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Abstract. Registration of multi-modality images requires similarity
measures that can deal with complex and unknown image intensity de-
pendencies. Such measures have to rely on statistics, and consequently,
they require relatively large image regions to operate. This makes the
detection of localized image discrepancies difficult. As a solution we pro-
pose point similarity measures, which can measure similarity of arbitrar-
ily small image regions, including similarity of individual image points.
In this paper we present a point similarity measure derived from the mu-
tual information. In addition to its extreme locality it can also avoid the
interpolation artifacts and improve the spatial regularization to better
suit the spatial deformation model.

1 Introduction

A criterion function used in registration procedures comprises some measure
of image similarity, which is used for measuring the quality of image match,
and possibly a geometric regularization, which prevents unrealistic deformations.
However, not only the criterion function, also its implementation may have an
important influence on the registration results. The influence of implementation
is the most obvious for multi-modality similarity measures, when they are used
to detect localized image discrepancies.

The ability to detect local image discrepancies is crucial for the success of
non-rigid registration. The most straightforward approach to detect local image
discrepancies is to measure the similarities of small image regions. In the case of
conventional multi-modality similarity measures, e.g. mutual information mea-
sures [15, 2, 13], this is not directly applicable. Due to their statistical nature
they require relatively large image regions to operate and thus cannot directly
detect local image properties. Although these measures are not local, they are
still locally sensitive, which enables assessment of local discrepancies by measur-
ing global image similarity, i.e. similarity of the whole images, subject to local
deformations. This is a general approach used by many authors, [12, 8, 11] to
mention a few. The main problem with this approach is its high computational
cost, which originates in large number of recomputations of global image simi-
larity. This practically limits the dimensionality of the transformation and thus
the locality of image discrepancies that can be corrected. In this work we focus



on an alternative approach, which follows the basic idea of detecting local image
discrepancies by measuring similarity of small image regions. To make this ap-
proach possible we introduced point similarity measures [10]. They are designed
to measure similarity of arbitrarily small image regions, including similarity of
individual image points, which also holds in the case of multi-modality data.

In this paper we present point similarity measure derived from the mutual
information [15, 2], and compare it with the original mutual information measure
in terms of interpolation artifacts and spatial regularization.

2 Point similarity measures

We define point similarity measures as measures that can measure similarity of
individual image points. Obviously they can also be used to measure similar-
ity of image regions of arbitrary size. Point similarity measures can be derived
from global similarity measures. Here we derive a point similarity from the mu-
tual information, which is the most frequently used multi-modality similarity
measure.

2.1 Point similarity measure derived from the mutual information

Mutual information (MI) of two images (A and B) is defined by marginal and
joint entropies:

MI = H(A) + H(B) − H(A,B), (1)

and can be computed as follows:

MI =
∑
i

p(i) log
(

p (i)
p (iA) p (iB)

)
. (2)

Here, iA and iB are image intensities of images A and B, i = [iA, iB ] denotes an
intensity pair, p(iA) or p(iB) are marginal intensity distributions and p(i) is a
joint intensity distribution. Eq. (2) can be rewritten in the following form:
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N
log

(
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=
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N

∑
v

log
(
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)
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where Ni is the number of occurrences of intensity pair i and N is the total
number of intensity pairs in the image, which equals the number of overlapping
image voxels. Furthermore, i(v) = [iA(v), iB(v)] stands for image intensities
located at voxel v. Note that the final summation is taken over the spatial image
coordinates instead of the intensities. Thus, the global similarity MI can be
treated as an average of point similarities SMI(v), defined for each voxel v.

MI =
1
N

∑
v

SMI(v), (4)



SMI(v) = log
(

p(i(v))
p(iA(v))p(iB(v))

)
. (5)

In general, the point similarity can be estimated not only for image voxels,
but for each image point pair [A(x1), B(x2)] from the corresponding intensity
pair i(x1,x2) = [iA(x1), iB(x2)], such that SMI(x1,x2) = SMI(i(x1,x2)), where

SMI(i) = log
(

p(i)
p(iA)p(iB)

)
. (6)

The function SMI(i) is called a point similarity function and is an estimate
of the intensity dependence between the images when they are correctly regis-
tered. The measurement of point similarity therefore consists of two steps. In
the first step the point similarity function SMI(i) is estimated from the whole
images A and B. In the second step point similarity SMI(x1,x2) is obtained
from the point similarity function SMI(i) by simply pointing to a certain value
by the corresponding image intensity pair i(x1,x2), as illustrated in Fig. 1. Note
that the point similarity function needs to be estimated only once for all the
measurements of point similarity at some image configuration, which makes the
measurement of similarity computationally efficient.

Fig. 1. Measurement of point similarity. The point similarity function SMI(i) is es-
timated from the whole images and defines the similarity with respect to the image
intensities (darker color represents higher similarity). For example, a point similarity
SMI(x1,x2) can be obtained from the point similarity function SMI(i) by pointing to
a certain value by corresponding image intensity pair i = [iA(x1), iB(x2)].

2.2 Similarity of an image region

According to the Eq. (4) the mutual information of the whole images can be
computed from point similarities by averaging. Let us rewrite it in the following



form:
MI =

1
N

∑
v

SMI(v) =
∑
i

Ni

N
SMI(i) =

∑
i

p(i)SMI(i). (7)

The same principle could be used for computing similarity of smaller image
regions, with the only difference that in this case the summation (averaging)
runs only over the voxels in the region. Thus, the similarity SR of the region R
can be obtained by using probability distribution pR(i) of this region instead of
probability distribution p(i) of the whole images:

SR =
1

NR

∑
v∈R

SMI(v) =
∑
i

pR(i)SMI(i), (8)

where NR is the number of voxels in the region R. Note that in all the cases the
point similarity function SMI(i) is estimated from the whole images, in contrast
to mutual information, which uses only the region that is being measured. This
is a small but important difference between point based similarity measures and
global measures, which enables the first ones to better assess the intensity de-
pendence between the images and thus to improve the quality of local similarity
measurement, see Fig. 2.

Fig. 2. Mutual information MI (left) and point based similarity measure SR (right)
with respect to image translation, for different sizes of image region r3; r =
{50, 20, 10, 5}. Point based similarity measure was always based on the same point
similarity function SMI(i), obtained from the whole images at the correct image align-
ment. Note that the local sensitivity of the MI decreases with decreasing r, while the
sensitivity of SR remains practically the same.

3 Similarity and image transformation

Image registration methods search for such a transformation that maximizes the
image similarity. Let us analyze how the similarity changes when transforming
image B with transformation T. The transformation moves each point B(x) from
its original position x for some displacement T(x) to a new position x + T(x),



where it gets matched with a point A(x + T(x)). One of the important issues
is how the transformation changes the similarity of some small image region (or
point) in case of subvoxel displacement T(x). A common phenomenon is the ap-
pearance of the interpolation artifacts, i.e. disproportionate change of similarity
with respect to the transformation, which rules out the subvoxel accuracy. Some
approaches that can reduce interpolation artifacts have been proposed [9, 6] but
can be applied only when the region size used for measuring the similarity is
large. In case of high-dimensional registration approaches, where gradient de-
scent optimization method is usually used, the interpolation artifacts are even
more problematic, because they can cause large image misregistration.

When observing a single point in image B, its point similarity SMI(A(x +
T(x)), B(x)) may change due to two reasons. The first one is the change of point
pair, and the second is a possible change of the intensity distributions, which
changes the point similarity function S(i), see Eq. (6).

Let us assume that the point similarity function SMI(i) does not change
and that point similarities S(A(x + T(x)), B(x)) change only because points in
image B are compared with different points in image A. However, due to the
discrete nature of the images and due to the image transformation, grid points
in image B do not match exactly with grid points in image A, and measuring
of point similarities requires interpolation. In case of mutual information there
are two interpolation methods commonly used: interpolation of intensities and
partial volume interpolation. Interpolation of intensities can also be employed
in case of point similarities. However, the interpolation of intensities assumes a
linear intensity dependence, which may not necessarily comply with the intensity
dependence estimated from the images, and can cause interpolation artifacts, as
shown in Fig. 3. To avoid the interpolation artifacts, we propose to interpolate
similarities instead of intensities. This is related to partial volume interpolation,
which may be used for estimation of global intensity distributions. Instead of
interpolating the unknown intensity iA(x+T(x)) from intensities of neighboring
voxels, we directly interpolate the point similarity S(A(x + T(x)), B(x)) from
similarities of point B(x) to neighboring grid points in image A. The weights
remain the same as in the case of interpolation of intensity. This approach results
in a linear relationship between the point similarity and point displacement in a
range of one image voxel, thereby avoiding the interpolation artifacts, see Fig. 3.
The difference between results obtained by using different interpolation methods
is illustrated in Fig. 4.

The point similarities could also change due to the change of the point simi-
larity function. In general, the transformation T changes the marginal and joint
intensity distributions p(iA), p(iB) and p(i). Consequently, if the point similar-
ity function SMI(i) is recomputed using the updated distributions as defined in
Eq. (6), then it changes as well. The relation between the transformation and
the change of intensity distributions is complex, nonlinear and depends on the
information of the whole images. Furthermore, the relation between the inten-
sity distributions and the corresponding point similarity function is not linear
either (see Eq. (6)). Nevertheless, SMI(i) is always an approximation of the same



Fig. 3. Illustration of measuring point similarity with interpolation. Similarity be-
tween some voxel point B(x0) and corresponding point A(x0) requires interpolation.
In case of interpolation of intensity, an intensity iA(x0) is interpolated from intensi-
ties of neighboring points iA(x1) and iA(x2), and the point similarity is S(x0,x0) =
S(iA(x0), iB(x0)) (cross mark). Because the interpolated intensity does not comply
with the complex intensity dependence estimated from the images, the similarity does
not have a correct meaning, which introduces interpolation artifacts (dashed line). The
problem can be solved by using interpolation of similarity, which interpolates the simi-
larity S(x0,x0) from point similarities S(x1,x0) and S(x2,x0), such that interpolation
of intensity is not required and interpolation artifacts do not appear (solid line).

Fig. 4. An example of mutual information MI (left) and point based similarity SR

(right) with respect to image translation, for the two different interpolation methods.
The dashed lines denote interpolation of intensity, while the solid lines denote partial
volume interpolation for MI (left) and interpolation of similarity for SR (right).

intensity dependence of the images when they are correctly registered. The only
difference between the obtained point similarity functions is in the quality of
the estimation, which depends on the level of global image mismatch. When
the point similarity function is estimated at better match, the similarity better
distinguishes between correct matches and mismatches, while the positions of
maxima that correspond to different tissue types in the point similarity function
do not change, as shown in the experiment performed using simulated Brainweb



images [4] in Fig. 5. Consequently, the registration based on point similarity
measures always tends towards the transformation that would be obtained when
using point similarity function estimated from the registered images, see Fig. 6.
Therefore, the complex nonlinear relation between the transformation and the
similarity, which also reflects in interpolation artifacts, can be avoided by keeping
the point similarity function fixed. However, when the point similarity function
is obtained at large misalignment, the sensitivity of similarity measure is low.
Therefore, to avoid the interpolation artifacts and still achieve good sensitivity,
we propose to recompute the point similarity function only once per registration
step or registration iteration.

To summarize, to avoid the interpolation artifacts we keep the point similar-
ity function fixed and use interpolation of similarity instead of interpolation of
intensity.

Fig. 5. Point similarity functions for simulated MRI-T1 and MRI-PD images of the
head, at different levels of image mismatch: 10 mm displacement (left), 2 mm displace-
ment (middle), and registered images (right). Darker color represents higher similarity.
Note that the positions of maxima that correspond to different tissue types in point
similarity function do not change.

4 Locality and spatial deformation models

Point similarity measures push the limits of the locality into extreme. Con-
sequently, similarity of one point does not presume any spatial relation with
neighboring image points. However, as stated by some authors ([3, 7]), matching
of individual image points is ill-posed if they are matched independently. Reg-
istration with point similarity measures therefore requires regularization, which
can be performed by a suitable spatial deformation model. Spatial deforma-
tion models are commonly used in high-dimensional registration, (for review
of high-dimensional registration approaches see [14, 5]). The model can follow
physical properties of deformable materials (e.g. elasticity or viscosity) or sim-
plified/fictious properties (e.g. Gaussian regularitzation). Nevertheless, the ma-
jority of such models can be performed by convolution filtering, as proposed
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Fig. 6. Mutual information (dashed line) and point based similarities obtained using
different estimations of point similarity function S(i) (solid lines), with respect to im-
age displacement. Similarity is measured between MRI-PD and MRI-T1 data, using
simulated images (left) and real images of the head (right). Point similarity functions
S(i) were estimated at different image displacements. At this displacement the point
based similarity equals the mutual information (marked with circles). All point based
similarities reach the maximum at displacement 0, i.e. where images are correctly reg-
istered.

by Bro-Nielsen [1]. For example, an incremental elastic registration can be per-
formed iteratively as follows:

T(x)(n+1) = T(x)(n) + GE ∗ ∂S(x)
∂T(x)

, (9)

where GE denotes a filter with impulse response of the elastic media, S stands
for some similarity measure, and n is the iteration number.

Some regularization is also provided by similarity measures when they oper-
ate on larger image regions. The similarity of an image region can be obtained
by averaging the point similarities, see Eq. (8). However, the averaging over a
region surrounding a point x can also be performed by convolution filtering with
some spatial filter GR,

SR(x) = GR ∗ SMI(x). (10)

Larger the region is, wider is the impulse response of the filter GR and more
global information is extracted from the point similarities. For example, when
the region spreads over the whole images and the obtained similarity equals
the global mutual information, only a global image properties, appropriate for
global registration (e.g. rigid) are extracted. The averaging therefore represents a
kind of regularization, which extracts more global knowledge from multiple more
localized image features. The regularization caused by the similarity measures is
substantial, such that when the region size used for measuring the similarity is
large, the additional regularization with spatial deformation model may not be
necessarily required, as in [7].



When the similarity of an image region is used in combination with a spatial
deformation model, the Eq. (9) can be rewritten:

T(x)(n+1) = T(x)(n) +GE ∗ ∂GR ∗ SP (x)
∂T(x)

= T(x)(n) +GE ∗GR ∗ ∂SP (x)
∂T(x)

. (11)

Here, SP is some point similarity measure, e.g. SMI . Similar results could also
be obtained for other high-dimensional registration methods. The regularization
is therefore duplicated, which means that the final effect does not directly follow
the spatial deformation model, see Fig. 7. Point similarity measures solve this
problem. They are not regularized by GR, such that regularization remains only
in the domain of spatial deformation model, which gives a full control over the
transformation properties.

GE GR GE ∗ GR

Fig. 7. An example of convolution filters used for regularizing non-rigid registration:
elastic filter GE (left), filter GR that corresponds to region averaging (middle), and
their convolution GE ∗ GR (right).

5 Conclusion

In this paper we presented a point similarity measure derived from the mutual
information. This measure can directly detect localized image discrepancies, by
measuring similarity of small image regions or individual image points. It is
computationally efficient, as the point similarity function is computed only once
for a given image configuration. The other advantage is the ability to avoid the
interpolation artifacts. That is because point similarity measures may be esti-
mated using the same estimation of image intensity dependencies, regardless of
the actual image transformation. This could also be advantageous in the case of
rigid registration. Finally, point similarity measures do not constrain the trans-
formation, which is especially important when performing a high-dimensional
registration. In this case the regularization remains only in the domain of a spa-
tial deformation model, which does not interfere with the similarity measures.
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