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ABSTRACT

Non-rigid multimodal registration requires similarity measure with two important properties: locality and multi-
modality. Unfortunately all commonly used multimodal similarity measures are inherently global and cannot be
directly used to estimate local image properties. We have derived a local similarity measure based on joint entropy,
which can operate on extremely small image regions, e.g. individual voxels. Using such small image regions reflects
in higher sensitivity to noise and partial volume voxels, consequently reducing registration speed and accuracy. To
cope with these problems we enhance the similarity measure with image segmentation. Image registration and image
segmentation are related tasks, as segmentation can be performed by registering an image to a pre-segmented refer-
ence image, while on the other hand registration yields better results when the images are pre-segmented. Because
of these interdependences it was anticipated that simultaneous application of registration and segmentation should
improve registration as well as segmentation results. Several experiments based on synthetic images were performed
to test this assumption. The results obtained show that our method can improve the registration accuracy and
reduce the required number of registration steps.
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1. INTRODUCTION

Non-rigid registration1,2 is a process for maximizing spatial image correspondence of two images within the constraints
of an image transformation model, to bring the features of first image into alignment with those of the second
image. Image correspondence is measured using similarity measures, which compare the data values at corresponding
points in the images. A variety of similarity measures is suitable for images obtained using the same acquisition
method3, where the most often used are methods based on difference of scalar intensity at corresponding image
locations, attractive because of their simplicity, and correlation based methods, which generally produce better
results. The situation is quite different when the images to be non-rigidly registered are acquired using different
imaging procedures. There are two main issues to be addressed: first, the similarity measure must be capable of
determining the correspondence between images of different measurement type, and second, the measure must be
sensitive to local image differences. The problem is made difficult because the two properties desired of our similarity
measure are contradictory.

In practice, image differences appear on a range of scales, from “global” to “local”. The aim of non-rigid
registration is to correct those that comply with the image transformation model. Therefore, it is desired to be able
to correct even the smallest image discrepancies, but to do so they must previously be detected. Therefore, similarity
must be estimated from appropriately small image regions, which in extreme case become individual voxels. It is
noted4,5 that registration based on individual voxels is ill-posed if displacements are calculated separately for each
image voxel. For this purpose non-rigid registration must always incorporate a spatial model, e.g. elastic6 or viscous
fluid model7, which defines the relations between individual region/voxel displacements.

1.1. Multimodal similarity measures

Multimodal similarity measures are capable of determining the correspondence between images of different measure-
ment type, and therefore the correspondence between different intensity values for the same anatomical structure in
different images. The relation between intensities is not linear, as is the case when registering images of the same
modality. Usually it is so complex, that it is not possible to uniquely map intensities of one image to the intensities
of the other one. In general the relation is not injective as the intensity values of the first image can correspond to
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more than one intensity value of the other image. Generally multimodal similarity measures model this complex and
unknown relationship between image intensities statistically.

The most commonly used multimodal similarity measure is mutual information. It was first proposed and brought
to the medical imaging field from information theory by Viola and Wells8. When used as a similarity measure it
measures the statistical dependence between the image intensities. In principle, it reveals how much one image tells
us about the other image, and takes on maximum value when the images are geometrically aligned. Given two images
A and B mutual information I(A,B) between them is defined as

I (A,B) = H (A) +H (B)−H (A,B) , (1)

whereH(A) and H(B) denote marginal entropies of A and B, and H(A,B) is their joint entropy. The entropies can
be calculated using well-known Shannon definition:

H (·) = −
∑

p (·) log p (·), (2)

where p(.) stands for either marginal or joint probability distributions, estimated from image intensities. There are
also other types of multimodal similarity measures like energy similarity measure9 and various types of generalized
entropies10. Nevertheless, due to their statistical nature they are all inherently global in the sense that they all
require relatively large image regions to achieve sufficiently high statistical significance of joint distribution. Various
solutions to improve their locality and to overcome the problem of small sample size were proposed, e.g. using prior
joint probability11, reducing number of joint histogram bins, resorting to one dimensional statistics H(A − B)12,
etc. Nevertheless, among all methods that have been proposed only local multimodal similarity measures enable
estimation of similarity from arbitrarily small image regions, e.g. individual voxels. We have derived a similarity
measure of that type, which is based on joint entropy, and is described in the next section.

2. LOCAL MULTIMODAL SIMILARITY MEASURES

One of the frequently used multimodal similarity measures is the Shannon entropy H(A,B) calculated from joint
intensity distribution. With respect to spatial image correspondence it is also the most significant term of mutual
information measure (Eq.(1)). Other two terms, i.e. the marginal entropies, are much less important, because
when using partial volume interpolation13, they can only change due to different image covering at image borders.
This is why both similarity measures under certain circumstances yield practically identical indication about image
correspondence, see Fig. 1.

−10 −5 0 5 10
0.4

0.6

0.8

1

1.2

1.4

displacement

I(A,B) − Linear interpolation 

−10 −5 0 5 10
8.2

8.4

8.6

8.8

9

9.2

displacement

H(A,B) − Linear interpolation

−10 −5 0 5 10
0.4

0.6

0.8

1

1.2

1.4

displacement

I(A,B) − PV interpolation

−10 −5 0 5 10
8.4

8.6

8.8

9

9.2

9.4

displacement

H(A,B) − PV interpolation

Figure 1. Similarity measures I (mutual information) and H (joint entropy) as a function of image translation for
linear and partial volume (PV) interpolation.

We propose a local similarity measure derived from joint entropy that can be used for estimating similarity of
arbitrarily sized image regions, including the regions with the size of only one image voxel. Let us rewrite Eq. (2) in
the following form,

H = −
∑
i

pi log pi = −
∑
i

Ni

N
log pi ; i = [iA, iB ]T , (3)

where i is an intensity vector consisting of the intensity values of the images A and B, and pi is the joint probability
of intensity pair i. Ni is the number of occurrences of this intensity pair, and N is the total number of intensity



pairs in the image, which is usually equal to the number of image voxels. Let us assume that the images are divided
into smaller non-overlapping regions Rr, each containing, say, Nr

i occurrences of intensity pair i. The total number
of occurrences Ni in the whole image can be obtained by summing Nr

i over all regions,

Ni =
∑

r

Nr
i . (4)

Substituting Eq. (4) in Eq. (3) we obtain

H = −
∑

r

∑
i

Nr
i

N
log pi. (5)

If the image is divided into individual voxels v, then

Nr
i = Nv

i =
{

1 ; i = [A(v), B(v)]T

0 ; otherwise , (6)

and Eq. (5) can be simplified to

H = −
∑

r

1
N

log pi =
∑

v

− 1
N

log pv =
1
N

∑
v

h (v), (7)

where pv is the probability pi for i = [A(v), B(v)]T , and h(v) = − log pv is the “uncertainty” of this intensity pair.
Thus, it is possible to calculate the entropy, which is a global similarity measure, from similarities of individual
voxels Sv = h(v) by summing up (averaging) over the whole image. Of course, summation can also be performed
over arbitrary smaller image region Rr and the result is local similarity Sr of this region.

Sr =
1
Nr

∑
v∈Rr

h (v). (8)

Notice that h(v) is always estimated using the whole images. Thus, it also retains a global meaning, which is desirable
feature, because it also shows us the quality of global alignment.

2.1. Generalization of entropy based similarity measure

Observing Eq. (7) it is easy to see its close relation to log likelihood similarity measure14. The only difference is in the
way how the probability p(.) is derived. In our case, it is estimated from the image pair, while in case of likelihood
similarity measure the probability p(.) is a prior information. It is also possible to use a combination of both11. The
use of prior information improves joint distribution by making it more similar to the expected joint distribution of
correctly registered images. That prevents images to be misregistered because of low initial image correspondence
and reduces the number of required registration steps.

Our registration process tends to move each voxel of image B, which is being non-rigidly deformed, in direction of
largest improvement of local (voxel) similarity. As image B intensities are known and do not change, it is reasonable
to replace joint intensity probability pi = p(i) = p(iA, iB) with conditional probability p(iA|iB)5. It is also possible
to use other types of probability, e.g. probability of intensity difference p(iA − iB) in order to improve statistical
significance12.

Finally, it is possible to replace the log function with any other function f(p) that meets the requirement that the
first derivative of function p · f(p) is strictly monotonically increasing or decreasing. If it is increasing/decreasing,
higher/lower value means better correspondence. Linear function f(p) = p is often used and similarity measure is in
this case often called energy similarity measure, because its global version can be computed as the sum of squared
histogram values9.

Based on observations mentioned above the local similarity measure derived from entropy, can be more generally
written as

Sv = f(p); Sr =
1
Nr

∑
Sv =

1
Nr

∑
f (p), (9)



where Sv stands for the voxel similarity, Sr is the similarity of region r, and f(p) can be any function that meets
the requirement mentioned above. Probability p may be derived from image pair pimage, it may be given in advance
pprior, or in the most general case, it can be defined as a weighted sum of both:

p = (1− λ) · pimage + λ · pprior ; λ ∈ [0, 1] (10)

where λ is a weighting parameter.

3. JOINT DISTRIBUTIONS

As seen in the previous section, local multimodal similarity measures are closely related to the joint intensity dis-
tribution. To better understand these measures it is necessary to know how the degree of misregistration reflects in
joint intensity distribution15.

Let us imagine we have two simple images A and B representing the same object. Let each image consist of
only two intensity values (i1A and i2A for image A, and i1B and i2B for image B, where i1A corresponds to i1B

and i2A corresponds to i2B). Similarity between two voxels is according to the described similarity measures related
to the joint probability of intensity pair, such that higher value means better correspondence. When images are
correctly registered, the joint distribution consists of only two extrema that appear at intensity pairs (i1A, i1B) and
(i2A, i2B) as the intensity regions perfectly overlap. When images do not overlap exactly there are some regions with
intensity pairs (i1A, i2B) and/or (i2A, i1B), as shown in Fig. 2. The joint probability of mismatched intensity pairs
is related to the degree of misregistration where worse registration means higher probability. This also means that
similarity function based on probability estimation for mismatched regions increases by degree of misregistration.
When mismatched regions are bigger than correctly matched ones, the estimated similarity of mismatches is higher
than similarity for correct match and registration in this case cannot be successful. Due to this fact it is advantageous
to use prior information, from which approximate joint distribution of correctly registered images is known in advance,
and therefore the phenomenon mentioned above shall not appear.

(a) (b) (c) (d)

Figure 2. Joint distributions of registered images (a,b) and misregistered images (c,d).

In real images each tissue is not represented by a single intensity pair, but by a range of intensity pairs, forming
an intensity class, see Fig. 3. Thus, in case of registered images the number of intensity classes equals the number
of biological tissues K. When registering two images, their joint distribution consists of M joint distribution classes
C, where each class represents a tissue type pair and all together form a set C = {Cm};m = 1...M . Among them
there are at most K single-tissue classes that correspond to the same tissue type in both images and form a subset
CS ⊂ C. All other classes are mixed-tissue classes and correspond to different tissue types in different images.
During the registration the amplitude of mixed-tissue classes is expected to decrease until they finally disappear.
Joint distribution then contains only single-tissue classes. If there are no intensity inhomogeneities each class can be
modeled by two dimensional Gaussian function with mean value µm, amplitude Am and covariance matrix Σm. Class
parameters Am, and Σm depend on the amount of image noise, where increase of noise reflects to increased class
widths and decreased amplitudes. The similarity estimation is getting worse, as the probability of each intensity pair
depends only on the number of its occurrences. Actually, image registration does not register biological features, but
their intensities. Each tissue type is represented by a whole class of intensity pairs, which are treated independently.
If their close relations within the same tissue type were taken into account, they could improve the registration.



Because of insufficient image resolution and image blurring, some voxels belong to more than one tissue type.
The intensity value iv of such partial volume voxel v is a weighted sum of class intensities ik, where weights tvk are
portions of tissues k = 1...K that exist at that location. Partial volume voxels are in joint distribution positioned on
lines between the classes, see Fig. 3. Their contribution to registration is low because of their low probability and
thus low estimated similarity. Matching of these voxels is not reliable, although edges are most information-rich parts
of the images. Image processing operations, e.g. linear interpolation and linear image filtering, increase the number
of such voxels and therefore worsen the registration. These voxels can be correctly matched only when knowing
which classes exists in each voxel and what their portions are.
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Figure 3. Expected joint distributions of real medical images without intensity inhomogeneities. (Left registered,
Right misregistered).

4. SIMILARITY MEASURES BASED ON SEGMENTATION

In order to deal with the problems of image noise and partial volume voxels it is necessary to know which intensity
pairs form each individual class and what portion of each partial volume voxel belongs to each class. This can
be estimated by performing image segmentation16. When registering pre-segmented images similarity measure is
perfectly defined by being 1 for the same tissue type on both images and 0 otherwise. Considering partial volume
voxels, similarity measure of a voxel can be defined as a sum of corresponding voxel portions:

Sv =
∑

k

min(tkA, tkB) ; k = 1...K, (11)

where tkA and tkB are portions of tissue type k that exist at corresponding voxels in image A and B, respectively.
Unfortunately, image segmentation is not trivial task, either. From the segmentation point of view, images can be
segmented by registering them to a pre-segmented template. The image registration process is therefore dual to
the segmentation. Both of them work better when using the others results. We anticipate that by performing both
processes simultaneously it is possible to improve registration and segmentation results.

Based on observations mentioned above we propose a segmentation-based local similarity measure to improve
registration results. The basic idea is to estimate the probability that certain intensity pair i represents the correctly
matched tissues. Note that joint distribution of correctly registered images consists of only single-tissue classes
Ck ∈ CS , k = 1...K, which correspond to image regions with correctly matched tissues. When images are not
registered, there are also some mixed-tissue classes that represent different tissues at the same position in different
images. Firstly, probabilities p(Cm|i) of intensity pair i belonging to certain class Cm, for all classes m = 1...M ,
have to be estimated. Furthermore it is necessary to know which of the classes are single-tissue classes representing
the correct match. Without prior information this is impossible to know for sure. Nevertheless, we can estimate the
probability p(CS |Cm) that Cm is a single-tissue class. The sum

∑
p(CS |Cm) · p(Cm|i) over all classes then indicates

the probability p(CS |i) of i belonging to one of the single-tissue classes. This is exactly the probability we are trying
to estimate, since it indicates the similarity of intensities forming an intensity pair i.



4.1. Implementation of segmentation based local similarity measure

Let us assume that each class Cm; m = 1...M can be modeled by a two-dimensional Gaussian function p(i, Cm) with
mean value µm and covariance matrix Σm. Joint distribution p(i) can be approximated by the following sum:

p(i) =
∑

l

p(i, Cl) =
∑

l

p(i|Cl) · p(Cl). (12)

It is expected that classes are far enough from each other to achieve dominance of class Cm in its neighborhood Om,
such that contributions of all other classes p(i, Cl) ; l = 1...M , l 
= m can be neglected. Therefore, number of classes
M , their mean values µm and amplitudes Am can be estimated by extensive search for maxima in joint intensity
distribution. When maximum is found, its position is used as a class mean value µ, while value itself is used as a
class amplitude A. Probability of intensity pairs in Om can be approximated by

p(i)|i∈Om
≈ p(i, Cm) = Am exp

(
−1
2
(i− µm)TΣ−1

m (i− µm)
)

; m = 1 . . .M. (13)

By taking a log of (13) we get

2 ln
(
Am

p(i)

)
= (i− µm)TΣ−1

m (i− µm) ; i ∈ Om (14)

Σ−1
m = U =

[
u11 u12

u12 u22

]
(15)

2 ln
(
Am

p(i)

)
= u11(iA − µmA)2 + 2u12(iA − µmA)(iB − µmB) + u22(iB − µmB)2 ; i ∈ Om, (16)

which can be solved forU using least squares method for all intensity pairs i in the neighborhood Om. The covariance
matrices Σm = U−1 can be then used to estimate the class a priori probabilities p(Cm).

p(Cm) =
∫

p(i, Cm)di =
∫

Am exp
(
−1
2
(i− µm)TΣ−1

m (i− µm)
)
di ; m = 1..M (17)

p(Cm) = 2πAm|Σm| ; m = 1..M (18)

Theoretically the sum of all a priori probabilities Cm, m = 1...M , should be 1. In reality this is seldom the case
even if all class parameters are estimated absolutely correct, due to the fact that some intensity pairs with low joint
probability do not belong to any of the estimated classes. The majority of such intensity pairs represent partial
volume voxels, which are correctly matched only when images are registered with subvoxel accuracy. Currently
we are not dealing with partial volume voxels explicitly. Therefore, to prevent incorrect matching we introduce an
additional class C0 with small probability

p(i, C0) = ε (19)

for each intensity pair. We set ε to the probability of a single image voxel in joint intensity distribution.

A posterior probability of class Cm, showing the chance of intensity pair to belong to a certain class Cm is
according to Bayes rule the following:

p(Cm|i) = p(i, Cm)
M∑
l=0

p(i, Cl)
. (20)

Furthermore, to derive the similarity measure it is necessary to estimate the probability p(CS |Cm) that a certain
class Cm; m = 1...M is a single-tissue class. Let us assume that each tissue type has unique intensity representation
µ. Therefore, among all maxima positioned at the same intensity of image A (or image B) only one can belong to
the set of single-tissue classes. All the other maxima represent mixed-tissue classes, see Fig. 2. Let subset CµA ⊂ C



consists of all classes with the same mean value µA. Probability pA(CS |Cm) of class Cm being a single-tissue class
according to intensity of image A can be estimated as

pA(CS |Cm) =
p(Cm)∑

Cl∈CµA

p(Cl)
. (21)

Such estimation of probability that class is a single-tissue class is not necessarily sufficient, as all classes with higher
probability may belong to the same subset CµB , which consist of all classes with the same value µB . Such situations
can be prevented by using probability pB(CS |Cm) that class Cm is a single-tissue class according to intensity of image
B,

pB(CS |Cm) =
p(Cm)∑

Cl∈CµB

p(Cl)
. (22)

The final estimate of probability that class Cm is a single-tissue class is then

p(CS |Cm) = pA(CS |Cm) · pB(CS |Cm). (23)

The sum of p(CS |Cm) over all m indicates the number of single-tissue classes. When there are ω single-tissue
classes with the same µA or µB our presumption is incorrect. The estimated probabilities pA(CS |Cm) or pB(CS |Cm)
are ω times too small. Nevertheless, as the relations between the probabilities are still correct, registration should
still be successful but it may require some more registration steps.

Finally, local similarity measure based on image segmentation can be estimated as

Sv = p(CS |i) =
∑
m

p(Cm|i) · p(CS |Cm). (24)

5. COMPARISON RESULTS

A reasonable approach to compare global similarity measures is to apply them on various transformations and to
evaluate their properties, such as number of local extrema, their smoothness, position of global maximum, capture
range, etc. However, comparison of local similarity measures turns to be more problematic, as any transformation
of a single voxel region makes a drastic change in region overlap. Furthermore, the results do not depend only on
similarity measure used but also on spatial model, e.g. elasticity. We argue that voxel based similarities cannot be
tested in isolation without considering spatial model, and it appears that the only meaningful way to compare them
is their treatment in the context of complete registration systems.

To show the relative performance of our local similarity measures we used two spatially aligned three-dimensional
medical images. The first one, image A, was used as a reference, while the second one, image B, was transformed with
a known transformation T0 and then registered back to image A, see Fig. 4. The registration result was evaluated
using the RMS voxel displacement error e, calculated from differences between voxel displacements achieved by the
registration TR and displacements derived by inverse of known transformation T−1

0 . Voxels representing a background
were not included and were removed by mask Ω, as every matching of the background can be treated as correct. NΩ

denotes number of voxels accepted by the mask Ω and x are spatial coordinates.

e =

√
1
NΩ

∑
x∈Ω

(
T−1

0x − TRx

)2
; x = [x1, x2, x3]T (25)

The similarity measures were tested using BrainWeb simulated images17 to satisfy the requirement of initial
spatial image alignment. The comparison results are shown in Table 1. Column 1 contains the similarity measures
used. MRI-T1 images were non-rigidly registered to reference MRI-PD images using the same multiresolution elastic
registration approach but based on different local multimodal similarity measures for individual voxels. Tests were
performed for normal images, images with 9% of noise and images with 40% of intensity inhomogeneities (shading),
all without any prior information, and for normal images using prior information, derived from the initial images.
There was a relatively small number of iterations used, (2 for original resolution, 7 for half resolution, and 10 for other



Figure 4. Evaluation scheme.

Table 1. Comparison results of local multimodal similarity measures.
SV normal noise shading prior inf.
p(i) 6.7449 6.9147 7.4476 7.9025

p(iA|iB) 2.6263 2.6614 3.7351 2.1834
p(iA − iB) 6.5745 6.6526 6.8558 7.0569
log (p(i)) 2.5631 2.5754 2.8047 1.1952

log (p(iA|iB)) 2.8207 2.8305 2.9997 1.3988
log (p(iA − iB)) 3.8948 4.0508 4.2280 3.2910

p(CS |i) 1.2600 1.2537 2.1172 0.9445

three resolution levels). The initial transformation T0 was composed of six Gaussian functions such that maximal
initial displacement was 16.8 voxels and initial RMS error e was 6.9.

The results in Table 1 show that segmentation based measure Sv = p(CS |i) performs best among all similarity
measures. In all the cases it yields the best result. Relatively good results are also achieved when using the original
entropy based measure Sv = log(p(i)) and its derivatives Sv = p(iA|iB) and Sv = log(p(iA|iB)). Measures based on
probability of intensity difference p(iA − iB) and measure Sv = p(i) are shown not to be appropriate for estimation
of local properties.

It is shown that all similarity measures have low sensitivity to noise. A sensitivity to intensity inhomogeneities
(shading) is much higher and is the highest for segmentation based measure Sv = p(CS |i), as expected. The reason is
in Gaussian modeling of intensity classes. As classes in the presence of inhomogeneities do not comply to Gaussian
distribution, covariance matrices Σm are estimated incorrectly. This leads to bad estimation of probabilities p(Cm|i)
and thus incorrect estimation of similarity.

As expected prior information in general improves the registration. The biggest improvement is shown for original
entropy based measure Sv = log(p(i)) and its derivative Sv = log(p(iA|iB)). Segmentation based similarity measure
show relatively small improvement. The reason for this is that prior information derived from correctly registered
images does not contain any mixed-tissue classes. Therefore, discrimination between single-tissue and mixed-tissue
classes cannot add any improvement.

Comparison of estimated similarities derived from the same joint intensity distribution for two similarity measures
that show good performance is presented in Fig. 5. Similarities derived by similarity measure Sv = log(p(i)) differ
from joint distribution p(i) only in the logarithmic function, which makes maxima wider and their amplitudes less
different. The segmentation based measure p(CS |i) shows additional improvement by reducing the similarities for
mixed-tissue intensity pairs based on additional knowledge gained by image segmentation.
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Figure 5. Joint distribution p(i) (left) and estimated similarities: SV = log(p(i)) (center), and SV = p(CS |i) (right).

The by-product of segmentation based similarity measure is segmented image as follows. The whole image consists
of single-tissue and mixed-tissue classes. All of them are present when images are misregistered, see Fig 6 (left).
Registration reduces mixed-tissue classes and when images are correctly registered only the single-tissue classes
remain, see Fig 6 (right). Each class then represent a single tissue type.

Figure 6. Result of the segmentation for misregistered (left) and registered images (right). Each class is represented
by different gray value.

6. CONCLUSION

This paper describes various similarity measures for local multimodal image registration. They are all based on
probability distribution determined from the whole image content or given in advance as prior information. As
the same probability distribution is used for all image regions/voxels, these measures are all sensitive to intensity
inhomogeneities.

Measures derived from joint entropy treat each intensity pair individually and do not consider relations between
intensities within the same tissue type. This relationship is established by the segmentation based method that
we have presented. Our method, however, does not solve the problem of partial volume voxels efficiently, as the
segmentation method used lacks capability to detect such partial volume voxels. Consequently, images cannot be
registered with sub-voxel accuracy.

Segmentation is usually based on presumption that pure single-tissue clusters conform to Gaussian distribution.
This is not true when images are subjected to intensity inhomogeneities. Registration is in this case not necessarily
successful. To alleviate this problem images should be preliminary corrected for intensity inhomogeneities18. It is



easier to perform such correction when images are already segmented. This indicates that all three mentioned tasks,
registration, segmentation, and correction for intensity inhomogeneities, should be performed simultaneously.

Our plan for the future is to improve the segmentation based method to take into account partial volume vox-
els and thus enable subvoxel accuracy. Furthermore, we are planning to incorporate the correction for intensity
inhomogeneities to improve the registration and segmentation of real images.
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