball and scoring.

The sequences of such events define a play. Plays are trained in advance
and can only be successful if all the players as a team are performing well. The
sports experts call this ”team tactics” and can be defined as the coordinated
player activity aiming to achieve the given task. Although the team action can
adapt according to the actual situation on the court, the general concept of
the team tactics always remains the same. As it will be shown, it is possible
to recognize the predefined team actions just by observing the sequence of the
basic game elements.

For the purpose of small-scale action recognition the game-specific semantic
description of the activities during the observed period of time was implemented.
There are several reasons for selecting this approach:

– The influence of temporal variability of observed action and its elements is
reduced since only the information about the order of the events is retained.

– There is no need of reanalyzing the trajectories when a new action defini-
tion is added to the database of templates (playbook) and thus significantly
reducing the analysis time.

– Different players can play different roles in actions of the same type. That
is why players have to be ”casted” into their respective roles during the
recognition process.

– The same approach can be used to compare semantic description of two
different actions.

3.1 Game specific knowledge

Since we are dealing only with players trajectories and have no knowledge about
possession of the ball, we turn our attention to the recognition of trajectory-
based game elements. The main information that can be extracted this way is
the types of the basic elements which compose the more complex action and the
locations of their occurrences on the court. That is, player X movement (M) into
some court region A can be described as

PlayerX M CourtRegionA.

For this purpose we need to define these game specific elements and build a
model of the court to limit the possible number of regions.
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Court modelling

Studying different sources of basketball literature and consulting several ex-
perts about the possible court division, we did not come across any consistent
information about the type of the court model or any other kind of court par-
celling. The main reason for this is that couches usually describe the game in
the form of playing positions (eg. point guard, forward or center), which do not
have deterministic edges such as our court regions should have had. This is why
we decided to build our own model which would, as precisely as possible reflect
the actual playing regions.

To build the court model we used 2x17 (left and right version) different
definitions of offensive actions - action templates [6]. For every single action
template, the positions of the basic events were observed and then used to divide
the court into some number of non-overlapping playing areas using the k-means
clustering algorithm. Fig. 4(a) shows the extracted points and court regions,
nine in this case.
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Fig. 4. (a) The right side of the court shows the points extracted from the 34 action
definitions. The left side shows the names of the regions obtained using k-means clus-
tering algorithm. (b)Actual trajectories of ”Flex” offense. Red circles denote players’
starting positions.

Definition of basic events

Coupling the control theory with the knowledge of the basketball expert,
we define a sport game as a sequence of events. In the basketball offense these
events are: team starting formation, screening, player motion on the court, and
ball passing. Since we have no information about the ball we only observe the
first three elements.
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– Team starting formation is the most distinctive indicator that an offen-
sive action has been initiated. The probability that the formation has been
observed can be defined as a sum of a product of Gaussian distributions over
all players on the court, normalized with the factor of all players standing
at their optimal positions defined by the playbook

pformation =

n∑
i=1

N(ri, σr) · N(di, σd)

n∑
i=1

N(ri, σr) · N(0, σd)
, (9)

where ri is the players current distance from the basket and di is the distance
from his optimal position in Euclidean terms

r =
√

(x − xbasket)2 + (y − ybasket)2 , (10)

d =
√

(x − xref )2 + (y − yref )2 . (11)

This definition of the formation detector is particularly suitable as it takes
into account that players which are further from the basket do not have as
many points of orientation such as free throw line, and as a consequence they
tend to position themselves further from their optimal position.

– A screen is defined as a close contact of two players [6] where the player who
is making the screen stands as still as possible and the player who is taking
the screen runs close nearby the first player. This way a screen probability
can be calculated as

pscreen = N(d, σd) · N(vmin, σv) . (12)

Here the variable d defines the distance between the two players and vmin

defines the velocity of the slowest player.

– The court model described in the beginning of this section is used to quan-
tize and semantically describe the payer motion on the court. The court
model was designed to account for the variability in player’s movement rel-
ative to the ideal path in the way that the variability inside the region is
not important for the player’s performance. Using this model it is possible
to describe the player’s motion simply be observing the regions of the court
the player has covered.

Using the above definitions we can obtain the following semantic description
(Table 1) of trajectories from Fig. 4(b).
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Table 1. Initial part of semantic description of trajectories from Fig. 4.The numbers
denote the occurrence order.

(1) P1 M RIGHT POST, (7) FORM flex1, (12) P4 M LEFT POST,
(2) P2 M LEFT POST, (8) P3 M LEFT POST, (13) SCR 2 4 LEFT POST,
(3) P3 M LEFT CORNER, (9) SCR 2 3 LEFT POST, (14) FORM flex1 inv,
(4) P4 M LEFT WING, (10) P1 M RIGHT CORNER, (15) P2 M LEFT WING,
(5) P5 M RIGHT WING, (11) P3 M KEY, (16) SCR 2 3 LEFT POST ...

3.2 Action recognition using action templates

The main goal of action recognition with templates is to establish the correspon-
dence between the observed action and the predetermined action template, such
as the one from Fig. 2.

On the contrary to the work of Intille and Bobick [7] or Jug et al. [8], where
authors built their game models using belief networks and temporal graphs to
represent the action models and use these model for recognition and evaluation
of multi-agent actions from noisy trajectory data, we adopted much simpler but
effective way of comparing the semantic descriptions of the analyzed action and
all action templates from the playbook. This way we avoid the painstaking and
sometimes very subjective decision making of determining the temporal and logi-
cal relationships of every belief network [7] and their mutual dependencies. Since
there are usually only few or none training examples, it is impossible evaluate
these parameters from training set and as a consequence they are subjected to
the personal experience and technical knowledge of the person who designs them.
We designed our system based on the preposition that the person who will be
using the system has very little or no technical background, but is able to pass
his knowledge to the system in the for of game templates. By using the proposed
semantic descriptions, we are able to automatize the process of quantifying and
condensing the information to only those key elements that are needed for a
successful recognition of the selected action.

Another advantage of the proposed framework in comparison to those men-
tioned above is that our approach considers the possible mismatching between
the predetermined players roles and actual ones and assigns role labels to play-
ers automatically (not manually as in [7] from starting positions), based on the
observed situation on the court. These way we reduce influence of player mis-
matches. This is very important since we obtain the analyzed data by video
tracking of multiple interacting targets [9] which may be, event though super-
vised by the operator, subjected to errors.

3.3 Matching trajectories to action templates

After the semantic descriptions are obtained, they can be compared using differ-
ent procedures, e.g. dynamic programming [10]. To do this, we first divide the
real trajectories and each template semantic description into five single player
role descriptions called player agendas. The agendas are built by observing if
a player was involved in a particular action event. For example, all players are
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involved in the starting formation, so the formation name is assigned to all
agendas. The screen label is assigned only to agendas of those two players that
are involved in the screen and the player motion label is assigned only to the
agenda that represents that player. Considering these rules we can transform the
semantic description from Table 1 to the five agendas in Table 2.

Table 2. Five player agendas built from the semantic description from Table 1. The
number of agendas match the original player numbers.

ag1 ag2 ag3
(1) M RIGHT POST (1) M LEFT POST (1) M LEFT CORNER
(2) FORM flex1 (2) FORM flex1 (2) FORM flex1
(3) M LEFT POST (3) SCR LEFT POST (3) SCR LEFT POST
(4) M RIGHT CORNER (4) SCR LEFT POST (4) M KEY
(5) FORM flex1 inv ... (5) FORM flex1 inv (5) FORM flex1 inv

(6) M LEFT WING (6) SCR LEFT POST ...
(7) SCR LEFT POST...

ag4 ag5
(1) M LEFT WING (1) M RIGHT WING
(2) FORM flex1 (2) FORM flex1
(3) M LEFT POST (3) FORM flex1 inv...
(4) SCR LEFT POST
(5) FORM flex1 inv...

Once the agendas are obtained it is necessary to establish the correspondence
between different player agendas as defined in action template, and the agendas
observed from real trajectories (casting). This is done by cross-validating the
five agendas from the template with those from the observed trajectories, that
is calculating m! = 5! = 120 different possible matchings (Pl). In our case a
simple Levenstein distance [10] is used as a similarity measure of two different
agendas which is normalized with the sum of agendas lengths (l+k). The highest
overall similarity (smallest Levenstein distance D(R, T )) of all real trajectories
and template agendas can be calculated as

D(R, T ) = min{
m∑

i=1

Dl(agRi,agTj)
l+k

}; j = Pl(i), l = 1 . . . 120; (13)

where Dl(agRi, agTj) stands for the Levenstein distance between ith player
agenda (agRi) and jth template agenda (agTj). The Dl(agRi, agTj) indicates
how well has player i performed the elements of jth role in the template. The
match D(R, T ) that has the smallest distance represents the optimal assignment
of player roles to roles from the template and at the same time to shows how
well is the observed action performed according to the compared action template.

3.4 Assigning template label to the observed action

To determine the template that is the most similar to the observed action, we
first repeat the action-template matching procedure for every definition from
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the playbook database and then calculate the average template penalty. Finally
the unknown action is assigned the label of template or templates that have the
smallest penalty but only if their penalty is 10 % smaller then the average one.
This way we prevent the wrong recognition of action in cases when the observed
action is not in the database. Figure 5 shows the results of matching 17 different
templates to a ”Flex” offense action.
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Fig. 5. (a) Results of matching ”Flex” action to 17 different templates. Green (upper)
straight line shows the average penalty and red (lower) line shows the 10% boundary. (b-
f) Figures show the ideal player paths as defined in the ”Flex” template (black straight
line) and successfully matched player trajectories of four different ”Flex” actions.

4 Experimental results

To test the recognition accuracy on large and small scales of the game we de-
signed two separate sets of experiments. For the evaluation of large-scale recog-
nition, we acquired about 40 minutes of real game trajectories (60700 trajectory
samples). Our goal was to determine how the amount of training data and the
number of Gaussian models used to represent the game phases influence the final
recognition result. As it can be observed in Table 3, the best classification re-
sults were obtained when the mixture of two Gaussian models was used to model
each game phase (Fig. 3 b). The explanation for this is that when using more
components the model tends to over-fit the training data. The two components
mixture could also be explained as a model of the transition from one phase to
another and the model of the main behavior during that phase. We can also
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observe that there is very small decrease in the performance results even when
a relatively small percentage of data is used for training purposes.

Table 3. Experimental results of game segmentation using different ratios for teaching
the game model and different number of Gaussian distributions for modelling game
phases with constant (five seconds) width of non-linear filtering window.

The number of Gaussian models
used for modelling single game phase

{ m1, m2, m3 }

train/test ratio [%] {1,1,1} {2,2,2} {3,3,3} {2,2,1} {3,3,2}

30/70 92.5 94.0 93.4 93.3 92.4
50/50 92.8 94.2 93.4 92.8 93.4

100/100 92.8 94.5 95.6 92.9 94.3

In our second experiment, we tested the accuracy of the proposed small-
scale (action) recognition method using four different types of court models
(See Table 4). Two of them were produced using court modelling described in
Section 3.1 and two of them were produced simply by dividing the court into
n identical regions (grid model). To obtain the testing sequences we asked a
local basketball team to perform three different basketball offenses 71 times.
Among these 71 offenses 39 were played with and 32 without defensive team.
The offenses were matched to 34 (2x17) different action templates, which were
obtained from various basketball literature such as [6], and by the local team
coach.

Table 4. Experimental results of 65 different offensive basketball actions recognition
with different types of court model. The percentages do not sum up to 100 % because
some actions matched to two different templates.

K-means model K-means model Grid model Grid model
(9 regions) (16 regions) (9 regions) (18 regions)

Correctly recognized 71 (100 %) 66 (92.96 %) 64 (90.14 %) 67 (94.37 %)

Mislabelled 0 (0 %) 5 (7.04 %) 7 (9.86 %) 4 (5.63 %)

The experiments show that there are small variations in the recognition re-
sults when different types of court models are used. As it can be seen the k-means
clustering of the court improves the recognition performance.

5 Conclusion

We presented a novel approach towards the automatic trajectory-based analysis
of the basketball game. We demonstrated that by modelling the game just by
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the gravity center of the teams, it was possible to segment the basketball game
into different game phases. Furthermore we showed that the best results were
obtained when every game phase was modelled as a two component Gaussian
mixture model. We also demonstrated that only a small amount of data was
sufficient to estimate the model parameters without significantly reducing the
recognition rate.

In the second part of the article, we presented a method for detecting specific
complex basketball actions, which can be defined by the user in the form of
action templates. The presented results show that by comparing the semantic
description of the observed trajectories and action templates it was possible to
successfully match the observed trajectories to the templates. They also suggest
that the recognition result are improved if the court model that maximizes the
possible variance of key action elements is selected. In our case this model was
obtained by clustering the starting and ending positions of key action elements
that have been extracted from the predetermined action templates.
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