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Abstract In this article the trajectory-based evaluation of
multi-player basketball activity is addressed. The organized
basketball activity consists of a set of key elements and their
temporal relations. The activity evaluation is performed by
analyzing individually each of them and the final reasoning
about the activity is achieved using the Bayesian network.
The network structure is obtained automatically from the ac-
tivity template which is a standard tool used by the basket-
ball experts. The experimental results suggest that our ap-
proach can successfully evaluate the quality of the observed
activity.

1 Introduction

The objective analysis of player performance is one of the
main goals in the field of sport science. While individual
player’s physical capabilities can be readily tested in labora-
tory conditions, the team performance can only be observed
during the actual gameplay. This process may include an
advanced statistical analysis based on video recording, but
it nevertheless relies on observation and manual annotation
by sport experts, with the potential risk of becoming too sub-
jective. Moreover, manual annotation is a time consuming
and tedious task, mostly limited either to the academic re-
search or to the teams which can afford a sufficient number
of qualified experts.

This is a reason for an increasing volume of research to-
wards automatic or semi-automatic trajectory-based analy-
sis of human behavior in sports. The ultimate goal of such
research is to develop methods for automatic interpretation
and analysis of team performance, which would present a
concise summary of the team’s and players’ strengths, weak-
nesses and mistakes. In addition, the same methods could be
used in many other areas, such as sports broadcasting, either
for the purpose of enhancing live broadcasts or facilitating
video archival. In the broader context, similar methodology
could be used in human motion analysis for video surveil-
lance, ambient assisted living, and related areas. Neverthe-
less, the main focus of this article is the challenge of analyz-
ing the organized team activity on the field.

This paper is structured as follows. The rest of this sec-
tion describes the related work and the motivation behind
our approach. Section2 presents the structure of the basket-
ball game and properties of the basketball templates. Sec-

tion 3 describes how the Bayesian network is constructed
from a template. Section4 presents the recognition results
and other advantages of our approach. Finally, in Section5
we discuss the results and give the guidelines for the future
work.

1.1 Related work

The analysis of the trajectory-based multi-agent behavior
is an active research domain since the trajectories contain
useful information about the agents’ behavior. Various ap-
proaches dealing with trajectory-based recognition and rea-
soning have been presented in the last decade. For example,
Hidden Markov Models (HMMs) [14, 8], Fuzzy logic [9],
Finite State Machines [12] or Bayesian networks [6], were
used for modeling the basic logical and temporal relations
of events which are of key importance for the understanding
of the overall behavior.

Although HMMs are a powerful tool for modelling tem-
poral relations, they have proved to be less appropriate for
domains in which multi-agent relationships result in large
feature spaces [5]. Intille and Bobick [6] propose multi-
agent Bayesian (belief) network which reflects the tempo-
ral structure of the activity and uses the temporal analysis
functions and local visual networks for the observable evi-
dence nodes. In the course of the activity recognition these
nodes provide the evidence about the occurrence of the ba-
sic events from which the likelihood of particular activity
is calculated. This approach is reasonably successful for
recognizing the type of the activity the team is performing.
However, their visual networks and temporal functions have
to be constructed manually for every single activity event.
This demands a lot of engineering background and is there-
fore impractical for the everyday use by sport experts.

1.2 Our approach

This paper extends the original idea of multi-agent activ-
ity recognition [6] in a way that it can be used by the sport
experts on a daily basis. Similar to [6], we use the multi-
agent belief networks, detectors of basic events and tempo-
ral relation functions, however, in our case the structure of
the network and the temporal relations areautomatically ob-
tained from the activity templatewhich sport experts gener-
ally use when preparing the tactics of the game [3, 19, 10].
In contrast to [6], where authors use very complex visual
networks to represent the basic activity elements, we use just
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two simple trajectory-based detectors of basic events (move
andscreendetectors described in the next section) and three
temporal relations (before, within andaround). These de-
tectors proved to be sufficient for the evaluation of the team
performance.

2 Structure of the basketball game

From the analytical point of view, the basketball game can
be divided into different game phases, such as offensive
game, defensive game, active or inactive game, etc. These
phases can be additionally divided into game sub-phases ac-
cording to the type of the phase. For example, the offensive
game can be subdivided into the organized or unorganized
offense and counterattack, and the defensive phase can be
subdivided into zone defense, men-to-men defense and var-
ious combinations of the two.

This work focuses only on the analysis of the organized
basketball offense which is the most important segment of
the offensive game phase for basketball experts. This type
of offense can be described as an activity comprised of in-
dependent basic basketball elements (e.g.player motion,
dribbling, passing, shooting, screening, rebounding, team
starting formation, etc.), which have to be executed in a par-
ticular temporal order [10]. When designing such activities,
sport experts often use basketball templates [3, 19, 10]. Our
implementation of basketball template specifies the spatio-
temporal properties of each individual element, i.e. the po-
sition where the element should occur and the temporal in-
terval in which it should occur.

Figure (1) shows an example of the template for a sim-
ple basketball action called ”Double Screen”. This activ-
ity is comprised of four playermoves(player movements
along predefined path) and twoscreens(close contacts of
two players, where one of the players is standing still) and
could be described as follows:

• Player 4 should first move to the position of the screen.

• After player 4 has positioned himself to the position of
the screen, player 5 should run next to player 4 and use
the screen. At the same time, player 3 should position
himself to the position of screen for player 4.

• Finally, when players 3 and 5 have moved to their new
positions, player 4 should move next to player 3 and use
the screen.

The above description contains all the information that
is important for the correct execution of offensive action.
Therefore, by evaluating how well have the elements been
performed and what where the temporal relations among
them, we could establish the overall score of the observed
activity.

2.1 Evaluation of basic basketball elements

In general, the basketball elements can be grouped accord-
ing to the ball possession to those elements that involve the
ball (dribbling, passing, shooting, rebounding) and the ele-
ments that do not involve the ball (player motion, screening,
team starting formation). Since our analysis is based solely
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O4_move

O3_screen
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Figure 1: An example of spatial (a) and temporal (b) properties of
a template which represents the organized offensive activity called
”Double Screen”.

on players’ trajectories, we are only able to analyze the ele-
ments that do not involve the ball1. Therefore we determine
the models of the detectors for the following two basketball
elements (screenandmove):

• Screen. In the basketball literature, thescreenis defined
as a close contact between two players [10], where ide-
ally one player is standing still and the other runs in his
near proximity. Thus a certain interaction among two
players is more likely to be interpreted as ascreenif the
velocity of the slower player is low and the distance be-
tween the players is small.

Let dt be the Euclidian (l2) distance between the two in-
teracting players and letvt be the velocity of the slower
player. The likelihood function of ascreenis defined as

L(screen|dt, vt)
∆
=N (dt; 0, σd) · N (vt; 0, σv), (1)

whereN (·; 0, σ) is a zero-mean Gaussian function with
varianceσ2. We define the quality of thescreenas the
likelihood ratio

Sscreen
∆
=
L(screen|dt, vt)

L(screen|0, 0)
, (2)

whereL(screen|dt, vt) is the likelihood of thescreen
given the current distance and velocity values(dt, vt) of
the interacting players andL(screen|0, 0) is the likeli-
hood of an idealscreen.
1Some of the elements such as dribbling and rebounding are also ob-

servable, but since we are not able to determine if the ball is actually in-
volved we regard them as a basicplayer motion.
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The proximity parameterσd in (1) is set toσd = 1m.
The velocity parameterσv which determines the velocity
of player which is ”still enough” is set toσv = 0.5m/s in
our implementation.

• Move. In the activity template, a playermoveis defined
as the exact path that a player should follow. The path
is defined by one or more line segments where each seg-
ment has a starting point (Ai) and an ending point (Bi).
Therefore, we can define the quality of the player’s move
as a product of the distance function from the ideal path
N (dt; 0, σd) and the path ratiofpath(t)

Smove(t)
∆
=N (dt; 0, σd) · fpath(t). (3)

Parameterdt in the equation (3) denotes thel2 distance
between player and the closest point on the path (perpen-
dicular distance) and functionfpath(t) determines the ra-
tio between the path that player has covered up to timet

and the total path

fpath(t) =

M
∑

i=1

t
∑

j=1

(∆−→xj · −−−→AiBi)

M
∑

i=1

||−−−→AiBi||
, (4)

whereM is the number of path segments,||−−−→AiBi|| de-

fines the length of path segmenti and
t

∑

j=1

(∆−→xj · −−−→AiBi)

defines the sum of the scalar products of current player
motion vector∆−→xj and ideal motion vector ofith seg-
ment

−−−→
AiBi.

Due to the nature of the probabilistic reasoning model
(Bayesian network) which is used to reason about the activ-
ity score, the maximal values of detector outputs are used as
the evidence, which is entered to the evidence nodes of the
reasoning network. The reason for this is that if the current
detector outputs were used for the evaluation, the final esti-
mate of the activity score would be low since the elements
occur in a certain temporal order (not all at the same time)
and detectors outputs return to zero after the elements are
performed. However, the temporal profile of the detector
output is considered in the final estimate through the tempo-
ral relation functions which determine the temporal relations
among elements.

2.2 Evaluation of temporal relations

Temporal relations (TR) define the order in which players
should perform the individual basic elements. Therefore
we define three different temporal relations (before, within
andsimultaneously) between the two elements (screenand
move):

• ElementE1 should occurbefore elementE2. To deter-
mine this temporal relation, we first calculate the tempo-
ral gravity centerstE1 andtE2 for detectorsE1 andE2,

respectively according to the equation

tX =

N
∑

i=1

ti · SX(i)

N
∑

i=1

ti

, (5)

whereX ∈ {E1, E2}, N stands for the number of obser-
vations andSX(i) is the detector output at timeti. The
quality of the relationbeforeis defined as

TRbefore =

{

0
k · g(tE2 − tE1;µ, σ)

tE1 > tE2

tE1 <= tE2

,

(6)
whereg(x;µ, σ) is the log-normal function

g(x;µ, σ) =
1

xσ
√

2π
e−{ln x−µ}2/2σ2

, (7)

with µ = 4s andσ =
√

2s andk is the normalization
constant such thatg(x;µ, σ) ∈ [0, 1].

The log-normal distribution function is used because we
want to additionally penalize temporal intervals∆t that
are too short (i.e. shorter than half a second). We assume,
that the ideal temporal interval has a width of approxi-
mately1s.

• ElementE1 should happenwithin elementE2. This
temporal relation represents two events, where one of the
two starts and ends inside the other. The score of this
relation is defined as

TRwithin =

N
∑

i=1

min{SE1(i), SE2(i)}

min{
N
∑

i=1

SE1(i),
N
∑

i=1

SE2(i)}
. (8)

Function (8) is an area-based similarity measure of the
two functions. This similarity is expressed as the ratio
between the cross-section of detector output and the area
of the smaller output which is supposed to happen within.

• ElementE1 should happensimultaneously with element
E2. This temporal relation represents two events that
should start and end approximately at the same time. It is
defined as

TRsim =

N
∑

i=1

min{SE1(i), SE2(i)}
N
∑

i=1

max{SE1(i), SE2(i)}
. (9)

This function defines the ratio between the cross-section
and union of the observed outputs. In case when the
outputs are perfectly aligned the cross-section equals the
union and therefore the result of the score function equals
one.

These three temporal relation functions represent mini-
mal set of functions that are needed to represent the temporal
relations between the basketball elements.
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3 Building the Bayesian network

A Bayesian network is a directed acyclic graph that encodes
a joint probability distribution over a set of random variables
U = {X1, ...,XN} where each variableXi takes on values
x1, ..., xM . Formally, the Bayesian network forU is a pair
B = {G,Θ}, whereG denotes the directed acyclic graph
whose nodes represent the variables and arcs represent the
dependencies between the variables. The second component
Θ, is a set of parameters of the network, which represents
the conditional probabilitiesP (Xi|Pa{Xi}) for all parents
Pa{Xi} of variableXi. GivenB we can calculate the joint
probability distribution overU using the so calledchain rule

P (U) =

N
∏

i=1

P (Xi|Pa{Xi}). (10)

Given the joint probabilityP (U), we can calculate the
a priori probabilityP (Xi) for any variableXi from U by
marginalizing the joint distributionP (U) over all other vari-
ables fromU (see [16, 7] for details). However the main
purpose for building the network is to use it for inference.
In our case, we want to use the network forbelief updat-
ing, which can be described as the calculation of posterior
probabilityP (Xi|e) of nodeXi given the evidencee which
represents the values of evidence nodes.

In our case, the Bayesian network is used to calculate the
posteriori probability that a certain activity has been exe-
cuted, given the evidences about the execution of basic ele-
ments and temporal relations. The execution of the basic el-
ements is obtained by applying the element detectors to the
player trajectories. The set of detectors could be viewed asa
set of independent referees where every referee has a task to
asses an individual element and the Bayesian network could
be interpreted as the agreement of all the referees about the
final activity score and the validation of individual player
performances.

This article focuses mainly on the structure of the net-
work G since, as experiments suggest, it has a greater im-
pact on the analysis results than the conditional probabilities
Θ. The structure of the network specifies the type of key
elements and the number of key temporal relations among
them. In general, this could be done from training data or
with the help of the basketball expert.

Several approaches concerned with the construction of
the Bayesian network from the training data have been pro-
posed in the last decade [15, 4, 1]. The main problem with
these approaches is that they demand large amounts of train-
ing data for building networks with relatively small number
of attributes. For example Cheng [2] used one thousand
test samples for building the network consisting of eight
attributes and more than 10.000 samples for building the
network with 37 attributes. In our case this would mean,
that the same activity should have been repeated at least one
thousand times in order that this type of network construc-
tion would be possible. This would take too much time and
is perhaps acceptable for research purposes but is totaly im-
practical for the everyday use.

Another option is to construct the Bayesian network with
the involvement of a basketball expert. In this case the ex-

pert’s task is to provide all the information about the rela-
tions among variables. The main drawback of this approach
is that the sport expert has to be familiar with the probabilis-
tic theory and the characteristics of the Bayesian networks
or it has to collaborate with a computer expert who is fa-
miliar with the previously mentioned concepts. In later case
the computer expert could guide the sport expert through the
modeling procedure by using specific net-construction rules
such as the ”Causal mapping approach” presented by [13].
Both approaches are time consuming and expensive. This
motivated us to device a method which would automatically
construct a Bayesian network from the existing activity tem-
plate.

3.1 Building the Bayesian network from activity
template

The activity template already contains all the information
needed to construct the network. It specifies the number and
type of elements and their temporal profile. This temporal
profile can be automatically transformed into the temporal
relations using some heuristic rules.

In order to be able to define the temporal relations be-
tween elements, we generate synthetic trajectories using the
spatio-temporal information from the template and apply the
element detectors to those trajectories. This way we obtain
theactivity timelinethat defines the actual time intervals in
which the elements occur. It should be noted that thescreen
element, as it is defined in the template, is divided into the
moveof the player that is making thescreento the screen
position and the actualscreenelement (e.g. elementspl 4
moveand afterwardspl 4 screen for pl 5in Figure2).

By observing the starting and ending times of the element
intervals, we can define whether the element has to be exe-
cutedbefore, within or simultaneouslyaccording to other el-
ements from the activity. It is important, that we retain only
the relations to those elements that happen immediately be-
fore the element that is currently analyzed. This approach
does not guarantee the optimal definition of temporal re-
lations, since it may happen that some additional relations
between elements which are not contextually dependent are
observed (e.g.pl 4 screen for pl 5andpl 3 movein Figure
2). However, such temporal relations should be observed
anyway whenever the activity is executed correctly and thus
should not influence considerably the final activity evalua-
tion.

Once the temporal relations are established, the network
building procedure can begin. The Bayesian network is di-
vided into four contextual levels (Figure3):

• Level four (the lowest level) nodes represent the temporal
relations between different elements. Their probabilities
are obtained from the outputs of temporal relation func-
tions.

• Level three nodes represent the basic elements. They
carry the information about the execution of each indi-
vidual element. Their probabilities are obtained from the
outputs of the element detectors.

• Level two contains theplayer nodes. These nodes define
the performances of individual players.
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Figure 2: The timeline for theDouble screenactivity. The lines
represent he learned temporal relations. Full lines represent rela-
tion beforeand dashed lines represent relationwithin.

• Level one (the highest level) contains theactivity node.
This node defines the overall execution correctness of the
observed activity.

The probabilities of nodes on the first and the second
level can not be observed directly from the trajectories
and therefore depend on the evidence from nodes on lev-
els three and four and are given as posterior probabilities
P (Ai = true|e). The higher the posterior probability the
greater the chance that the activity was performed flaw-
lessly.

Figure3 shows an example of Bayesian network for the
”Double screen” template shown in Figure1.

Activity

Player 3 Player 4

MOVESCREEN 4-5 MOVE

BEFORE WITHIN

Player 5

SCREEN  3-4

WITHINBEFORE

MOVE MOVE

WITHINBEFORE WITHIN

Figure 3: Example for the Bayesian network for theDouble screen
activity. Nodes represent the variables and the arrows represent
probabilistic relations between variables.

The obtained structure contains all the key elements
which are linked with the correct temporal relations. How-
ever, from the template we are only able to obtain the struc-
ture of the network, but in order to use the network we also
need to derive the conditional probabilities. This problem
has not yet been fully addressed, therefore we currently de-
fine these probabilities so that thea priori probabilities of all
the node variables are equal for all nodes (P (Xi = true) =

0.5 andP (Xi = false) = 0.5) which means that the net-
work does not contain any a priori knowledge. We tested
differenta priori probabilities which yielded similar results.
However, we believe that even bettera priori and condi-
tional probability estimates could be obtained by analyzing
the outputs of different detectors or by considering the im-
portance of element that a player has to perform. This infor-
mation is also encoded in the activity template, however it is
currently not considered.

4 Experimental results

To test the performance of our activity evaluation method,
we acquired 63 trajectory segments of three different types
of basketball activities. The first type of activity was re-
peated 21 times, the second 24 and the third 18 times. To
obtain the trajectory segments, we performed supervised
tracking using a probabilistic color-based tracking algorithm
[11, 17]. Since the evaluation procedure requires that the
roles of players are known (i.e. we have to know which
trajectory represents which player role in the template), we
cast players into their respective roles using the method de-
scribed in [18].

Our first goal was to determine if it is possible to establish
the type of the activity which the team is performing solely
from the final activity score. To do that, we have built the
appropriate template for each of the three basketball plays
and 14 additional templates, obtained from basketball liter-
ature [19, 10]. The templates have been transformed into
Bayesian networks with the procedure described in Section
3.

Table 1 shows the confusion matrix of the average ac-
tivity scores when different templates are used to build the
network. The average activity score was calculated as the
mean value of all the scores for a particular type of activity
and represents the score that an average team would receive
when playing the activity in an average manner (i.e. it in-
cludes some perfectly executed activities as well as some of
those with several errors). However, since the average score
is not useful in cases when we want to determine the thresh-
old that separates the positive and negative examples, Table
1 also shows the maximum posterior activity score for the
cases when the type of template and test example did not
match and the minimum posterior score for examples when
the type of template and test examples matched.

As it can be observed from Table1, it is possible to clas-
sify the observed activity solely by the score it receives inthe
evaluation procedure, since the average score is at least three
times greater in cases when the types of Bayesian network
and the performed activity match. The results for the mini-
mum match case and maximum mismatch case also confirm
the above hypothesis and suggest that a suitable threshold
which separates the positive and negative examples could
be set at a score value of 60%. From this we can conclude
that Bayesian network, constructed automatically from the
activity template can be used to recognize the type of the
play which the team is performing.

The second important type information that can be ob-
tained from the network is the performance of individual
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Table 1: The average efficiency score given as the posterior prob-
ability P (act = true|e). The best evaluation result obtained for
each activity type is displayed in bold. The ideal activity would
have the score of 100 %. The bottom two rows show the maximum
score of all examples when the template and test example mismatch
and the minimum of all cases when tested example match.

Activity scores [%]
Template type P (Off1|e) P (Off2|e) P (Off3|e)

T1 89.06 16.99 4.51
T2 10.66 87.08 3.46
T3 2.42 1.96 90.52
T4 11.94 32.51 7.86
T5 5.96 2.71 2.64
T6 5.51 11.20 16.76
T7 2.99 3.52 21.59
T8 16.48 15.25 13.50
T9 6.91 7.95 16.78
T10 3.43 8.61 4.07
T11 2.29 3.15 4.41
T12 8.71 28.44 4.14
T13 10.98 6.16 5.55
T14 5.07 3.36 3.11
T15 18.47 11.30 2.23
T16 13.01 9.22 5.22
T17 19.25 9.55 3.88

Min. match 76.38 72.31 74.08
Max. mismatch 33.78 53.93 37.59

players and the reasons for the good or poor performance
of the team. This information can point coaches and play-
ers to the mistakes the players are making when performing
the activity since each element is graded separately and this
way can help them to improve the individual elements and
the overall performance.

Figure 4 shows the examples of two networks for the
same type of activity. Example (a) represents a well exe-
cuted activity and example (b) represent an activity which
was executed poorly. By studying in detail the two net-
works, we can establish, that the main reason for the poor
execution of activity in Figure4 (b) lies in the poor perfor-
mance of players 2 and 5 (p2 and p5). Furthermore, we can
observe, that the main cause for their low grades is the lack
of execution of thescreen(screen5-2). Additionally player
2 also failed to perform thescreenwith player 1 (screen1-2)
and therefore received the lowest score. The same conclu-
sion was obtained by studying the archived activity video,
which showed that player 2 performed a wrong move in the
middle of the activity and therefore failed to execute the el-
ements that should follow.

The immediate result of the above example study could
be the suggestion to the basketball coach that he should sub-
stitute players 2 and 5 or that the players should addition-
ally train the activity with the special focus on the elements
which obtained the lowest scores.

5 Conclusion and future work

An approach for automatic evaluation of basketball activi-
ties with use of Bayesian networks was presented. The net-
works were built automatically from the activity templates

which are commonly used by sport experts to pass their
ideas to players. The basic network structure was divided
into four levels. The first and the second level represent
the overall activity score and the scores of individual play-
ers, respectively. The values of the variables in these two
levels depend directly on the values of the lower two lev-
els, which represent the execution of the key activity events
(level three) and their temporal relations (level four). The
values for the lower two levels are given in the form of soft
evidence and are obtained by the trajectory-based element
detectors and temporal relation functions.

Based on the results of testing on 63 real trajectory seg-
ments that vary significantly in time and space, we can con-
clude that Bayesian network which is obtained from the ac-
tivity template can be used for the recognition of the type
of the performed activity. The results demonstrated that the
final activity score is three times greater in cases when type
of activity and type of the network match. Additionally, the
insight into the graphical structure of the Bayesian network
is helpful in further analysis the overall performance, i.e.
when we want to determine why a particular activity was
performed poorly. This can help the basketball experts to
discover and eliminate the causes for poor performance, thus
giving the team an additional insight into their game.

The presented approach could be extended to work in
other scenarios where the behavior can be specified by (pos-
sibly) multiple activity templates. For example, in surveil-
lance such approach could be used to differentiate between
the expected and the unexpected pedestrian behavior.

Future work should be devoted to the analysis of the in-
fluence of conditional probabilities to the evaluation results.
These probabilities could be determined in such way that
they would reflect the importance of individual elements for
the overall action performance. Additionally, the evaluation
results should be validated by the basketball experts in order
to establish if the analysis results really reflect the opinion
of experts.
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Figure 4: Examples of scores for two activities of the same type. The numbers below the nodes represent the posterior scores for each node.
(a) Well executed activity. (b) Badly executed activity. The network shows that the player 2 and 5 performed their elements poorly.
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