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Faculty of Electrical Engineering
University of Ljubljana
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Abstract

The paper deals with the problem of computer vision
based multi-person motion tracking, which in many cases
suffers from lack of discriminating features of observed per-
sons. To solve this problem, a physics based model of hu-
man motion is proposed, which includes intertial forces of
the persons by the means of the Kalman filter, and the cylin-
drical envelopes, which produce collision avoiding forces
when observed persons come to close proximity. We tested
the proposed method on two sequences, one from squash
match, and the other from the basketball play and found out
that the number of tracker mistakes significantly decreased.

1. Introduction

Vision based people tracking has in last decade become
increasingly important technology in several application
areas. There are many promising uses of computer vi-
sion based people tracking, among which are for exam-
ple surveillance [3, 6] and sport applications [5, 9]. The
main reason for this lies in cheaper and more powerful com-
puter and video equipment, which finally reached the levels
where such applications can be commercially attractive.

One of the main problems in computer vision based
multi-person human motion tracking is the reliability of
the tracking during collisions and occlusions. When the
persons being tracked have no obvious discriminating fea-
tures, the image segmentation phase of the tracker cannot
discriminate between two or more persons. As a conse-
quence, the outcome of collision or occlusion of two per-
sons of the similar outfit is mostly random if no additional
models of human motion or behavior are present. Similar
problems have inspired many researchers to develop vari-
ous occlusion-proof tracking algorithms, such as [2, 11].

In our work, we are dealing with the tracking of peo-
ple during the sport matches [9, 10]. The main purpose
of tracking people in sport games using computer vision is
to acquire data of player’s positions on the court. Based
on this data, different types of games analysis can be per-

formed. This analysis can assist sport experts to devise bet-
ter training strategies and game tactics. Since we are dealing
with measurementsof human motion, we depend heavily on
the high-quality input video data. Among others, the strict
requirement is that, for the sake of accuracy, the cameras
should have the bird’s eye view of the players. As a side
effect, the contacts between players are then visible not as
occlusions, but as collisions. Note: bycollision, we refer
to the any contact between the different persons where they
visually come so close that the tracking algorithm would get
confused.

In the case of “color-blind” tracking algorithms, such
as background image subtraction, every collision, regard-
less of player appearance, is a potential problem with un-
known outcome. In the case of advanced tracking algo-
rithms, such asCONDENSATION[7] or simpler color based
tracking methods [10], the problem is reduced to collisions
of the players of same dress color.

In this paper we present a model of person motion, which
is built on two premises:

• that the human body has a certain inertia, which makes
the extremely rapid changes in person’s motion impos-
sible, and

• that the persons have a tendency towards avoiding
head-on collisions and will try to find the path around
the other persons blocking their way.

We believe that these two premises are fully valid in
tracking of sport players and may have even wider use.

The paper is structured as follows: after a brief discus-
sion regarding image segmentation, we describe how the
Kalman filter is used both to simulate the inertia of human
body and provide predicted positions for a tracking in the
subsequent frame. Next, we describe the spatial model of
human body, and the corresponding collision avoidance al-
gorithm. In the last part of the paper, we present four sets of
results on two different test video sequences, from squash
and basketball, which show that such model of human mo-
tion significantly increases the chances of tracker properly



choosing which player is which after the critical situations
of player collision.

2 Image segmentation

For each video frame, image segmentation is the first
step in measuring of players’ positions. These initial mea-
surements are fed into the proposed algorithm. We will
not discuss image segmentation method in this paper – our
framework is general enough to be used with any image seg-
mentation method which is able to provide object position
from the given video frame based on the position predic-
tion. The actual image segmentation method used for the
experiments is briefly described in the Experiments section.

Let us simply assume that we are dealing with the black
box image segmentation method, which requires input im-
age (video frame) and the predicted player position on this
frame. As a result, image segmentation method provides the
measurements of the positions of the player on the supplied
frame.

3 Kalman filter for human motion tracking

A major problem of computer vision based tracking is to
precisely define the next player position on the image and
thus reducing the search area for a image segmentation al-
gorithm in a subsequent frame. Additionally, good predic-
tions may guide the image segmentation algorithm through
“dangerous” situations, where it might jump between the
players with similar visual properties. Once the positions
are obtained, they usually contain noise, which has an ad-
verse effect on the subsequent trajectory processing. As we
will see, the noise has extremely negative influence on our
collision avoidance mechanism, which calculates player ve-
locities on-the-fly.

Kalman filter algorithm [4, 12] is an elegant and efficient
answer to both problems, as it:

• considerably reduces the noise of the measurement
stage and thus provides the more stable data for the
the Collision avoidance algorithm

• provides next predicted player position which is then
supplied to the image segmentation module to improve
chances of finding the player on the next frame.

The Kalman filter algorithm consists of two separate
stages, as shown in Fig. 1, the prediction part and the mea-
surement update part. The prediction part is responsible for
the projection forward (in time) of the current player’s state
and error covariance estimate, to obtain the a priori or pre-
dicted estimate of the player’s state at next time step. The
measurement equations are on the other hand responsible
for feedback, incorporating the measurement (at next time
step) into the predicted player’s state estimate in order toob-
tain a new improved a posteriori estimate from which, given
the motion model, a new prediction can be calculated.
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Figure 1. Tracker diagram. Lines and arrows
represent the flow of data between parts of
the tracker.

In any modelling of human motion, articulated struc-
ture of human body poses a difficult problem. The full
and detailed body model would be too complex for our use.
Kalman filter allows usage of simple motion models (con-
stant velocity or acceleration) and at the same time it allows
the knowledge of the modelling error to be built into the
model.

In our implementation, we are dealing with the calibrated
system. Therefore, we are able to translate image coordi-
nates to the real world coordinates and back on the fly. This
way, image segmentation algorithm is working in the image
coordinates, yet Kalman filtering and collision avoidance
are performed in real world coordinates. This means that
all the coefficients and method parameters introduced here
have physical meaning and could be set up independently
of the actual imaging setup.

3.1 Kalman filter motion model

The primary information gained when tracking players
are their positions on the court. That is why the human
body movement can be modelled as a motion of a single
point, where the selected point represents the gravity cen-
ter of player’s body. Therefore we can write the state space
vector of the player’s gravity center in the Cartesian coordi-
nate system as:

xk = {px, vx, ax, py, vy, ay}
T

, (1)

where variablesp, v anda represent the current position,
velocity and acceleration of gravity center, respectively.



Player’s motion model can be defined by two indepen-
dent equations, the state update equation (2) and the obser-
vation equation, (3). The first one describes the state inter-
dependence of two consecutive time steps:

xk+1 = Axk + wk, (2)

wherexk+1 represents the player state at the next time step,
xk is the player state in the current time step, the matrixA

is the state transition matrix andwk is system noise, which
is assumed to be white and gaussian. On the other hand, the
observation equation (3) gives the connection between the
actual position measurements and the state space vector:

zk = Hkxk + vk, (3)

whereHk stands for the observation matrix,xk is again the
current player state andvk is the measurement noise matrix.

Experiments showed that the state transition matrixAk

can be defined based on the assumption of constant player’s
acceleration between two consecutive measurements, and
that actual change in players’ acceleration can indeed be
modelled as a Gaussian white noisewk. Therefore, we de-
fined the state transition matrix as:

Ak = I2×2 ⊗





1 ∆t ∆t2

2
0 1 ∆t

0 0 1



 , (4)

where∆t represents the length of an interval between two
consecutive measurements, and can be calculated from the
frame rate of the actual video sequence used for tracking.⊗
represents the Kronecker product. The observation matrix
Hk that links the measurements to state vector is defined as:

Hk =

[

1 0 0 0 0 0
0 0 0 1 0 0

]

. (5)

3.2 System noise covariance

The player’s constant acceleration assumption men-
tioned above is only an approximation of the actual player’s
dynamics. As we observed from the experiments, the ac-
tual player’s acceleration is randomly changing all the time.
Considering these facts and given the formulation of the
system state update equation (2), we are able to statistically
determine the properties of the noise and consequently were
able to derive the system covariance matrix [1] for Gaussian
noise in advance as:

Qk = E
[

wkw
T
k

]

= (6)

= q · I2×2 ⊗





1
20∆t5 1

8∆t4 1
6∆t3

1
8∆t4 1

3∆t3 1
2∆t2

1
6∆t3 1

2∆t2 ∆t



 . (7)

Detailed derivation of the Equation 7 can be found in [1].
The only free parameter,q, represents the variance of accel-
eration for player motion, and was determined by analyzing

player motion during several squash matches. It is also im-
portant to stress that based on our experience, this param-
eter does not need to be changed for the different types of
players, i.e. for players that play either more aggressive or
defensive type of game.

3.3 Measurement noise covariance

In Equation (3), another random variablevk that repre-
sents the system measurement noise can be observed. It rep-
resents the observed player’s gravity center motion in cases
when player is standing still and therefore no motion should
be observed. The measurement noise covariance matrix can
be derived [1] as:

Rk = E
[

vkv
T
k

]

=

[

r11 0
0 r22

]

. (8)

Measurement noise is a result of several factors, among
others the image digitalization and compression artifacts,
the noise of the image segmentation phase, and the noise
caused by the motion of player’s extremities.

4 Collision detection and avoidance

Kalman filter represents good model for a linear human
motion and may reduce the possibility of mislabelling the
players when they come to close proximity. However, an-
other solution is needed to cope with highly non-linear mo-
tion, which iscausedboth by collisions and the human ten-
dency to avoid them.

In real world situations, it is obvious that people will
smoothly adapt their motion if they find themselves on a
collision path with another person. In some sport games,
this observation is perhaps less valid, since some sports re-
quire the players toblockthe motion of the opponents. Such
sport is for example basketball, where defensive players use
their body to block the opponent’s way to the basket. On the
other hand, the players in the offensive role will still try to
avoid the defense players.

However, in some sports, such as squash, players are by
the rules of the gamerequired to clear the way for the op-
posite player, or risk a penalty.

4.1 Collision motion model

To address the problem of collision, we devised a simple
physical model of human motion when approaching possi-
ble collision. The behavior of the players is modelled as
non-elastic collision of two cylindrical objects. Since we
use bird’s eye view of the players and deal with calibrated
position data in 2D plane (X and Y coordinates of players
on a court plane), the model is essentially reduced to two
dimensions.

Fig. 2 shows the situation during the collision of two
objects as a projection to a 2D plane (e.g. bird’s eye view
of two players, or persons in general).
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Figure 2. Collision motion model. Detailed
explanation in text.

The objectsA andB are modelled as circles (cylinders in
3D space), with the center pointsA andB and radiusesrA
andrB, respectively. For the clarity of the presentation, let
us assume that the objectA is stationary, and that the object
B is in motion, in the direction of vectordB, which means
that it is on a collision path with objectA. PointBm denotes
the measurement of the position of the objectB in a current
frame, which is unreliable and may need a correction by the
collision avoidance mechanism. Let us also assume, that
we have the reliable measurement of position of the point
B. dB is the motion vector of objectB, anddB‖ anddB⊥

are its orthogonal components. The first one is oriented in
the direction of the vector

#    »

AB, which connects the centers
of both objects, and the second one is perpendicular to the
same vector.

Since the pointBm is actually the measurement of the
position of the objectB in this frame (as given for exam-
ple by the image segmentation method), it is assumed to
be wrong, if, as a consequence, the objectsA andB would
overlap.

If the objects would not overlap, the measurement of the
positionBm and the object motion vectordB are accepted
without any further processing. On the other hand, if the
objects would overlap, the following condition is true:

| ABm |< rA + rB. (9)

In that case, we have to correct initial position mea-
surementBm in a way that the overlapping does not oc-
cur. The simplest way of doing it is by discarding the
collision-generating component of the motion vectordB‖.
This way, the corrected motion vector isdB⊥, and the cor-
rected measurement of the center of the objectB is Bc, in-
stead of discardedBm. Therefore, for each pair from the
temporal sequence from the measured input coordinates,
Bm(t) = (xB(t), yB(t)), the algorithm will provide the set
of output coordinates,B′(t) = (x′

B(t), y′
B(t)), which can

be same as input coordinates, or corrected using the pro-
cedure described above, when the algorithm has detected a
possible collision.

In actual processing of the measurementBm, the values
of A, B, Bm, rA andrB are always known, either as con-
stants (rA and rB) or as the results of previous or actual
measurements. ProjectionsdB‖ anddB⊥, and the corrected
positionBc have to be calculated.

Mathematically the projection of vectorb onto vectora
can be calculated as:

projab =
a • b

a • a
a, (10)

where• denotes the scalar product of vectors. Therefore,
the projectionsdB‖ anddB⊥ can be calculated as follows:

dB‖ = proj #   »

ABdB =

#    »

AB • dB
#    »

AB •
#    »

AB

#    »

AB (11)

dB⊥ = proj #   »

AB⊥
dB =

#    »

AB⊥ • dB
#    »

AB⊥ •
#    »

AB⊥

#    »

AB⊥, (12)

where
#    »

AB⊥ denotes the vector, perpendicular to the vector
which connects the object centers,

#    »

AB. This perpendicular
vector can be calculated from the vector

#    »

AB in two dimen-
sional space as follows. Given the two components of the
vector

#    »

AB, x andy,

#    »

AB =

[

x

y

]

(13)

the vector
#    »

AB⊥ can be calculated as:

#    »

AB⊥ =

[

−y

x

]

(14)

4.2 Implementation of collision detection and
avoidance mechanism

During the tracking, the measurements of players’ po-
sitions are continuously obtained by image segmentation
methods, coupled with Kalman filter. These measurements
are fed into the collision detection and avoidance algorithm,
which essentially works as an observer, remembering mea-
surements from the previous step, and internally recon-
structing object velocities (that is, motion vectorsdobject)
for all of the objects, as shown in Fig. 3. It is obvious that
the collision avoidance algorithms needs the measured po-
sitions of all of the objects tracked, in each stept, before the
collision avoidance on each object can be performed.

If the collision avoidance algorithm corrects position of
a particular player, the corrected position is filtered through
same Kalman filter for a second time. This way, both a re-
fined measurement and new prediction of player position
are obtained from the collision-corrected position measure-
ment. If collision avoidance algorithm does not perform a
correction, this entire step is skipped, and the refined mea-
surement and prediction from the first Kalman step are used.
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Figure 3. Use of the collision motion model.
A, B, C ... denote different objects.

If such behavior of two objects is simulated using the
constant velocity of objects, it can be seen that in the situ-
ation which is shown in the Fig. 2, the objectB will slow
down and smoothly slide around and along the objectA.
Smoothness of the motion heavily depends on the sampling
rate at which the motion is sampled or simulated. If the
sampling rate is low, the objectB will abruptly move right
of the objectA and continue its motion.

4.3 Multiple collisions and pile-ups

In contrast to the above discussion, it is usual that more
than one object is in motion and that more than two ob-
jects are tracked simultaneously. In this case multiple col-
lisions may occur, and the motion correction for some ob-
jects may introduce new collisions. This simple collision
avoidance algorithm makes no attempts to explicitly solve
this scenario. Instead, the detection/correction phase isrun
in multiple iterations, until either the motion vectors forall
objects are set up in a way that there are no collisions any-
more, or until certain predefined number of iterations has
been reached. This way, the algorithm makes the best effort
to solve the possible pile-up of objects, but does not slow
down or even block the entire system if the solution is not
found quickly.

5 Experiments

Both the Kalman filter and the collision avoidance mech-
anism were coupled with the image segmentation method
to perform the experiments on real world video sequences.
We have chosen theCONDENSATIONalgorithm, similar to
[8]and [7], which was modified to take advantage of the
static camera setup. The observed players are modelled
with adaptive ellipses and the color histogram is used to
differentiate between different players. The algorithm does
good job of discriminating between players of the different
color and the background, but it fails often when the collid-
ing players are of the same color.

Since our work is motivated by the problem from sport
tracking domain, we used two sport video sequences to
test the performance of the above described methods. Both

video sequences have been captured at 25 frames per sec-
ond and have the resolution of284× 288 pixels. One frame
from each video sequence is shown in Fig. 4.

Figure 4. One frame from each of the test
video sequences in the moments of players’
collision.

The first video shows the bird’s eye view of the squash
match, and was 10 minutes long. It features two players,
both wearing white T-shirts, during the squash game. On
many occasions players come to close contact, and after
that the Condensation algorithm alone cannot distinguish
between them anymore.

The second video shows several players on a basketball
court and is two minutes long. We tracked only the two
players, which are both wearing white T-shirts, and perform
positional dribbling. This video is not a recording of a ac-
tual basketball match, and players are essentially wrestling
for the better position on the court, which would probably
not happen for such a long time in the actual basketball
match. The condensation algorithm alone failed completely
to distinguish the two players in this sequence (the two po-
sitions always converged to one after a just few processed
frames), so it is fair to say that this type of motion represents
an extremely difficult challenge.

To quantify the improvement, achieved by introducing
Kalman filter and the collision avoidance into the scheme,
we have done four runs of the tracker for both sequences:



I. The Condensation tracking algorithm alone was used.
The Kalman filter was disabled by setting its parame-
ters to such values that it did not modify the input data
(very high dynamics). This was done for practical rea-
sons to avoid heavy modification to our code by com-
pletely removing it. The collision avoidance algorithm
was disconnected.

II. The Kalman filter was enabled with the parameters
that have been previously found to work well (on other
videos, on other matches). The collision avoidance al-
gorithm was disconnected.

III. The Kalman filter was again disabled, but the colli-
sion avoidance algorithm was enabled with radiuses of
players set to 20 centimeters for squash and 30 cen-
timeters for basketball.

IV. Both the Kalman filter and the collision avoidance al-
gorithm were enabled with previously described pa-
rameters.

For each run, tracking was supervised by operator, which
counted the tracker mistakes and stopped tracking when the
mistake was made. Then he reinitialized player positions
and restarted the tracking. As “mistakes”, we counted the
situations where the tracker started tracking another person
and stabilized there. If the error in position was only tempo-
rary and the situation returned to normal, it was not counted
as a mistake.

Table 1 summarizes the results of our experiments. N/A
for basketball sequence in the first test run means that the
counting of mistakes proved impossible, since the tracker
was practically unable to discriminate between the players.

Table 1. Experimental results. The roman nu-
merals denote the test run. The numbers
show the number of tracker mistakes.

Test run: I. II. III. IV.

Squash 45 15 26 9
Basketball dribbling N/A 38 26 19

6 Conclusion

It can be seen that both the Kalman filter and our colli-
sion avoidance algorithm improved reliability of plain con-
densation tracker, even when used one at a time. However,
the best results are achieved, if they are used together. There
may be several reasons for this. First, the collision avoid-
ance algorithm works as the observer, and calculates motion
vectors internally by differentiation of consecutive player
positions. Without the Kalman filtering, the positional data
from motion segmentation is noisy, and the motion vectors
are very inaccurate. The second probable reason is that the
Kalman filter, as a linear model, cannot predict highly non-
linear player motion which is needed to avoid the obsta-
cle. The combination of both the Kalman filter and collision

avoidance adds to the tracker both the inertia and the possi-
bility to predict the nonlinear motion when that is needed.

Such algorithm has perhaps even the wider use, although
we did not test it further. It could be perhaps useful for
tracking persons through the partial occlusions. However,
this would require careful tuning of the parameters, since
they would probably not correspond to real-world variables
(e.g. body size in centimeters as approximate value for the
collision radiuses).
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[10] J. Peřs and S. Kovǎcič. Tracking people in sport: Making the
use of partially controlled environment. In W. Skarbek, ed-
itor, Lecture notes in computer science: Proceedings of 9th
International Conference on Computer Analysis of Images
and Patterns CAIP’2001, pages 374–382. Springer Verlag,
2001.

[11] A. Senior, H. A., Y. Tian, L. Brown, S. Pankanti, and
R. Bolle. Appearance models for occlusion handling. In2nd
IEEE Workshop on Performance Evaluation of Tracking and
Surveillance, PETS 2001, Kauai, Hawaii, USA, December 9
2001.

[12] G. Welch and G. Bishop. An introduction to the kalman
filter. Technical Report 95-041, University of North Carolina
at Chapel Hill, Department of Computer Science, 2002.


