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Abstract Similarity measures for non-rigid multimodal registration are
required to be local in order to enable correction of small image differ-
ences, and multimodal, to allow images to be acquired using different
imaging techniques. Unfortunately all commonly used multimodal sim-
ilarity measures are inherently global and cannot be directly used to
estimate local image properties. We have derived a local similarity mea-
sure based on joint entropy, which can operate on extremely small image
regions, e.g. individual voxels. The disadvantage of using such small im-
age regions is higher sensitivity to noise and partial volume voxels, which
reduce registration speed and accuracy. To cope with these problems we
support the similarity measure with image segmentation. Several exper-
iments based on synthetic images show that simultaneous application
of registration and segmentation can improve registration accuracy and
reduce the required number of registration steps.

1 Introduction

Non-rigid registration is a process for maximizing a spatial image correspon-
dence of two images within the constrains of an image transformation model, to
bring the features of first image into alignment with those of the second image
with possibly different content. Image correspondence is measured using simi-
larity measures, which compares the data values at corresponding points in the
images. A variety of similarity measures is suitable for images obtained using the
same acquisition method [1]. The situation is quite different when the images
to be non-rigidly registered are acquired using different modalities. There are
two main issues to be addressed: first, the similarity measure must be capable of
determining the correspondence between images of different measurement type,
and second, the measure must be sensitive to local image differences. The prob-
lem is made difficult because the two properties desired of our similarity measure
are contradictory.

In practice, image differences appear on a range of scales, from ”global” to
”local”. The aim of non-rigid registration is to correct those that comply with
the image transformation model. Therefore, it is desired to correct even the
smallest image discrepancies, but to do that they must previously be detected.
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Therefore, similarity must be estimated from correspondingly small-sized image
regions, which in extreme case become individual voxels. It is noted [2,3] that
registration based on individual voxels is ill-posed if displacements are calculated
separately for each image voxel. For this purpose non-rigid registration must
incorporate a spatial model, e.g. elastic [4] or viscous fluid model [5], which
defines the relations between individual region/voxel displacements.

1.1 Multimodal similarity measures

Multimodal similarity measures are capable of determining the correspondence
between images of different measurement type, and therefore different intensity
values for the same anatomical structure. The most commonly used multimodal
similarity measure is mutual information, first proposed and brought to the
medical imaging field from information theory by Viola and Wells [6]. When
used as a similarity measure it measures the statistical dependence between the
image intensities. In principle, it reveals how much one image tells us about the
other image, and takes on maximum value when the images are geometrically
aligned. Given two images A and B mutual information I(A,B) between them
is defined as

I (A,B) = H (A) +H (B)− H (A,B) , (1)

whereH(A) and H(B) denote marginal entropies of A and B, and H(A,B) is
their joint entropy. The entropies can be calculated using well-known Shannon
definition:

H (·) = −
∑

p (·) log p (·), (2)

where p(.) stands for either marginal or joint probability distributions, estimated
from image intensities i = [iA, iB ]T . There are also other types of multimodal
similarity measures, like energy similarity measure [7], and various types of gen-
eralized entropies [8]. Nevertheless, due to their statistical nature they are all
inherently global in the sense that they all require relatively large image regions
to achieve sufficiently high statistical significance of joint distribution. Various
solutions to improve their locality were proposed, but among them only local
multimodal similarity measures can operate on arbitrarily small image regions,
e.g. individual voxels. We have derived a similarity measure of that type from
joint entropy [9]. It was observed, that entropy can be calculated by summation
in spatial domain, over all voxels v:

H =
∑

v

− 1
N

log pv =
1
N

∑
v

h (v), (3)

where pv is the joint probability pi for intensity pair at position v, and N is
the total number of voxels in the image. Thus, the entropy, which is a global
similarity measure, can be calculated from similarities of individual voxels Sv =
h(v) = − log pv, which represent the “uncertainty” of intensity pair located at
that position. Summation can also be performed over arbitrary smaller image



region Rr and the result is local similarity Sr of this region.

Sr =
1

Nr

∑
v∈Rr

h (v). (4)

Notice that h(v) is always estimated using the whole images. The local similarity
measure derived from entropy can be generalized by using prior information
pprior, different types of probability, e.g. joint probability p(iA, iB), conditional
probability p(iA|iB) or probability of intensity difference p(iA − iB).

p = (1− λ) · pimage + λ · pprior ; λ ∈ [0, 1] , (5)

where λ is a weighting parameter. Furthermore log function can be replaced with
any other function f(p) with strictly monotonically increasing or decreasing first
derivative of p · f(p):

Sv = f(p); Sr =
1

Nr

∑
Sv =

1
Nr

∑
f (p). (6)

2 Joint distributions

Local multimodal similarity measures are closely related to the joint intensity
distribution. To better understand these measures it is necessary to know how
the level of misregistration reflects in joint intensity distribution [10].

Suppose we have two simple images A and B representing the same object.
Let each image consist of only two intensity values (i1A and i2A for image A,
and i1B and i2B for image B, where i1A corresponds to i1B and i2A corresponds
to i2B). Similarity of two voxels is according to described similarity measures
related to the joint probability of intensity pair, so that higher value means bet-
ter correspondence. When images are correctly registered, the joint distribution
contains only two extrema that appear at intensity pairs (i1A, i1B) and (i2A, i2B)
as the intensity regions perfectly overlap. When images do not overlap exactly
there are some regions with intensity pairs (i1A, i2B) and/or (i2A, i1B), as shown
in Fig. 1. The joint probability of mismatched intensity pairs is related to the
degree of mismatch where higher mismatch means higher probability. This also
means that similarity function based on probability estimation for mismatched
regions increases by degree of mismatch. When mismatched regions are larger
than correctly matched ones, the estimated similarity of mismatch is higher than
similarity for correct match and registration in this case cannot be successful.
Due to this fact it is advantageous to use a prior information, from which ap-
proximate joint distribution of correctly registered images is known in advance,
and therefore the phenomenon mentioned above shall not appear.

In real images tissue types are not represented by a single intensity value,
but by a range of intensity pairs, forming an intensity class. Thus, number of
intensity classes in one image is equal to the number of biological tissues K.
When registering two images, their joint distribution consists of M joint distri-
bution classes C, where each class represents a tissue type pair and all together



Figure 1. Registered and misregisterd images (top) and their joint distributions (bot-
tom).

form a set C = {Cm};m = 1...M . Among them there are at most K single-
tissue classes that correspond to the same tissue type in both images and form
a subset CS ⊂ C. All other classes are mixed-tissue classes and correspond to
different tissue types in different images. During the registration the amplitude
of mixed-tissue classes is expected to decrease until they finally disappear. Joint
distribution then consists of only single-tissue classes. If there are no intensity in-
homogeneities each class can be modeled by a two dimensional Gaussian function
with mean value µm, amplitude Am and covariance matrix Σm. Class parame-
ters Am and Σm depend on the amount of image noise, where increase of noise
reflects to increased class widths and decreased magnitudes. The similarity es-
timation is getting worse, as the probability of each intensity pair depends only
on the number of its occurrences. Actually, image registration does not register
biological features, but their intensities. Each tissue type is represented by a
whole class of intensity pairs, which are treated independently. If their close re-
lations within the same tissue type were taken into account, they could improve
the registration.

Because of insufficient image resolution and image blurring, some voxels rep-
resent more than one tissue type. The intensity value iv of such partial volume
voxel v is a weighted sum of class intensities ik, where weights tvk are portions
of tissues k = 1...K that exist at that location. Partial volume voxels are in
joint distribution positioned on lines between the classes. Their contribution



to registration is low because of their low probability and thus low estimated
similarity. Registration of these voxels is not reliable although edges are most
information rich parts of the images. Image processing operations, e.g. linear
interpolation and linear image filtering, increase the number of such voxels and
therefore worsen the registration. These voxels can be correctly registered only
when knowing which classes exists in each voxel and what are their portions.

3 Similarity measures based on segmentation

In order to solve the problems of image noise and partial volume voxels it is
necessary to know which intensity pairs form each class and what portion of
each partial volume voxel belongs to each class. One possible solution to know
this is to perform the segmentation [11]. When registering segmented images
similarity measure is perfectly defined by being 1 for the same tissue type on
both images and 0 if this is not the case. Considering partial volume voxels,
similarity measure of a voxel can be defined as a sum of corresponding voxel
portions:

Sv =
∑

k

min(tkA, tkB) ; k = 1...K (7)

where tkA and tkB are portions of tissue type k that exist in corresponding voxels
in image A and B respectively. Unfortunately, image segmentation is not an easy
task, either. From the segmentation point of view, images can be segmented
by registering to a pre-segmented template. The image registration process is
therefore dual to the segmentation. Both of them work better when using the
others results. We anticipate that performing both processes simultaneously can
improve registration and segmentation results.

We propose a method based on image segmentation to improve registration
results. When images are correctly registered there are only single-tissue classes
Ck ∈ CS , k = 1...K, which correspond to image regions with correctly registered
tissues. When this is not the case, there are also some mixed-tissue classes that
represent different tissues in different images. Without prior information we can-
not be absolutely certain which of the classes belong to each group. Therefore,
the probabolistic approach can be used. We have found a method to estimate
the probability p(CS |Cm) that Cm is a single-tissue class. Knowing class param-
eters µm, Σm and Am, for all classes m = 1...M , estimated using segmentation
methods, the probabilities p(Cm|i) that an intensity pair i belongs to class Cm

can be estimated as well. The sum
∑

p(CS |Cm) · p(Cm|i) over all classes then
represents the probability p(CS |i) of i belonging to one of the single-tissue classes.
As each intensity pair in registered images should belong to a single-tissue class,
probability p(CS |i) can be used as a similarity measure.

3.1 Implementation of segmentation based local similarity measure

Each class Cm; m = 1...M can be modelled by a two-dimensional Gaussian func-
tion p(i, Cm) with mean value µm and covariance matrix Σm. Joint distribution



p(i) can be approximated by a sum

p(i) =
∑
m

p(i, Cm) =
∑
m

p(i|Cm) · p(Cm). (8)

It is expected that classes are far enough from each other to achieve dominance
of class Cm in its neighborhood Om such that contributions of all other classes
p(i, Cl) ; l = 1...M , l 
= m can be neglected. Number of classes M , their mean
values µm and amplitudes Am can therefore be estimated by extensive search
for maxima in joint intensity distribution. When maximum is found, its position
is used as a class mean value µ while value itself is used as a class amplitude A.
Probability of intensity pairs in Om can be approximated by

p(i)|i∈Om
≈ p(i, Cm) = Am exp

(
−1
2
(i − µm)T Σ−1

m (i − µm)
)

. (9)

By taking a log of (9) we get

2 ln
(

Am

p(i)

)
= (i − µm)T Σ−1

m (i − µm) ; i ∈ Om, (10)

which can be solved for Σm using least squares method for all intensity pairs
i in the neighborhood Om. The covariance matrices Σm can be then used to
estimate the class a priori probabilities p(Cm).

p(Cm) =
∫

p(i, Cm)di = 2πAm|Σm| (11)

The sum of all a priori probabilities Cm, m = 1...M , is expected to be 1, but
this is not the case even if all class parameters are estimated absolutely correct.
The reason is in some intensity pairs with low joint probability that do not be-
long to any estimated class. Most of such intensity pairs represent partial volume
voxels, which are correctly registered only when images are registered with sub-
voxel accuracy. To prevent incorrect matching we introduce an additional class
C0 with small constant probability p(i, C0) = ε for each intensity pair. We use ε
equal to probability of a single image voxel in joint intensity distribution.

A posterior probability of class Cm, showing the chance of intensity pair to
belong to a certain class Cm is according to Bayes rule the following

p(Cm|i) = p(i, Cm)
M∑
l=0

p(i, Cl)
. (12)

In order to estimate the similarity as a probability of intensity pair belonging
to a single-tissue class Sv = p(CS |i), it is necessary to estimate the probability
p(CS |Cm) that a certain class Cm; m = 1...M is a single-tissue class. Let us
assume that each tissue type has unique intensity representation µ. Therefore,
among all maxima positioned at the same intensity of image A (or image B)



only one can be a single-tissue class. All the others are mixed-tissue classes, see
Fig. 1. Let a subset CµA ⊂ C consist of all classes with the same mean value
µA. Probability pA(CS |Cm) of class Cm being a single-tissue class according to
intensity of image A can be estimated as

pA(CS |Cm) =
p(Cm)∑

Cl∈CµA

p(Cl)
(13)

This is not a good estimation of probability that class is a single-tissue class,
as all classes with higher probability may belong to the same subset CµB , which
consist of all classes with the same value µB. Such situation can be prevented by
using probability pB(CS |Cm) that class Cm is a single-tissue class according to
intensity of image B, that can be calculated in the same way. The final estimate
of probability that class Cm is a single-tissue class is then

p(CS |Cm) = pA(CS |Cm) · pB(CS |Cm). (14)

The sum of p(CS |Cm) indicates the number of valid classes. When there are ω
single-tissue classes with the same µA or µB our presumption is incorrect. The
estimated probabilities pA(CS |Cm) or pB(CS |Cm) are ω times too small. Anyway,
as the relations between the probabilities are still correct registration should still
be successful but it may require some more registration steps.

Finally, local similarity based on image segmentation can be estimated as

Sv = p(CS |i) =
∑
m

p(Cm|i) · p(CS |Cm). (15)

4 Comparison results

Comparison of local similarity measures is problematic, as any transformation of
a single voxel region makes a huge change in region covering and furthermore the
results do not depend only on similarity measure used, but also on spatial model.
It appears that the only meaningful way to compare them is their treatment in
the context of complete registration systems.

To show the relative performance of our local similarity measures we used
two spatially aligned BrainWeb simulated images [12]. The first one, image A
(MRI-PD), was used as a reference, while the second one, image B (MRI-T1),
was transformed with a known transformation T0 and then registered back to
image A, using multiresolution elastic registration approach, see Fig. 2. The
registration result was evaluated using the RMS voxel displacement error e, esti-
mated from difference between voxel displacements achieved by the registration
TR and displacements derived by inverse of known transformation T−1

0 . Voxels
representing a background were not used for the estimation and were removed by
mask Ω, as every registration of the background can be treated as correct. NΩ

denotes number of voxels accepted by the mask Ω and x are spatial coordinates.

e =

√
1

NΩ

∑
x∈Ω

(
T−1

0x − TRx

)2
; x = [x1, x2, x3]T (16)



Figure 2. Evaluation scheme.

Table 1. Comparison results of local multimodal similarity measures.

Sv e [λ = 0] e [λ = 1]

p(i) 6.7449 7.9025
p(iA|iB) 2.6263 2.1834

p(iA − iB) 6.5745 7.0569
log (p(i)) 2.5631 1.1952

log (p(iA|iB)) 2.8207 1.3988
log (p(iA − iB)) 3.8948 3.2910

p(CS |i) 1.2600 0.9445

The results in Table 1 show that using prior information (λ=1) in general
improves the registration. Unfortunately, prior information is often not known in
advance. The segmentation-based measure is able to distinguish between single-
tissue and mixed-tissue classes even without prior information, which makes this
result comparable to results of other measures when using prior information.
Thus, segmentation-based measure Sv = p(CS |i) is shown to be the best among
all compared similarity measures. Among local similarity measures derived from
entropy original entropy based measure Sv = log (p(i)) give us the best result
while measures based on probability p(iA − iB) and measure Sv = p(i) are not
suitable for estimation of local properties.

Comparison of estimated similarities derived from the same joint intensity
distribution p(i) = p(iA, iB) for entropy based similarity measure Sv = log(i)
and segmentation based similarity measure Sv = p(CS |i) are presented in Fig. 3.
Entropy based similarity measure differs from joint distribution only in the log-
arithmic function, which makes maxima wider and their amplitudes more sim-



ilar. Relatively high similarity is achieved even for mixed-tissue intensity pairs,
which can lead to misregistration. This is improved in segmentation based mea-
sure, where the similarity of mixed-tissue intensity pairs is much lower. The
lack of segmentation based measure originates in relatively simple segmentation
algorithm that do not detect partial volume voxels, which are then treated as
they represent only the most probable tissue type. Such voxels therefore cannot
correctly contribute to registration.
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Figure 3. Joint distribution p(i) (left) and estimated similarities: Sv = log (p(i)) (mid-
dle) and Sv = p(CS |i) (right).

5 Conclusion

This paper describes some similarity measures for multimodal non-rigid registra-
tion. They are all based on probability distribution determined from the whole
image content or given in advance as prior information. Measures derived from
joint entropy treat each intensity pair individually and do not consider their bi-
ological relations. This is improved by segmentation based similarity measures.
The method presented in this paper alleviates the problem of noise while problem
of partial volume voxels is not directly solved. Partial volume voxels are treated
like they belong only to their most probable class. To improve the registration
of partial volume voxels, this method needs some improvements.

Segmentation is usually based on presumption that pure single-tissue clusters
conform to Gaussian distribution. This is not always the case as real medical im-
ages are often influenced by intensity inhomogeneities. Estimated class variances
are then to large and registration is not necessarily correct. To alleviate this
problem images should be preliminary corrected for intensity inhomogeneities
[13]. Such correction is easier to perform when images are already segmented.
This indicates that all three tasks, registration, segmentation, and correction for
intensity inhomogeneities, should be performed simultaneously.
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