
University of Ljubljana

Faculty of Electrical Engineering

Peter Rogelj

Non-Rigid Registration
of Multi-Modality Images

Ph.D. Thesis

Supervisor: prof. Stanislav Kovačič, Ph.D.
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Večmodalno merjenje lokalne podobnosti . . . . . . . . . . . . . . xiii

Modeli deformacij . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Izvirni prispevki k znanosti . . . . . . . . . . . . . . . . . . . . . . . . xvi

Točkovne mere podobnosti . . . . . . . . . . . . . . . . . . . . . . xvi
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Abstract

Registration of medical images is becoming an important tool for medical treat-
ment and medical analysis. By finding spatial relations between two or more
images it combines their information, which is useful for observing changes in
anatomy and/or function during time, for comparing subjects and for merging
information of multiple images. In this thesis we focus on multi-modality non-
rigid registration, which is used for detecting complex spatial relations between
images of different modality. We propose several novel approaches and improve-
ments to the existing solutions.

The basic and most significant difference between our approach and other
multi-modality non-rigid registration approaches is the application of point sim-
ilarity measures, which is the first contribution of this thesis. Point similarity
measures have been designed for high dimensional multi-modality registration,
where the main problem is detection of localized image discrepancies. Point simi-
larity measures enable direct assessment of the most localized image discrepancies
by measuring similarity of individual points, although the images may be of dif-
ferent modalities. Such an extreme locality is obtained by separating the process
of measuring similarity into two steps. In the first step information of the whole
images is used to derive a point similarity function, which is an estimate of in-
tensity dependence between the images. In the second step the point similarity
function is used to measure similarity of individual points. The fundamental ques-
tion concerning point similarity measurement is how to derive a suitable point
similarity function, which defines a point similarity measure. We present several
point similarity measures, where some of them are derived from popular global
multi-modality similarity measures, and some of them are designed according to
the requirements of multi-modality non-rigid registration.

Point similarity measures enable several improvements of the registration pro-
cess. One of them is better estimation of external forces, which drive the registra-
tion. We propose an approach called symmetric image registration, which solves
the problem of asymmetry of similarity measurement, which leads to registration
inconsistency and reduces the quality of registration. The symmetric image reg-
istration approach tends to improve the registration by establishing a symmetric
image interdependence. The symmetry is obtained by treating both of the images
in the same manner. Both of the images may be modeled by spatial deformation
models, although in our implementation one of the images is fixed. The most
distinctive feature is interaction between the images. Images interact through



forces, in accordance with the Newton’s third law of motion. Forces on one im-
age reflect in opposing forces on the other image, which forms the basis for the
symmetry. Consequently, the registration is driven by information obtained by
measuring similarity in both registration directions, which improves registration
consistency and registration correctness.

Point similarity measures do not use any spatial information. This makes
estimation of external forces independent to the spatial deformation model. The
functional independence of these two registration stages enables them to be de-
signed independently to each other, although they are linked by an iterative
registration process. The functional independence of the stages is important, be-
cause spatial regularization is now solely in the domain of spatial deformation
model, which gains full control over the transformation properties and can better
suit to the deformable properties of imaged tissues. We have analyzed different
convolution based spatial deformation models, and propose a new model that
combines elastic and incremental approaches. The proposed model reduces the
systematic error of the elastic model and improves anatomical suitability of the
incremental models.

Functional independence of the registration stages also contributes to eval-
uation of the overall registration system. We propose a three-step evaluation
procedure, which improves the evaluation of the whole system by separately eval-
uating each of the two registration stages. This is especially useful in the case
of multi-modality registration, where only a limited number of features, required
for assessing the actual transformation, can be identified in both of the images.

All the proposed approaches are employed in our image registration system.
It does not require any specific knowledge of the anatomy and can be used for
any kind of 3D medical images. It was used for testing the proposed approaches,
and for performing several registration task for the purpose of medical research.
The system is fully functional, such that it is appropriate for demonstrating the
capabilities of non-rigid, as well as rigid image registration. However, the system
is not yet appropriate for clinical applications because it is not validated for
specific registration tasks.

This thesis contributes to the field of medical image registration, which is
a rapidly growing scientific area. A variety of clinical applications stimulate the
development and improvement of registration approaches carried out by numerous
researchers and research groups worldwide. The solutions presented in this thesis
do not try to fit to any specific clinical task. Instead, they deal with general
problems, which are common to all high-dimensional non-rigid registration tasks.
As such they could be applied to specific clinically important applications.



Povzetek

Netoga poravnava
večmodalnih medicinskih slik

Medicinske slikovne tehnike omogočajo zajem raznovrstnih podatkov, ki
opisujejo zgradbo in funkcijo tkiv in organov. Bogata slikovna vsebina pomembno
prispeva k odkrivanju in razumevanju bolezenskih stanj in sprememb. Pomem-
bno vlogo pri tem ima poravnava slik, ki z določitvijo prostorske preslikave med
slikami odpravi geometrijska neskladja in tako omogoča združevanje in izločanje
medicinsko pomembne slikovne informacije.

Zaradi elastičnih lastnosti tkiv, različnih pogojev pri zajemanju slik, ak-
tivnosti organov in patoloških sprememb so prostorske relacije med slikami lahko
zelo kompleksne. Poravnavo takšnih slik omogočajo postopki netoge pravnave,
ki zaznajo tudi prostorsko omejena lokalna neskladja in jih odpravijo z ustrezno
deformacijo slik.

Poseben pomen ima poravnava slik različnih modalnosti, ki opisujejo ra-
zlične lastnosti slikanih tkiv. Takšna večmodalna poravnava naprimer omogoča
združevanje informacije o zgradbi organov, zajete z anatomskimi slikovnimi
postopki kot so naprimer MRI, CT in rentgen, z informacijo o aktivnosti tkiv, za-
jeto s funcionalnimi slikovnimi tehnikami kot so naprimer fMRI, PET ali SPECT.
Na ta način pridobljena informacija o aktivnosti anatomskih struktur je lahko
ključnega pomena za medicinsko diagnostiko in načrtovanje zdravljenja.

Eden najzahtevneǰsih problemov poravnave je večmodalna netoga poravnava
slik, ki združuje obe prej omenjeni lastnosti, netogost in večmodalnost. Vzrok
za njeno dodatno zahtevnost je v tem, da običajni večmodalni postopki niso
zmožni zaznavati lokalnih slikovnih neskladij, kar pa je pogoj za uspešno netogo
poravnavo. Temu problemu smo se posvetili v tej doktorski disertaciji in razvili
izvirne postopke, ki omogočajo natančno večmodalno netogo poravnavo slik ter
izbolǰsajo lastnosti in uporabne vrednosti postopkov netoge poravnave slik.

ix



x Povzetek

Znanstveno področje in problematika

Tomografske slike so pomemben dejavnik sodobne medicinske diagnostike. V
splošnem jih lahko razdelimo na anatomske in funkcionalne. Anatomske
omogočajo vpogled v strukturo organov, medtem ko funcionalne opisujejo ak-
tivnost tkiv. Razvoj medicinskih slikovnih tehnik je hiter, saj informacijska vse-
bina slik pomembno prispeva k odkrivanju in razumevanju bolezenskih stanj in
sprememb. Iz slik želimo izluščiti čim več medicinsko pomembnih informacij,
pri čemer pa je zelo pomembna ustrezna obdelava slik. Eden od pomembnih
postopkov obdelave slik je poravnava slik. Poravnava slik omogoča združevanje
informacijske vsebine dveh (ali več) slik ter tako pripomore k izločanju medicin-
sko pomembnih informacij, pomembnih za medicinsko diagnostiko ter načrtovanje
zdravljenja.

Naloga poravnave slik je najti geometrijsko transformacijo, ki preslika prostor
ene, poravnavane slike, v prostor druge, referenčne slike, tako da doseže optimalno
prostorsko skladnost anatomskih struktur, ki jih sliki opisujeta. Na ta način
torej dosežemo, da se iste anatomske strukture na obeh slikah nahajajo v istih
legah, kar minimizira geometrijska neskladja med slikama. Tako poravnane slike
omogočajo primerjanje slik zajetih v različnih časovnih obdobjih, pod različnimi
pogoji, ali celo med različnimi pacienti, ter združevanje informacij pridobljenih
z različnimi slikovnimi tehnikami. Poravnava slik je zato uporabljana za najra-
zličneǰse medicinske aplikacije, kot naprimer izdelavo populacijskih anatomskih
atlasov, anatomske in funkcionalne primerjave pacientov, ugotavljanje razvoja
bolezni ter uspešnosti zdravljenja, načrtovanje radioterapij in operacij, medoper-
ativno lokalizacijo anatomskih struktur in podobno.

Poravnavo slik lahko v grobem razdelimo na togo poravnavo in netogo porav-
navo. Toga poravnava je namenjena iskanju prostorske odvisnosti med celotnima
slikama na osnovi določanja ustreznega premika in rotacije ene od slik. Na ta
način pogosto ni mogoče odpraviti vseh slikovnih neskladij, saj so le ta lahko
tudi posledica elastičnosti tkiv, delovanja organov, različnih pogojev pri zaje-
manju slik ali celo patoloških sprememb, kar se odraža v deformaciji ene od slik.
Odpravljanju takšnih slikovnih neskladij je namenjena netoga poravnava slik.

Poravnavi slik različnih modalnosti, ki so zajete z različnimi slikovnimi
postopki in opisujejo različne lastnosti slikanih tkiv, je namenjena večmodalna
poravnava slik. Ker ima vsaka modalnost slik drugačen medicinski pomen, je z
večmodalno poravnavo slik pridobljeno dodatno znanje o medsebojni prostorski
odvisnosti lastnosti, ki jih slike opisujejo. Kot primer naj omenimo večmodalno
poravnavo CT in PET slik. CT slike dobro opisujejo anatomsko zgradbo telesa,
medtem ko PET slike prikazujejo njegovo aktivnost. S poravnavo obeh modal-
nosti pridobimo znanje o aktivnosti anatomskih struktur. Večmodalna poravnava
je težavneǰsa od enomodalne poravnave, saj so relacije med lastnostmi, ki jih slike
predstavljajo, v splošnem nepoznane in zato so nepoznane tudi relacije med svet-
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lostmi različnih slik. Še več, relacije med svetlostmi slik so v splošnem nestalne
in se spreminjajo s pogoji (in nastavitvami) pri zajemanju slik. Večmodalna po-
ravnava zato zahteva posebne postopke poravnave, ki se samodejno prilagodijo
dejanskim svetlostnim odvisnostim med slikami.

Posebno težavna je večmodalna netoga poravnava slik, ki združuje obe prej
omenjeni lastnosti, netogost in večmodalnost. Problem večmodalne netoge porav-
nave je v tem, da uveljavljeni večmodalni postopki niso primerni za odpravljanje
kompleksnih lokalnih slikovnih neskladij, prav tako pa so uveljavljeni visoko-
dimenzijski postopki netoge poravnave niso primerni za poravnavo slik različnih
modalnosti. Vzrok za to je v težavnem merjenju lokalne poravnanosti slik ra-
zličnih modalnosti. Postopki za večmodalno merjenje poravnanosti namreč niso
zmožni delovati lokalno, saj zahtevajo razmeroma velika področja slik, kajti kom-
pleksne in vnaprej neznane relacije med svetlostmi slik ocenjujejo statistično. Za
rešitev omenjenega problema večmodalne netoge poravnave slik je bilo zazvitih
vrsto postopkov. Razdelili smo jih v štiri skupine:

1. Poravnava s preslikavo modalnosti [32]. Kadar je svetlostna odvisnost slik
poznana, oziroma jo je iz poravnavanih slik mogoče oceniti, je mogoče
sklepati o pojavnosti slike v drugi modalnosti. Na tak način pridobljene
slike enakih modalnosti je nato mogoče poravnati z običajnimi monomodal-
nimi postopki za netogo poravnavo. Pravilnost preslikave modalnosti je
odvisna od kompleksnosti svetlostne odvisnosti slik. S svetlostno preslikavo
je mogoče realizirati le surjektivne svetlostne odvisnosti, ki predpostavljajo,
da se strukturi, ki ju je na osnovi svetlosti moč razločiti na prvi sliki, po
svetlosti ločita tudi na drugi sliki. Realne svetlostne odvisnosti so le red-
kokdaj surjektivne, kar ima za posledico napake v preslikavi in posledično
tudi poravnavi.

2. Poravnava z globalnim ocenjevanjem poravnanosti [73, 55, 70]. Izbolǰsanje
poravnanosti lokalnih neskladij ima za posledico tudi izbolǰsanje globalne
poravnanosti celotnih slik. Z merjenjem globalne poravnanosti slik, z
običajnimi večmodalnimi postopki, je torej mogoče zaznati tudi lokalne
spremembe poravnanosti slik, potrebne za netogo poravnavo. Področja, ka-
terih poravnanost se ne spreminja, pri tem prispevajo informacijo, ki pripo-
more k bolǰsi oceni svetlostne odvisnosti slik. Slaba stran tega postopka je
zelo velika računska zahtevnost, saj vsaka od številnih potrebnih meritev
lokalne poravnanosti zahteva analizo celotne slike, torej tudi področij, ki se
ob dani lokalni transformaciji sploh ne spremenijo. Računska zahtevnost je
odvisna tudi od števila prostorskih stopenj poravnave, ki se z omogočanjem
bolj lokalnih deformacij zelo hitro veča. Zato so postopki na osnovi glob-
alnih mer podobnosti zaradi časovnih zahtev omejeni na manj kompleksne
deformacije.

3. Poravnava z bloki (ang. block matching techniques) [9, 11, 24, 34, 41, 46].
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Ker večmodalni postopki merjenja poravnanosti slik niso primerni za po-
ravnavo izrazito majhnih slikovnih področij, uporablja postopek poravnave
z bloki nekoliko večja slikovna področja. Poravnavano sliko tako razdeli na
tako velike bloke, ki jih je še mogoče neodvisno in dovolj zanesljivo poravnati
z referenčno sliko. Pri tem se običajno uporablja toga poravnava. Rezultati
poravnav blokov se pripǐsejo njihovim sredǐsčem, na osnovi katerih se z in-
terpolacijo izračuna netoga transformacija celotne slike. Zmožnost deformi-
ranja slike je omejena z velikostjo uporabljenih področij, kar onemogoča
poravnavo izrazito lokalnih slikovnih neskladij, zaradi uporabe toge porav-
nave blokov pa se na mestih večjih deformacij lahko pojavi tudi sistematska
napaka poravnave.

4. Deformabilna poravnava slik. Ta skupina postopkov predstavlja nadgradnjo
enomodalnih netogih poravnav [4, 6, 14, 28], ki izhajajo iz fizikalnih last-
nosti deformabilnih materialov. Deformabilna poravnava temelji na ocen-
jevanju lokalne poravnanosti slik, ki ovira razvoj tovrstnih večmodalnih
poravnav. Ker so večmodalni postopki ocenjevanja poravnanosti slik v
osnovi globalni, se deformabilna poravnava za slike različnih modalnosti
uporablja le redko. V literaturi smo zasledili le dva postopka, ki bi ju
eventualno lahko uvrstili v to skupino poravnav [34, 38], a tudi ta dva
sta zaradi ocenjevanja poravnanosti razmeroma velikih področij slik ome-
jena le na manj kompleksne deformacije. Kljub temu moramo poudariti,
da je lokalnost večmodalnega ocenjevanja poravnanosti mogoče izbolǰsati
z uporabo dodatnega znanja. Zadostna količina dodatnega znanja lahko
omogoči ocenjevanje poljubno majhnih področij slik, kar lahko večmodalno
poravnavo po svojih zmožnostih približa ali celo izenači z enomodalnimi
postopki, ki omogočajo odpravo izrazito lokalnih slikovnih neskladij. Prob-
lematiki lokalnega ocenjevanja večmodalne poravnanosti slik in večmodalni
deformabilni poravnavi slik smo se posvetili v tej doktorski disertaciji.

Deformabilna poravnava slik

Deformabilna poravnava slik je postopek netoge poravnave, ki se zgleduje po
fizikalnih lastnostih materialov, ki se deformirajo pod vplivom zunanjih sil. Po-
ravnavana slika je modelirana kot deformabilno telo in izpostavljena prostorsko
porazdeljenim silam, ki spremenijo njeno konfiguracijo in jo na ta način poravnajo
z referenčno sliko. Zunanje sile so določene tako, da delujejo v smeri povečanja
medsebojne podobnosti slik. Slika se deformacijam upira z notranjimi silami, ki
ustrezajo uporabljenemu prostorskemu modelu deformacij. Končni rezultat po-
ravnave ustreza ravnovesnemu stanju, pri katerem so zunanje sile nasprotne no-
tranjim. Možna je tudi implementacija na osnovi energijske kriterijske funkcije.
V tem primeru ocenjeno odstopanje med slikama predstavlja zunanjo energijo,
ki nadomešča zunanje sile, transformacija modela deformacij pa predstavlja no-
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tranjo energijo. Ravnovesno stanje ustreza stanju minimalne skupne energije
sistema. Opisani postopek je leta 1981 predlagal Broit v svoji doktorski dis-
ertaciji [7], prvi praktični sistem tega tipa pa sta leta 1989 predstavila Bajcsy
in Kovačič [4]. Omenjeni sistem je bil osnova za nadaljnji razvoj deformabilnih
postopkov poravnave slik in veliko število tovrstnih sistemov poravnave.

Deformabina poravnava slik je iterativni postopek in sestoji iz dveh sklopov.
Prvi sklop je namenjen določitvi zunanjih sil, ki vodijo poravnavo v smeri
povečanja meadsebojne podobnosti med referenčno sliko in poravnavano sliko,
drugi sklop pa je model deformacij, ki zunanje slike preslika v ustrezno pros-
torsko transformacijo. V vsaki naslednji iteraciji se zunanje sile določi ponovno,
glede na že doseženo poravnanost slik.

Zunanje sile so običajno določene kot gradient podobnosti slik glede na
parametre transformacije, kar ustreza gradientnemu postopku optimizacije.
Parametri transformacije pri deformabilni poravnavi ustrezajo premikom kon-
trolnih točk poravnavanie slike. Podobnost slik mora odražati pravilnost po-
ravnanosti slik, zato je postopek merjenja podobnosti odvisen od relacij med
slikama. Ker zunanje sile delujejo lokalno, morajo biti odvisne od lokalne porav-
nanosti slik, zato je tudi podobnost med slikama običajno merjena lokalno. Za
enomodalno poravnavo slik je podobnost najpogosteje merjena na osnovi razlike
med svetlostjo istoležnih točk slik ali pa na osnovi lokalne križne korelacije med
slikama. Izbira mer podobnosti za večmodalno poravnavo slik je težavneǰsa, saj
so večmodalne mere podobnosti v osnovi globalne in ne omogočajo neposrednega
ocenjevanja lokalne poravnanosti slik.

Večmodalno merjenje lokalne podobnosti

Večmodalne mere podobnosti [39, 40, 83, 85, 84, 18, 78] omogočajo primerjanje
slik ne glede na njihovo svetlostno odvisnost, ki pred poravnavo običajno ni poz-
nana. Zato večmodalne mere podobnosti temeljijo na statističnih postopkih, s ka-
terimi implicitno ocenijo svetlostno odvisnost med slikama. Statistični postopki
zahtevajo veliko število vzorcev, v tem primeru veliko število slikovnih točk, kar
omejuje uporabo večmodalnih mer podobnosti na razmeroma velika področja slik.

Za izbolǰsanje lokalnisti večmodalnih mer podobnosti je bilo predlaganih
več postopkov, ki temeljijo na izbolǰsanju statistične ocene vezane svetlostne
porazdelitve, ki je osnova za izračun večmodalnih podobnosti in je običajno
določena z normiranjem vezanega histograma svetlosti slik. Najpreprosteje se
lokalnost večmodalnih mer izbolǰsa z zmanǰsanjem svetlostne ločljivosti. Omen-
jeni postopek ni primeren za slike, ki vsebujejo svetlostno podobna, a pomen-
sko različna področja, ki lahko zaradi zmanǰsanja svetlosne ločljivosti postanejo
nerazločljiva. Izbolǰsavo omenjenega pristopa predstavlja ocenjevanje vezane
svetlostne poradelitve z uporabo Parzenove cenilke [58]. Tudi ta postopek
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zmanǰsa svetlostno razločljivost, a brez uporabe nelinearnih postopkov. Računsko
učinkovito se postopek realizira s filtriranjem vezanega histograma. Manj pop-
ularni so postopki izbolǰsave lokalnosti z uporabo mer podobnosti, ki temeljijo
na enodimenzionalni statistiki. Takšna mera je naprimer entropija svetlostne po-
razdelitve vsote ali razlike slik [67, 9]. K izbolǰsanju lokalnosti večmodalnih mer
podobnosti prispeva tudi uporaba a priori znanj. Kadar je vezana svetlostna po-
razdelitev poravnanih slik znana vnaprej, je primerna uporaba ’likelihood’ mer
podobnosti [44, 65, 66]. Postopek je zanesljiv le kadar predpostavljena svetlostna
porazdelitev slik ne odstopa od dejanske, sicer pa lahko privede do napak po-
ravnave. Da bi se tem izognili, so bili predlagani postopki, ki predpostavljeno
svetlostno porazdelitev slik kombinirajo z ocenjeno dejansko porazdelitvijo, tako
da se za oceno podobnosti uporabi njuna utežena vsota [47]. Namesto a priori
vezane porazdelitve se lahko uporabi tudi vezana porazdelitev svetlosti celotnih
poravnavanih slik [52]. Možnosti za izbolǰsavo večmodalnih mer podobnosti se
kažejo tudi v uporabi drugačnega dodatnega znanja, naprimer dodatnega znanja
o segmentaciji slik [87], znanja pridobljenega iz predhodno poravnanih slikovnih
baz in podobno.

Kljub vsem predlaganim izbolǰsavam je zanesljivo merjenje večmodalnih
podobnosti ostalo omejeno na razmeroma velika področja slik, ki ne zagotavl-
jajo zadostne lokalnosti za pravilno poravavo kompleksnih slikovnih neskladij.
Postopki poravnave zato lokalno poravnanost slik pogosto ocenjujejo z merjen-
jem podobnosti večjih področij, podvrženih lokalnim geometrijskim transforma-
cijam [73, 55, 70]. Za te postopke je značilna visoka časovna zahtevnost, ki
zmanǰsuje njihovo uporabno vrednost.

Modeli deformacij

Model deformacij služi preslikavi zunanjih sil v anatomsko smiselno transforma-
cijo. Modeli deformacij zato modelirajo lastnosti realnih deformabilnih materi-
alov, najpogosteje elastičnost [4, 13, 33, 34] ali viskoznost [25, 14, 6].

Najznačilneǰsa fizikalna lastnost tkiv je elastičnost, zato je za modeliranje
transformacij pri poravnavi slik najpogosteje uporabljen elastični model defor-
macij. Povezavo med zunanjimi silami in pripadajočo transformacijo elastičnega
material podaja Navier-Stokesova parcialna diferencialna enačba, ki je tudi os-
nova za elastični model. Za reševanje diferencialne enačbe elastičnosti je bil naj-
prej predlagan relaksacijski postopek [4], ki je računsko zelo zahteven. Leta 1993
je bil predstavljen postopek reševanja diferencialnih enačb elastičnosti z metodo
končnih elementov [29, 26]. Ideja izhaja iz mehanike, kjer se končni elementi
uporabljajo za modeliranje mehanskih obremenitev togih konstrukcij. Uporaba
končnih elementov preslika diferencialno enačbo elastičnosti v enostavneǰso ma-
trično enačbo, poleg tega pa omogoča, da se področja velikih deformacij modelira
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natančneje od ostalih področij slik, kar zmanǰsa potrebno število kontrolnih točk
in na ta način zmanǰsa tudi računsko zahtevnost.

Za elastični model deformacij je značilna sistematska napaka, saj so za ohran-
janje deformiranega stanja potrebne od nič različne zunanje sile, ki lahko nas-
tanejo le kot posledica nepopolne poravnave slik. Sistematska napaka elastičnosti
se veča z velikostjo deformacij, kar onemogoča poravnavo velikih slikovnih
neskladij. Za zmanǰsanje sistematske napake elastičnosti je bil najprej predla-
gan inkrementalni pristop [4], kasneje pa je bil vpeljan viskozni model deforma-
cij [25, 14]. Viskozni model ni podvržen sistematski napaki in omogoča poljubno
velike deformacije. Zaradi velikih razlik med lastnostmi viskoznega modela defor-
macij in realnimi lastnostmi bioloških tkiv, pa takšen model ne zagotavlja pravil-
nosti poravnave. Omenjeni mehanizem namreč omogoča velike deformacije, ne
glede na njihovo anatomsko pravilnost oziroma smiselnost.

Reševanje parcialnih diferencialnih enačb elastičnosti ali viskoznosti je
računsko zelo zahtevno. Pomemben korak v smeri zmanǰsanja računske za-
htevnosti predstavlja uporaba konvolucijskih filtrov. Bro-Nielsen in Gramkow
sta leta 1996 predstavila konvolucijski filter za reševanje parcialne diferencialne
enačbe viskoznosti [6]. Pri tem je jedro konvolucijskega filtra enako impulznemu
odzivu materiala. Enak filter je lahko uporabljen tudi za reševanje parcialne
diferencialne enačbe elastičnosti. Tak pristop pomeni 1000 kratno pohitritev,
saj je za izračun rešitve potreben en sam prelet podatkov. Računsko zahtevnost
modelov deformacij je možno še dodatno zmanǰsati z uporabo separabilnih kon-
volucijskih filtrov [31]. Najpogosteje je uporabljan Gaussov filter, ki je pogosto
predstavljen kot aproksimacija fizikalnih modelov elastičnosti in viskoznosti. V
tej skupini je potrebno izpostaviti ’demonov’ algoritem [80, 81, 60], ki izhaja iz
zakonov termodinamike, zanj pa je značilna ugodna računska zahtevnost.

Anatomske strukture običajno sestojijo iz več različnih tipov tkiv, ki imajo
različne fizikalne lastnosti. To upoštevajo tako imenovani biomehanski modeli
deformacij [33, 23]. Tovrstni modeli v praksi še niso deležni večje pozornosti,
saj zahtevajo segmentacijo poravnavanih slik, hkrati pa je težavno tudi določanje
optimalnih parametrov modela. Omenimo naj še verjetnostni pristop (angl. prob-
abilistic matching), ki dopušča uporabo dodatnega znanja o možnih deformaci-
jah, s katerim opǐse anatomsko variabilnost [56, 27, 3, 28, 86]. Takšno dodatno
znanje lahko zmanǰsa verjetnost napačne poravnave, a zaradi velike kompleksnosti
in variabilnosti človeške anatomije je uporaba postopka omejena z možnostmi
izdelave verjetnostnih modelov. Tovrstni modeli so v glavnem omejeni na nor-
malne anatomije, brez patologij.

V posebnih primerih lahko poravnava deluje tudi brez eksplicitno določenega
modela deformacij [52]. Na možne deformacije slik namreč vpliva tudi izbira
velikosti področij, uporabljenih v postopku ocenjevanja lokalne poravnanosti slik.
Pri uporabi večjih slikovnih področij je namreč občutljivost na detajlne slikovne
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razlike manǰsa, zato le teh ni mogoče primerno zaznati in odpraviti. Ocenjena
deformacija tako izhaja le iz večjih, nižje frekvenčnih slikovnih razlik.

Izvirni prispevki k znanosti

V doktorski disertaciji smo raziskovali, razvili in vrednotili postopke za
večmodalno netogo poravnavo slik. Izvirni prispevki k znanosti so sledeči:

• Razvoj nove družine mer podobnosti, imenovane točkovne mere podobnosti,
ki omogoča večmodalno merjenje podobnosti poljubno velikih področij slik,
vključno s področji velikosti posameznih točk.

• Razvoj postopka simetrične poravnave slik, ki izbolǰsa konsistenco in pravil-
nost netogih poravnav.

• Analiza modelov deformacij in razvoj kombiniranega prostorskega modela
deformacij, ki združuje lastnosti elastičnih in inkrementalnih modelov z
namenom zmanǰsanja napake poravave.

• Analiza postopkov vrednotenja netoge poravnave slik in razvoj novega
postopka vrednotenja, ki omogoča bolǰse zaznavanje napak poravnave.

• Razvoj sistema za poravnavo slik, ki omogoča togo in netogo ter enomodalno
in večmodalno poravnavo slik.

Izvirni prispevki k znanosti so podrobneje pojasnjeni v nadaljevanju.

Točkovne mere podobnosti

Poglavje 2

Večmodalna netoga poravnava je namenjena odpravljanju slikovnih neskladij ra-
zličnih prostorskih razsežnosti, vključno z izrazito lokalnimi. Za detektiranje in
eventualno odpravo prostorsko manǰsih neskladij je potrebno ocenjevanje lokalne
skladnosti slik, ki lahko temelji na merjenju globalne podobnosti, to je podob-
nosti celotnih slik, ali na merjenju lokalnih podobnosti, to je podobnosti majhnih
področij slik. Postopek na osnovi merjenja globalne podobnosti je zaradi velike
računske in časovne zahtevnosti neprimeren za visoko dimenzionalne poravnave,
in tako omejen le na odpravljanje enostavneǰsih slikovnih neskladij. Problem
merjenja lokalnih podobnosti pa je v tem, da običajni in uveljavljeni postopki
merjenja večmodalne podobnosti za to niso primerni, saj zaradi statističnega de-
lovanja zahtevajo razmeroma velika pordočja slik. V principu uporaba manǰsih
področij omogoča zaznavo prostorsko manǰsih slikovnih neskladij in tako omogoča
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natančneǰso poravnavo slik. Da bi omogočili poravnavo vseh slikovnih neskladij
ne glede na njihovo prostorsko razsežnost, smo razvili novo vrsto mer podob-
nosti, ki omogoča večmodalno merjenje podobnosti poljubno velikih področij slik,
vključno z najmanǰsimi, ki obsegajo le posamezno točko slike. Zaradi točkovnega
ozadja te mere imenujemo točkovne mere podobnosti.

Točkovne mere podobnosti smo razvili iz uveljavljenih globalnih večmodalnih
mer podobnosti, kot sta entropija in medsebojna informacija. Večmodalne mere
morajo za oceno poravnanosti dveh slik implicitno oceniti tudi svetlostno odvis-
nost med slikama, ki je lahko zelo kompleksna in je običajno vnaprej nepoznana.
Določitev svetlostne odvisnosti temelji na statistični oceni vezane porazdelitve
svetlosti slik, za kar je potrebno veliko število vzorcev slike in zato razmeroma
velika področja slik. Da bi omogočili merjenje podobnosti poljubno majhnih
področij slik, smo proces merjenja večmodalne podobnosti razdelili v dva ko-
raka: določitev svetlostne odvisnosti in dejansko merjenje podobnosti. Določitev
svetlostne odvisnosti med poravnavanima slikama temelji na oceni vezane po-
razdelitve svetlosti celotnih slik. Možnih je več postopkov, ki ustrezajo različnim
točkovnim meram podobnosti. Rezultat, izračunana svetlostna odvisnost, po-
daja vrednost podobnosti za vsak možen svetlostni par referenčne in poravnavane
slike. V drugem koraku, je svetlosna odvisnost uporabljena za merjenje podob-
nosti posameznih točk slik. Podobnost dveh točk, točke na referenčni sliki in
točke na poranavani sliki, je enaka podobnosti, ki jo svetlostna odvisnost določa
za točkama pripadajoč svetlosni par. Podobnost večjih področij slik je enaka
povprečju podobnosti točk (običajno vokslov) na danem področju.

Svetlostna odvisnost slik je lahko izračunana le enkrat in velja za vse točkovne
pare poravnavanih slik. Razvili smo več različnih točkovnih mer podobnosti, ki
se razlikujejo glede na način določitve svetlostne odvisnosti. Nekatere točkovne
mere smo izpeljli iz uveljavljenih globalnih večmodalnih mer podobnosti, druge pa
smo razvili na osnovi zahtev večmodalne netoge poravnave slik. Razvite točkovne
mere podobnosti smo med seboj primerjali in jih preizkusili v sistemu večmodalne
netoge poravnave slik.

Simetrična poravnava

Poglavje 3

Poravnava slik temelji na predpostavki, da večja podobnost med slikama pomeni
bolǰso poravnanost slik. Vendar pa mere podobnosti ne morejo zaznati transfor-
macij, ki ne spremenijo izgleda poravnavane slike. V primeru netoge poravnave to
predstavlja velik problem, saj onemogoča zanesljivo ocenjevanje poravnanosti in-
formacijsko manj bogatih področij slik, naprimer svetlostno homogenih področij
slik. Zunanje sile se zato lahko pojavijo le na informacijsko bogatih področjih,
to je na področjih z od nič različnim gradentom svetlosti, naprimer na prehodih
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med različnimi tipi tkiv. Vzrok tega je, da s poravnavo slik v različnih smereh,
to je poravnavo prve slike na drugo sliko in poravnave druge slike na prvo sliko,
dobimo različno poravnanost slik, saj se zunaje sile, ko sliki še nista poravnani,
pojavijo na različnih mestih slik. Ta nesimetričnost kaže na slabo konsistenco in
pravilnost poravnave. Za rešitev omenjenega problema smo predlagali postopek
simetrične poravnave.

Simetrična poravnava je postopek, ki obe sliki obravnava na enak način. Sliki
si delita skupni svetovni koordinatni sistem in se seveda lahko prekrivata. Vsaka
od slik je lahko modelirana s svojim modelom deformacij, ki pa je lahko za vsako
od slik drugačen. V skladu s tem se vsaka od slik lahko giblje in deformira.
Najpomembneǰsa razlika glede na običajne postopke poravnave pa je interakcija
med slikama. Sliki ena na drugo delujeta z zunanjimi silami, ki so po tretjem
Newtonovem zakonu simetrične. Če ena od slik na drugo deluje z neko silo,
potem druga slika deluje na prvo s po velikosti enako a nasprotno silo. Zunanje
sile se tako pojavijo kot posledica zaznane neporavnanosti prve slike na drugo
sliko, kot tudi druge slike na prvo sliko. Rezultat delovanja takšnih simetričnih
sil je transformacija slik, ki celotni sistem privede v ravnovesno stanje prostorsko
poravnanih slik. Takšna poravnava je zaradi simetričnosti postopka bolj kon-
sistentna ter zaradi večje količine uporabljene informacije tudi bolj pravilna od
poravnave po klasičnih, nesimetričnih postopkih.

Simetrično poravnavo slik smo učinkovito realizirali z uporabo točkovnih mer
podobnosti. Pri tem smo referenčno sliko modelirali kot fiksno, poravnavano
sliko pa z ustreznim deformabilnim modelom. Rezultate postopka simetrične
poravnave smo primerjali z rezultati dveh običajnih nesimetričnih postopkov, pri
čemer smo uporabili enostavne testne slike ter sintetične in realne medicinske
slike. Rezultati dokazujejo prednosti simetrične poravnave.

Modeli deformacij

Poglavje 4

Prostorski model deformacij določa deformabilne lastnosti poravnave.
Pričakovano je, da najbolj pravilno poravnavo slik dosežemo z uporabo
fizikalnih modelov deformacij, ki se zgledujejo po deformabilnih lastnostih
poravnavanih tkiv. Najznačilneǰsa lastnost tkiv je elastičnost, vendar pa je
za elastične modele deformacij značilna sistematska napaka poravnave, ki
onemogoča natančno poravnavo in je še posebno izrazita v primeru velikih
deformacij. Kot rešitev tega problema sta se v praksi uvejavila dva druga
modela deformacij, inkrementalni in viskozni. Oba omogočata na videz dobro
poravnavo, brez sistematske napake, značilne za elastični model. Njune lastnosti
pa se razlikujejo od lastnosti tkiv, zato v poravnavo vnašata napako, predvsem
na informacijsko manj bogatih področjih slik. Da bi zmanǰsali napako poravnave
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smo razvili nov kombiniran model deformacij, ki združuje lastnosti elastičnih
in inkrementalnih modelov. Elastični del pripomore k lineraneǰsi odvisnosti
med silami in doseženo deformacijo, inkrementalni pa k zmanǰsanju sistematske
napake elastičnosti.

Za dosego realističnih deformacij slik so potrebni ne le realistični modeli de-
formacij, temveč tudi realistične zunaje sile. Zunanje sile so v primeru netoge
poravnave določene tako, da delujejo v smeri izbolǰsanja podobnosti slik, zato
delujejo le na informacijsko bogata področja slik, kar običajno ustreza prehodom
med različnimi tipi tkiv. Temu ustrazno je potrebno prilagoditi uporabljen model
deformacij. Problem smo ilustrirali z uporabo modela deformacij na osnovi kon-
volucijskega filtriranja. Pokazali smo, da konvolucijsko jedro, ki ustreza dejan-
skim lastnostim tkiv, za poravnavo slik ni nujno najprimerneǰse. To opravičuje
uporabo enostavneǰsih in računsko manj zahtevnih Gaussovih modelov. Modeli
deformacij bi torej morali upoštevati ne le lastnosti tkiv, temveč tudi pričakovano
porazdelitev sil, ki delujejo na poravnavane anatomske strukture.

Vrednotenje večmodalnih netogih poravnav

Poglavje 5

Rezultat poravnave slik je transformacija poravnavane slike, ki je potrebna za
dosego prostorske skladnosti slikam pripadajočih anatomskih struktur. Ker
pravilna transformacija realnih slik nikoli ni točno znana, je vrednotenje netogih
poravnav v praksi zelo težavno, saj neposredna primerjava dosežene transforma-
cije s pravilno transformacijo ni možna. Za vrednotenje netogih poravnav se zato
uporabljajo indirektni postopki, ki pa imajo pomanjkljivosti in ne omogočajo
zaznavanja vseh napak poravnave. Pri načrtovanju poravnav in njihovem vred-
notenju se je potrebno zavedati pomanjkljivosti postopkov vrednotenja, saj bolǰsi
rezultat vrednotenja ne pomeni nujno tudi bolǰse poravnave. V tej disertaciji smo
opozorili na slabosti posameznih postopkov vrednotenja ter predlagali nov način
vrednotenja, primeren za poravnave na osnovi točkovnih mer podobnosti.

V primeru uporabe točkovnih mer podobnosti sestoji poravnava iz dveh
funkcijsko ločenih sklopov: sklop za določanje zunanjih sil, katerega naloga
je maksimiranje podobnosti slik, in prostorski model deformacij, ki zagotavlja
anatomsko smiselnost poravnave. Zaradi funkcijske ločenosti je vsak sklop
mogoče vrednotiti ločeno. Temu ustrezno predlagamo vrednotenje v treh korakih.
V prvem koraku vrednotimo sklop določanja zunanjih sil, v drugem koraku vred-
notimo model deformacij in v tretjem celoten sistem poravnave. Takšen način
vrednotenja prinaša pomembno prednost predvsem v primeru večmodalne po-
ravnave slik, saj je zaradi majhnega števila značilnic, ki jih lahko določimo na
slikah različnih modalnosti, ocena realnih transformacij v tem primeru še posebej
težavna. Vrednotenje posameznih sklopov je namreč manj zahtevno kot vred-
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notenje celotne poravnave. Sklopa za določanje zunanjih sil namreč ni potrebno
vrednotiti na osnovi realnih transformacij, temveč so te lahko generirane sin-
tetično in tako točno znane. Prav tako vrednotenje modela deformacij ne zahteva
slik različnih modalnosti, pač pa so lahko uporabljene slike iste modalnosti, na
osnovi katerih se transformacija lahko oceni natančneje. Prva dva koraka vred-
notenja tako omogočata bolǰse detekcijo napak, izbiro postopkov in nastavitev
sistema kot to omogoča vrednotenje celotnega sistema. Vrednotenje celotnega
sistema, kot tretji korak vrednotenja, je še vedno potrebno in zahteva večmodalne
slike in realne deformacije, a skupna kvaliteta vrednotenja je bolǰsa in omogoča
zaznavanje več vrst napak poravnave.

Sistem za poravnavo medicinskih slik

Poglavje 6

Večmodalna netoga poravnava slik je namenjena uporabi v klinični medicini kot
tudi za medicinske raziskave. Gre za razmeroma nov postopek, ki predvsem v
klinični medicini še ni uveljavljen. Razlogov za to je več, med drugim tudi težavno
vrednotenje, ki ni možno brez visoko usposobljenih strokovnjakov s področja
medicine. Da bi širše predstavili zmožnosti netoge poravnave, omogočili vred-
notenje predlaganih postopkov in olaǰsali nadaljne raziskave, smo razvili splošen
sistem za poravnavo slik.

Sistem, ki smo ga razvili omogoča togo in netogo ter enomodalno in
večmodalno poravnavo slik. Poravnavane so lahko slike najrazličneǰsih modal-
nosti in poljubnih delov telesa, iste ali različnih oseb. Sistem temelji na postopkih
predlaganih v tej doktorski disertaciji. Uporabljene so točkovne mere podobnosti,
za netogo poravnavo pa tudi postopek simetrične poravnave in kombiniran model
deformacij. Sistem ne uporablja nobenega specifičnega znanja, kar prispeva k
njegovi spľsnosti. Razvit sistem smo uporabili za testirane predlaganih postop-
kov ter za vrsto poravnav namenjenih medicinskim raziskavam. Sistem omogoča
nadaljne raziskave na področju obdelave medicinskih slik in je primeren za demon-
stracijo zmožnosti, ki jih poravnava nudi na področju medicinske diagnostike in
načrtovanja zdravljenja. Sistem ni primeren za uporabo v klinični medicini, saj
ni ustrezno vrednoten.



1. Introduction and Summary

Tomographic images play an important role in modern medical diagnosis. They
enable observation and analysis of body structure and function. The information,
which they provide, can be essential for detection and understanding of diseases
and pathological differences. By registering multiple images, i.e. putting them
into a spatial correspondence such that location of imaged anatomical structures
is identical in both images, the information of the images is combined and useful
extra information is obtained. This enables observation of changes in anatomy
and/or function during time, comparison between multiple subjects and integra-
tion of information provided by different modality images. Registration can be
used for various medical applications, e.g. development of anatomical atlases,
comparison of subjects, medical examination, planning and evaluation of medical
treatment, intraoperative localization, etc.

Different properties of imaged object/subject can be measured using different
image acquisition techniques. Some examples of images acquired using different
imaging techniques, i.e. images of different modality, are shown in Figure 1.1.
The relation between measured properties is usually not known and, therefore,
the relation between intensities of different images is not known either. This
makes registration of such multi-modality images more complex than registration
of mono-modality images, obtained using the same acquisition method. However,
when multi-modality images are registered, valuable additional information can
be obtained. For example, multi-modality registration of CT images, which show
the anatomy, and PET images, which represent activity, provides the information
about activity of anatomical structures.

Differences between the images can also appear due to the changes of geometry
of anatomical structures. The geometrical differences in the anatomy can appear
due to different position of the patient, organ activities or due to pathology.
Furthermore, additional geometrical differences between the images may appear
due to different imaging conditions. Such images can be correctly registered using
non-rigid registration methods, which not only move and rotate the images, like
in the case of rigid registration, but also deform them in such a way as tissues are
expected to deform in reality. This, for example, enables detection and analysis
of localized image differences as well as comparison and propagation of medical
knowledge between different anatomies.

1
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CT MRI − T1

MRI − PD PET

Figure 1.1: Images of different modalities, acquired using different imaging tech-
niques. Because they represent different physical properties of tissues, they look
very different although they belong to the same anatomy. The relations between
intensities of different modality images is not known, which makes multi-modality
registration more complex than mono-modality registration.
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Figure 1.2: Image registration is a process of finding transformation T, which
puts two imaged anatomies in correspondence. Search for such transformation is
normally based on assumption that more correct transformation reflects in higher
similarity S between target image A and transformed source image TB.

One of the most difficult registration tasks is multi-modality non-rigid regis-
tration. Complex and unknown multi-modality relations between intensities of
involved images makes estimation of local image correspondence difficult. Conse-
quently, precise registration of images with complex local image discrepancies is
difficult as well. In this doctoral dissertation we deal with the problems of multi-
modality non-rigid registration and propose new methods and improvements,
which aid to the quality of registration results.

1.1 The definition of image registration

Image registration is a process, which involves two images, A and B, and tends
to find a geometrical transformation T that maps one image to the other one,
such that each anatomical point in one image gets moved to the same world
coordinates as the corresponding anatomical point in the other image.

The correctness of the transformation usually cannot be measured directly,
but it is commonly assumed that more correct registration results in more similar
images. Consequently, in practice, the registration is a process, which searches
for such transformation that maximizes some criterion function in which im-
age similarity S plays an essential role, with the assumption that the obtained
transformation is the one, which correctly matches the imaged anatomies. The
situation is illustrated in Figure 1.2.

Unfortunately, the assumption that higher image similarity corresponds to
more correct registration is not always valid. This is the most evident in the
case of non-rigid registration. Here, the increase of similarity may also be related
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to physically meaningless transformation. To prevent that, non-rigid registra-
tion must be spatially regularized, usually by spatial deformation model, which
prevents such incorrect transformations.

1.2 Related work on non-rigid registration

In this section we review and classify the related work on non-rigid image regis-
tration and pay special attention to the work on multi-modality non-rigid regis-
tration. For more general review and classification of registration approaches see
the papers of Brown [8], Lester and Arridge [43], Maintz [53], Pluim et al. [64],
Thompson and Toga [82] and Zitova and Flusser [90].

Non-rigid image registration techniques in general differ according to the type
of feature space used for estimating the image correspondence and according to
the type of spatial deformation model used for regularizing the image transfor-
mation.

1.2.1 Feature space

According to the type of feature space used for estimating the image correspon-
dence we classify non-rigid image registration techniques into geometrically based
approaches and intensity based approaches.

Geometrically based approaches estimate the deformation field from local-
ized geometric features. Such features include point landmarks [72, 71, 45],
curves [49, 59] and surfaces [22, 21, 79], all of these can be localized manually or
automatically. The resulting deformation is obtained by pairing these features in
both images and interpolating the surrounding deformation field using splines, ra-
dial basis functions, diffusion or physical spatial deformation models. The quality
of registration highly depends on quality of feature localization, which is a dif-
ficult task. Automatic feature extraction is difficult due to complex geometry
and texture of anatomical features, while manual feature extraction is very time
consuming, requires highly qualified medical experts, and still, it is subjective.
This difficulties limit the use of geometrically based approaches.

Intensity based approaches employ the information of the whole images. In
contrast to geometrically based approaches they do not require any feature ex-
traction and they do not directly consider anatomical features. Image registration
is performed as an optimization procedure that optimizes the transformation pa-
rameters in order to maximize the quality of image alignment. The quality of
image alignment is measured using mathematical or statistical methods, which
are called similarity measures. To achieve realistic registration results, without
tearing or folding of the image, transformation is regularized using spatial defor-
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mation models, which often model physical properties of deformable materials,
e.g. elasticity [7, 4, 28], viscosity [14, 6] or simplified/fictious convolution based
models [60, 73].

In general, intensity based approaches depend on larger number of image vox-
els than geometric approaches, which makes them more time consuming. How-
ever, they do not require feature extraction and enable registration of images
where feature extraction is difficult or unfeasible. Due to this advantage and
fast advancement of computers, intensity based registration approaches are more
widely used, and are also the subject of this work.

1.2.2 Spatial deformation models

The rapid evolution of intensity based non-rigid registration techniques started in
1981, when Broit proposed modeling of images by physical deformable media [7].
The image, which is being registered, is treated like an elastic medium, which
can be deformed by applying spatially distributed external forces. Following
this principle, the registration is a process in which external forces, which are
derived from the images, drive the transformation (deformation) process toward
the final configuration, which in ideal case puts both of the images into register.
One of the first systems of this kind was built in 1989 by Bajcsy and Kovačič [4].
Their elastic deformation model was based on Navier-Stokes equation, which links
the external forces with consequent image deformation. They also proposed an
incremental approach, which reduces the registration error caused by elasticity
constraint. In order to avoid local minima and provide computational efficiency,
they also used a coarse-to-fine strategy. This system has motivated research and
development of other non-rigid registration systems, which have demonstrated
several improvements.

In 1993 a finite element approach was proposed for solving partial differen-
tial equation of elasticity [29, 26]. Finite elements were adopted from mechanics,
where they are used for computing mechanic loads of rigid objects. In the field
of non-rigid medical image registration this approach aids to more realistic mod-
eling of anatomies and enables estimation of actual body tensions. Furthermore,
it enables biomechanical modeling of anatomy, such that different physical prop-
erties are used for different tissue types [33, 23]. However, biomechanical models
depend on the registered anatomy and require image segmentation. Difficulties
also arise in finding the optimal setting of mechanical properties. Consequently,
biomechanical modeling has not attracted much attention yet.

Elastic models do not enable precise correction of large deformations. By in-
creasing the required deformation the registration error increases as well. This
systematic error can be reduced by using incremental deformations mentioned
earlier. The drawback of incremental approach is in nonlinearity and reduced



6 Introduction and Summary

consistency, which originates in non-linear relation between remaining image dis-
crepancy and estimated external forces. One alternative to the elastic model is a
viscous fluid model [25, 14], which enables large deformation without systematic
error. This model differs from real tissue properties and thus it does not constrain
the deformation realistically. Although it enables arbitrary large deformations,
they are not necessarily anatomically correct and phisically meaningful.

Solving of partial differential equations (of elasticity or viscosity) is computa-
tionally complex and time consuming. An important step in reducing the com-
putational requirements was made in 1996 by Bro-Nielsen and Gramkow, who
developed a convolution filter to solve the system of partial differential equations
in a single pass over the data [6]. The convolution kernel for elasticity equals the
impulse response of the elastic media. This approach speeds up the computation
by a factor of 1000 [82].

The computational complexity of spatial deformation models can be addi-
tionally reduced by using separable convolution filters [31]. The most often used
kernel is Gaussian, which can be understood as an approximation of either elastic
or viscous fluid models. Convolution filtering is also used in a popular ’demon’
algorithm [80, 81, 60], which follows the principles of thermodynamics and is
famous for its low computational cost.

In special cases the registration can be performed without explicit spatial de-
formation model [52]. The actual image deformation capability does not depend
only on explicit deformation model, but also on the registration procedure, specif-
ically on the size of regions used for estimating the quality of local image match.
The larger the regions are, the lower is the sensitivity to detailed high frequency
image differences, and thus the obtained deformations are smoother and more
constrained.

We have to mention that external forces used in the registration process do not
necessarily equal the forces that actually act on the deformed anatomy. Therefore,
the results obtained using the previously mentioned physically inspired models
may still not be absolutely correct. One important idea to improve the results is
the use of probabilistic approach. In this case the non-rigid registration is consid-
ered as a problem of finding image transformation with the highest probability,
using decision-theoretic approach, based on Bayesian modeling [56, 27, 3, 28, 86].
Probabilistic matching incorporates prior knowledge by using probability models,
which specify the anatomic variability of admissible spatial and intensity trans-
formations. Such additional knowledge is expected to improve the registration,
but due to high anatomical variability it is difficult to build adequate probability
models, which are usually limited to anatomies without pathology.
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1.2.3 Multi-modality non-rigid Registration

Multi-modality non-rigid registration is considerably more complex than mono-
modality non-rigid or multi-modality rigid registration. The problem arises be-
cause multi-modality similarity measures are due to their statistical nature all
global, while non-rigid registration is used to deal with local image discrepan-
cies. This prevents multi-modality non-rigid registration to directly follow the
mono-modality non-rigid registration solutions, where similarity is measured lo-
cally. Thus, in the mono-modality case local image discrepancies can be di-
rectly assessed, mostly by measuring correlation or mean square intensity differ-
ence [8, 39, 66]. In contrast, the existing multi-modality similarity measures are in
general all global and cannot be used locally. The most often used multi-modality
similarity measures are mutual information, which was proposed in 1995 by Viola
and Wells [83] and Collignon [18], and normalized mutual information, which was
proposed in 1999 by Studholme et.al. [78]. Several authors have proposed novel
approaches for multi-modality non-rigid registration in order to avoid the prob-
lem that appears due to the global nature of multi-modality similarity measures.
We classify these approaches into four categories:

Registration approaches based on global similarity measures [73, 55, 70]. These
approaches detect improvement of local image correspondence by observing global
image similarity. They are suitable for simple smooth deformations, which can
be modeled by low parameter deformation models. The drawback of these ap-
proaches is that each estimation of some local property requires recomputation of
global image similarity i.e. similarity of the whole images. Consequently, by in-
creasing the number of parameters this approaches become very time consuming,
and therefore, they are not applicable for high dimensional problems.

Block matching techniques [11, 24, 34, 41, 46] divide one image into smaller
regions, which are independently registered to the other image using multiple
low-dimensional transformations. Transformations obtained for the individual
image regions are then used to obtain smooth global transformation. In gen-
eral, registration results improve by reducing the region size and increasing the
number of regions. However, regions cannot be arbitrarily small, as reduction
of region sizes decreases performance of multi-modality similarity measures used
for estimating image correspondence. Therefore, these approaches are also not
suitable for detecting complex local image discrepancies.

Approaches based on intensity transformation. One such approach was pro-
posed by Guimond et al. [32]. The method is based on applying intensity trans-
formation to one of the images, such that it matches the intensity properties
of the other image. After that, images can be registered using high-dimensional
mono-modality, instead of multi-modality, non-rigid registration algorithms. Such
approaches can in theory reach the same accuracy as mono-modality approaches.
However, they are limited to images with a functional intensity dependence. It
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is required that intensity transformation is a surjective function, such that two
different tissues that differ in intensity in one image do not have the same inten-
sity representation on the other image. Real multi-modality images do often not
comply to this requirement.

Continuum mechanics approaches [34, 38]. This category of approaches tends
to follow the mono-modality continuum mechanics solutions, such as [4, 6, 14, 28].
For this purpose it is necessary to develop a method to obtain external forces for
each voxel of the image that is being registered. Relying on the gradient descent
optimization procedure, such external forces can be obtained as a gradient of
image similarity. Here, it is possible to use the commonly used multi-modality
similarity measures. Although they are in general global (cannot be applied to
local image regions), they may still be locally sensitive (can detect local image
differences). However, this approach is computationally complex and less appro-
priate for high dimensional registration.

We propose a different solution, a new set of multi-modality similarity mea-
sures, which we call point similarity measures and can be applied locally [69].
Consequently, the estimation of similarity gradient can easily be numerically
estimated and becomes trivial. These measures enable us to perform high-
dimensional multi-modality non-rigid registration without any limitation in in-
tensity dependence between the images, while preserving the quality of mono-
modality solutions.

1.3 Continuum mechanic non-rigid registration

Continuum mechanics non-rigid registration imitates the real world transforma-
tion of deformable materials. The approach was first proposed by Broit [7] in
1981. The transformation is caused by external forces, which act on the de-
formable media. The deformable media reacts with internal forces, which depend
on the material properties and constrain the deformation. The result is an equi-
librium state, in which external forces Fext and internal forces Fint are equal in
size and opposite in orientation:

Fint = −Fext. (1.1)

In the case of image registration the external forces are obtained such that they
tend to improve the matching of the images. The quality of image match is
assessed by measuring image similarity, such that the external forces F = Fext

are normally computed as a gradient of image similarity. Specifically, the external
force F(x), where x is a world coordinate at which the force acts, is obtained as a
gradient of image similarity S with respect to transformation of the point T(x):

F(x) =
∂S

∂T(x)
. (1.2)
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The relation between the external forces F and consequent transformation T is
modeled by a spatial deformation model. The spatial deformation model can
follow physical properties of deformable media, e.g. elasticity or viscosity, or
any other properties that constrain the transformation in a way that suits to the
registered anatomy. In general the model must prevent tearing and folding of the
images and assure certain smoothness of the transformation.

Continuum mechanic registration can also be performed by minimizing a total
system energy Esystem,

Esystem = Einternal + Eexternal, (1.3)

which also leads to the equilibrium state and transformation that corresponds to
the registered images. Here, the external energy Eexternal is defined by the image
differences and the internal energy Einternal is defined by the spatial deformation
model.

A block scheme of continuum mechanic non-rigid registration is shown in Fig-
ure 1.3. The registration consists of two basic stages: the estimation of external
forces and the spatial deformation model. External forces are computed from a
target image A and image B′ = TB, which is the source image B transformed
with the current transformation T (initially T(x) = 0). The obtained forces
additionally transform the target image, such that the transformation iteratively
converges towards the equilibrium state, which is searched by the registration.

Figure 1.3: A block scheme of non-rigid registration.
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1.4 Contributions of the thesis

In this thesis we deal with problems related to multi-modality non-rigid registra-
tion. Contributions of the thesis are the following ones:

• Point similarity measures, which can measure similarity of individual image
points, even in the case of multi-modality images.

• Symmetric image registration approach, which improves registration consis-
tency and registration correctness in comparison to commonly used asym-
metric approaches.

• Analysis of convolution based spatial deformation models and development
of combined elastic-incremental model.

• Analysis of approaches for evaluation of non-rigid registration and develop-
ment of a three step evaluation strategy.

• System for multi-modality rigid and non-rigid image registration.

The contributions are described in detail in Chapters 2–5:

Chapter 2: Point similarity measures

Point similarity measures are a new set of multi-modality similarity measures,
suitable for the multi-modality implementation of non-rigid registration based
on continuum mechanics. They are based on the information obtained from the
whole images, but can be applied locally. Specifically, they can measure similarity
of individual image points. Obviously, they can also be used to measure similar-
ity of image regions of arbitrary size. These measures have several advantages
when used for non-rigid registration. In addition to their locality, which enables
direct detection of local image discrepancies and improve modeling of spatial
deformation properties, they also solve the problem of interpolation artifacts.

Chapter 3: Symmetric image registration

Symmetric image registration is a novel approach for improving correctness and
consistency of non-rigid registration. It treats both images involved into the
registration process in the same manner. Both images may be modeled by spatial
deformation models, such that both of them may move and/or deform. Finally,
the most distinctive feature of the symmetric registration approach is interaction
between the images. Images interact through forces, in accordance with the
Newton’s third law of motion. Forces on one image reflect in opposing forces on
the other image, which forms the basis for symmetry. The result of the interaction
is transformation of the images that puts the system into the equilibrium state
of minimal energy.
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Chapter 4: Spatial deformation models

We analyze convolution based spatial deformation models and propose a new
combined elastic-incremental model. When elastic and incremental models are
used individually, they are faced with certain difficulties. The difficulty of the
elastic model is a systematic error, which is caused by restrictions on the overall
voxel displacements and makes this model appropriate only for relatively small
deformations. On the other hand the incremental model allows large image de-
formations, but lacks of assuring the anatomical correctness. The proposed com-
bined model reduces the systematic error of the elastic model and is anatomically
more correct than the incremental model, and thus improves the registration.

Chapter 5: Evaluation of multi-modality non-rigid registration

We analyze techniques for evaluation of non-rigid registration and propose a new
evaluation strategy, suitable for registration based on point similarity measures.
None of the popular evaluation approaches can detect all kinds of possible mis-
registrations. The additional problem appears when evaluating multi-modality
registration, where only a limited number of features, needed for assessing the
actual transformation, can be identified in both of the images. The proposed
strategy improves the evaluation of the whole system by separately evaluating
each of the two registration stages. This is possible when the registration stages
are functionally independent, such as in the case of registration based on point
similarity measures.

Chapter 6: Image registration system

We present an image registration system, which employs the methods proposed
and described in Chapters 2, 3 and 4. The system can be used for rigid as
well as for non-rigid registration and is appropriate for various multi-modality
and mono-modality tasks. As such it can be used for further research in the
field of medical image processing, for medical research and for demonstration of
registration capabilities in clinical medicine.



2. Point Similarity Measures

In this chapter we introduce point similarity measures, which we have designed
to facilitate performance of multi-modality non-rigid registration. The distinctive
feature of point similarity measures is their ability to measure similarity between
individual image points, and consequently between appropriately large image re-
gions. Point similarity measures separate the process of similarity computation
into two steps. In the first step information of the whole images is used to derive
a point similarity function, which is an estimate of intensity dependence between
the images. In the second step similarity of individual points is measured using
the previously computed point similarity function. The fundamental question
concerning point similarity measurement is how to derive a suitable point simi-
larity function, which defines a point similarity measure. We present several point
similarity measures, where some of them are derived from other (global) similar-
ity measures, and some of them are designed according to the requirements of
multi-modality non-rigid registration. The later ones use knowledge of image in-
tensity distributions and link registration and segmentation. Finally, we analyze
the benefits of the proposed measures, compare their point similarity functions
and test them as a part of high-dimensional registration system.

2.1 Introduction

High-dimensional non-rigid multi-modality registration detects localized image
discrepancies using one of two possible approaches. The first approach measures
the similarity of the whole images using well-known multi-modality similarity
measures, e.g. mutual information, at applied local image deformations [54, 74].
A weakness of this approach is its high computational cost, which in practice lim-
its the dimensionality and locality of non-rigid registration. The other approach
is to measure local image similarity, i.e. the similarity of small image region that
gets transformed by a single transformation component. In our high-dimensional
case the transformation components equal the displacements of individual im-
age voxels from the initial configuration. This local approach is computationally
effective, but requires similarity measures that can operate on such small image
regions. Conventional multi-modality similarity measures cannot be used directly

12
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for this purpose, as their statistical nature limits their use to relatively large image
regions only. To solve this problem we introduce similarity measures, which can
measure similarity of arbitrarily small image regions, including individual image
points. Due to their ability to measure similarity of individual image points we
call them point similarity measures.

2.1.1 Locality of similarity measures

A variety of similarity measures were proposed in order to deal with different re-
quirements of registration, for review see [39, 40]. In general, they can be divided
into mono-modality measures, which are appropriate for comparing and regis-
tering images of similar intensity characteristics, and multi-modality measures,
which can deal with complex image intensity dependencies that are present in
multi-modality registration. Similarity measures can also be divided into local
and global measures, but this classification is not clear unless the term locality
is strictly defined. Local measures can be applied to small image regions, where
what is small depends on the application. On the other hand, global techniques
require large amount of data and are usually assumed to operate on the whole
images. Note that global similarity measures can still be locally sensitive, which
means that they can still detect local image differences. Given a local similar-
ity measure, its global equivalent can be derived by summing up over the whole
image. On the other hand, global similarity measures may not be able to mea-
sure similarity locally, because the performance of global measures decreases by
decreasing the region size. The minimal size of the regions that can be used for
measuring similarity depends on the nature of the similarity measure in a way
that more general measures, with more free parameters, require larger regions.

The simplest similarity measures are based on difference of intensity, e.g. mean
absolute difference MAD(A,B) or mean squared difference MSD(A,B),

MAD(A,B) =
1

N

∑
v

|iA(v) − iB(v)|, (2.1)

MSD(A,B) =
1

N

∑
v

(iA(v) − iB(v))2, (2.2)

where iA(v) and iB(v) are image intensities in images A and B at position of voxel
v, and N is the number of overlapping voxels. These measures do not tolerate
any difference in brightness or contrast, but they do allow the use of arbitrarily
small image regions, including individual voxels (N = 1).

Measures that can deal with certain intensity differences require larger regions.
Correlation based measures, which are the most commonly used mono-modal
similarity measures, belong to that group as well. Such measure is the correlation
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coefficient CC(A,B) [8],

CC(A,B) =
1

N

∑
v (iA(v) − iA)(iB(v) − iB)

(
∑

v (iA(v) − iA)2
∑

v (iB(v) − iB)2)
1
2

. (2.3)

Here, iA and iB denote mean image intensity values. Correlation coefficient as-
sumes linear intensity relationship and therefore it can deal with differences in
image contrast and brightness. The two unknown parameters of linear intensity
relationship (brightness and contrast) require at least three samples (voxels). In
practice 3 × 3 × 3 voxel regions or larger regions are used.

The minimum region size requirement becomes much more problematic in the
case of cross-modality registration, when the images are acquired using different
imaging procedures. In such multi-modality cases the relation between image
intensities can be quite complex and is generally not known. Multi-modality sim-
ilarity measures must be able to deal with such complex relationships. The most
widely used multi-modality similarity measures are mutual informationMI(A,B)
proposed in 1995 by Viola and Wells [83] and Collignon [18], and normalized mu-
tual information NMI(A,B) proposed in 1999 by Studholme et.al. [78],

MI(A,B) = H(A) +H(B) −H(A,B), (2.4)

NMI(A,B) =
H(A) +H(B)

H(A,B)
. (2.5)

Here, H(A), H(B) and H(A,B) are marginal and joint entropies,

H(A) = −
∑
iA

p(iA) log p(iA), (2.6)

H(B) = −
∑
iB

p(iB) log p(iB), (2.7)

H(A,B) = −
∑

i

p(i) log p(i), (2.8)

where i denotes an intensity pair [iA, iB], p(iA) and p(iB) are marginal intensity
probabilities and p(i) = p(iA, iB) is the joint intensity probability, estimated
from the images. Mutual information based measures actually measure statistical
dependence between the image intensities, to estimate how much one image tells
about the other one. But when the image regions used to estimate the joint
distribution are small, its statistical significance is low and the similarity measures
poorly represent actual image correspondence.

Various solutions have been proposed in order to improve locality of multi-
modality measures. The most obvious solution is intensity binning, i.e. decreasing
the number of intensity bins [47]. This directly improves the estimation of joint
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distribution, but on the other hand it lowers the intensity sensitivity, e.g. different
features that are represented by similar intensity values can be grouped into the
same bin. The number of bins can also be reduced by resorting to one dimensional
statistics, e.g. H(A − B) or H(A + B) [10], which also improves the locality.
Similar to the binning is Parzen window estimation of intensity distributions [58].
In the case of discrete intensity space it can be efficiently implemented as post-
filtering of normalized joint histogram. This method lowers intensity sensitivity
as well.

Another approach for improving the locality encompasses methods that use
prior knowledge. In the case of multi-modality measures such knowledge is usually
given in a form of a joint distribution pprior of correctly registered images. Such a
solution was used in the log likelihood similarity measure proposed by Leventon
and Grimson [44]. Of course, it is also possible to use a combination of both, a
prior probability pprior that is given in advance, and probability pimage, which is
estimated from the images:

p = λpimage + (1 − λ)pprior, (2.9)

where λ is a weighting parameter. This enables additional reduction of region
size [47]. As correct prior probability is rarely known, Maintz et al. proposed to
use a global distribution instead of prior one [52]. Their local measure is based
on global conditional probability. Joint probability estimated from smaller image
regions instead of the whole images can also be used in place of prior information,
as demonstrated in [46].

To solve the problem of locality we propose a new group of similarity measures,
which we call point similarity measures. They are based on the information
obtained from the whole images but are applied locally, on arbitrarily small image
regions, including individual image voxels/points.

2.2 The basic principle of point similarity measures

Point similarity measures divide the process of similarity measurement into two
steps. In the first step a point similarity function f(i) is obtained. Point similarity
function is an estimate of intensity dependence between the images A and B. The
information used in this step is not limited to local image region. It may include
information extracted from the whole images, as well as potential prior knowledge.
In the second step actual measurement of similarity S(x1,x2) between two image
points A(x1) and B(x2) takes place. Thus, a point at world coordinate x1 in
image A is compared with point at world coordinate x2 in image B. Here, the
point similarity function f(i) estimated in the first step is used to provide the
necessary information about image intensity dependence, such that the similarity
S(x1,x2) equals the value of point similarity function f(i) = f(iA, iB) at given
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intensities of the compared image points, iA(x1) and iB(x2).

S(x1,x2) = f(iA(x1), iB(x2)), (2.10)

Let us illustrate the principle of point similarity measures on a mono-modality
similarity measure MAD, see Eq. 2.1. In the first step the point similarity func-
tion is defined, in this case by the prior knowledge of mono-modality intensity
distributions:

fMAD(i) = −|iA − iB|. (2.11)

The negative sign is used to obtain higher similarity for more similar images. In
the second step, when the point similarity is defined, measuring of point similari-
ties takes place. This step is simple and does not depend on the type of the point
similarity measure. For the illustration see Fig. 2.1. Any two points A(x1) and
B(x2) form a point pair with its characteristic intensity pair i = [iA(x1), iB(x2)].
The value of point similarity function at this intensity pair f(i) represents the
similarity of these two points.

iA(x1)

iB(x2)

iA

iB f(i)

S(x1,x2)

Figure 2.1: An illustration of point similarity measurement. The similar-
ity S(x1,x2) of two points A(x1) and B(x2) is obtained from a similarity
function f(i), by pointing to a certain value by a corresponding intensity pair
i = [iA(x1), iB(x2)]. In this example the similarity function corresponds to MAD
similarity measure, such that f(i) = −|iA − iB| (darker color represents higher
similarity).

The only difference between different point similarity measures is in the first
step, i.e., in the derivation of point similarity function f(i). Instead of using
prior knowledge, as it is in the case of MAD measure, it can also be derived
from the images that are being registered. Numerous approaches can be used
to derive the point similarity function from the images. Because every improve-
ment of some point similarity S(x1,x2) also reflects in the improvement of some
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global similarity SG(A,B) between the whole images, it is possible to derive point
similarity functions from global similarity measures. The derivation is the most
straightforward when global similarity is computed as an average (or sum) of
local contributions S(v), defined for each individual voxel v:

SG(A,B) =
1

N

∑
v

S(v) = S(v), (2.12)

where N is number of voxels in the image. In this case S(v) is point similarity
for voxel v, i.e. a similarity between a point A(x(v)) and an overlapping point
B(x(v)):

S(v) = S(x(v),x(v)). (2.13)

For example, a mono-modality measure SG(A,B) = −MAD(A,B) 1 is defined
as a spatial average of voxel contributions (2.1). Consequently, the corresponding
point similarity is S(x1,x2) = −|iA(x1)−iB(x2)|, and the point similarity function
is therefore f(i) = −|iA − iB|, see Fig. 2.1.

Whenever a global similarity SG can be computed by averaging point similar-
ities S as noted in 2.12, then it can also be computed by weighted averaging of
values of the point similarity function over all intensity pairs, where weights are
the joint intensity probabilities:

SG(A,B) =
∑

i

p(i)f(i). (2.14)

To prove this relation let us rewrite Eq.2.12 using the Eq.2.12:

SG(A,B) =
1

N

∑
v

f(i(v))

=
1

N

∑
v

∑
j

f(j)δ(i(v) − j)

=
∑

j

f(j)
1

N

∑
v

δ(i(v) − j)

=
∑

j

f(j)
Nj

N

=
∑

j

f(j)p(j). (2.15)

Here, δ is a Dirac’s delta function and Nj stands for the number of voxels with
corresponding joint intensity pair j. Furthermore, it is considered that joint
intensity distribution p can be computed by normalizing joint histogram, such
that p(i) = Ni

N
.

1a negative sign is used to get higher similarity for better image match
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Point similarity measures can be derived from any intensity based similarity
measure, if not analytically they can still be obtained numerically. Let T denote
a local transformation that transforms image B to image B′ and therefore also
changes the image point pairs, such that intensity pair i(v) at point v changes to
i′(v):

T : i(v) −→ i′(v), B −→ B′. (2.16)

These local changes must be detected by point similarity measure S, such that
the new point similarity of voxel v is

S ′ (v) = S(i′(v)). (2.17)

Assuming that larger similarity means better match, the increase of point simi-
larities S(v) must increase some global similarity SG(A,B):

∑
n

S ′(vn) >
∑

n

S(vn) =⇒ SG(A,B′) > SG(A,B), (2.18)

where the summations run over all image voxels. If the transformation T changes
the image match at only one image voxel vm and point similarities of all other
image voxels remain unchanged, S(vn) = S ′(vn), n �= m, then eq.(2.18) can be
rewritten:∑

n;n�=m

S(vn) + S ′(vm) >
∑

n;n�=m

S(vn) + S(vm) =⇒ SG(A,B′) > SG(A,B), (2.19)

and therefore

S ′(vm) > S(vm) =⇒ SG(A,B′) > SG(A,B). (2.20)

Hence, the improvement of image correspondence at a single image point vm im-
proves the global image correspondence as well. This relation can be used for
deriving point similarity measures from global intensity based similarity mea-
sures. Let us imagine we can find a local transformation T, which changes image
match in a single point vm, e.g change the intensity pair i at that point. Then
the change of point similarity S(vm) must correspond to the change of global
similarity SG(A,B). One way to define point similarity measure is therefore the
following:

S ′(vm) = f(i′(vm)) = C1 · SG(A,B′) + C0; (2.21)

where constants C1 and C0 can be chosen arbitrarily, whereas the sign of C1

should be such that larger point similarity means better image match2. Two point
measures that differ only in constants C1 and C0, e.g. S1(i

′(vm)) = 2 · SG(A,B′)
and S2(i

′(vm)) = SG(A,B′) − SG(A,B), are equivalent and they both reach the
optimum at the same local image transformation.

2C1 is negative if lower value of SG means better correspondence.
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Thus, point similarity function f(i) can always be estimated from global sim-
ilarity measure SG, either analytically as shown in Eq.(2.12), or numerically by
changing image correspondence at single image point. This also holds for multi-
modality similarity measures. In such cases point similarity function has to adopt
to actual image properties, e.g. they may depend on actual image intensity distri-
butions. In the following section we analytically derive point similarity measures
from global multi-modality measures.

2.3 Multi-modality point similarity measures

The difficulty in measuring multi-modality similarity as compared to mono-
modality similarity measurement is that the intensity dependence between the
images is complex and in general unknown. The estimation of such complex
intensity dependence, which is a part of similarity measurement, requires a suffi-
ciently large amount of data and thus cannot be performed on the basis of small
image regions. Point similarity measures solve this problem by separating the
process of similarity measurement into two steps. In the first step the similarity
function f(i) is obtained, using the information of the whole images. In the sec-
ond step the similarity of two points, i.e. point similarity, is measured using the
similarity function obtained in the first step, as described in previous section and
illustrated in Fig. 2.1. The fundamental step in measuring multi-modality point
similarities is therefore derivation of point similarity function. In this section we
derive point similarity functions from global multi-modality similarity measures.

2.3.1 Entropy based point similarity measure

Joint entropy H(A,B) forms the basis of many multi-modality similarity mea-
sures. It is the most informative part of mutual information, and can be indepen-
dently used as a global multi-modality similarity measure [19]. In this section we
derive a point similarity measure from a negative joint entropy −H(A,B), such
that higher similarity corresponds to better image match.

Let us rewrite (2.8) in the following form,

−H(A,B) =
∑

j

p(j) log p(j) =
∑

j

Nj

N
log p(j) =

1

N

∑
j

Nj log p(j) (2.22)

where j ∈ {i} runs over all intensity pairs, Nj is the number of occurrences of
intensity pair j and N is the total number of intensity pairs in the image, which
equals the number of overlapping image voxels. Nj can be computed by counting
image voxels v with intensity pair i(v) = j over the whole images:

Nj =
∑

v

δ(i(v) − j). (2.23)
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Here the summation runs over all image voxels v and δ is a Dirac’s delta function.
The Eq. 2.22 can thus be rewritten as follows:

−H(A,B) =
1

N

∑
j

∑
v

δ(i(v) − j) log p(j). (2.24)

As δ(i(v) − j) differs from zero only when i(v) = j, it is possible to omit the
summation over the intensities:

−H(A,B) =
1

N

∑
v

log p(i(v)). (2.25)

Note that the final summation is taken over the spatial image coordinates instead
of intensities. Thus, global similarity −H(A,B) can be treated as an average of
local contributions, defined for each voxel v.

−H(A,B) =
1

N

∑
v

SH(v), (2.26)

SH(v) = log p(i(v)). (2.27)

When transformation T changes image B to B′, the contribution of voxel v
to global joint entropy changes as well:

S ′
H(v) = log p′(i′(v)). (2.28)

There are two sources of the change. First, the transformation T changes the
matching of voxel v, which changes the corresponding intensity pair from i(v) to
i′(v), and second, the transformation also changes the joint distribution p to p′.
But the change of joint distribution does not depend only on the transformation
of one voxel, but on the transformation of the whole image, which is not known
until all local transformations (voxels displacements) are obtained. So, let us
express p′(i′(v)) using Taylor expansion:

S ′
H(v) = log

(
p (i′(v)) +

∂p(i′(v))
∂T

T +
1

2

∂2p(i′(v))
∂T2

T2 + ...

)
(2.29)

As the transformation T that correspond to one iteration of image registration is
supposed to be small, the terms above the zero order are small as well and can
be neglected. Only the the zero order term remains such that the similarity can
be estimated as:

S ′
H(v) = log p (i′(v)) , (2.30)

The obtained estimation of local contribution to the global similarity can be used
as a point similarity measure, where the corresponding similarity function is

fH(i) = log p(i). (2.31)
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Notice that although the similarity is measured for individual image points,
it still requires the estimation of joint probabilities p(i) from the whole images.
The obtained entropy based point similarities SH then represent the amount of
information provided by the intensity pair i.

Because p(i) is used instead of unknown p′(i), point similarity function cor-
responds to joint entropy only for small transformations T. However, even when
this is not he case, the point similarity measure SH remains suitable for measuring
multi-modality image similarity.

2.3.2 MI based point similarity measure

The same approach as used for derivation of entropy based point similarity mea-
sure SH can also be used for the derivation of mutual information based point
similarity measure SMI . Mutual information (2.4) can be computed as follows:

MI =
∑

j

p(j) log

(
p (j)

p (jA) p (jB)

)
. (2.32)

where j = [jA, jB] ∈ {i} runs over all intensity pairs. This equation can be
rewritten in the following form:

MI =
1

N

∑
j

Nj log

(
p (j)

p (jA) p (jB)

)
. (2.33)

Here Nj again denotes the number of occurrences of intensity pair j and N is
the total number of intensity pairs in the image, which equals the number of
overlapping image voxels. Using Eq. 2.23 the Eq. 2.33 can thus be rewritten as

MI =
1

N

∑
j

∑
v

δ(i(v) − j) log

(
p (j)

p (jA) p (jB)

)
. (2.34)

The delta function differs from zero only when i(v) = j, such that the summation
over the intensities can be omitted:

MI =
1

N

∑
v

log

(
p(i(v))

p(iA(v))p(iB(v))

)
, (2.35)

Note that the final summation is taken over the spatial image coordinates and
not over the intensities. Thus, the global similarity MI can be treated as an
average of point similarities SMI(v), defined for each voxel v.

MI =
1

N

∑
v

SMI(v), (2.36)
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SMI(v) = log

(
p(i(v))

p(iA(v))p(iB(v))

)
. (2.37)

The mutual information based point similarity function is therefore the following:

fMI(i) = log

(
p(i)

p(iA)p(iB)

)
. (2.38)

When image B gets transformed with transformation T the joint intensity
distribution p(i) changes and, in general, this also changes the similarity function
fMI(i). Anyway, the point similarity function is always an estimate of the same
intensity dependence, i.e. intensity dependence of the registered images. Thus,
the similarity can be measured even if the original point similarity function is
used instead of the new one. However, note that the global meaning of mutual
information is preserved only if transformation T is small.

2.3.3 Other point similarity measures

Point similarity measures can be directly derived from almost any intensity based
similarity measure. For example, a point similarity measure that corresponds to
the energy similarity measure [11]:

P =
∑

i

p2(i), (2.39)

has a point similarity function fP that equals the estimated joint intensity distri-
bution:

fP (i) = p(i). (2.40)

Point similarity measures can also be defined by conditional probabilities [52, 26]:

fPC(i) = p(iA|iB). (2.41)

By additionally applying a log function, point similarity becomes related to in-
formation instead to probability. Thus, the log function applied on the joint
probability p(i) = fP (i) results in the entropy based point similarity function
fH = log p(i), see Section 2.3.1. Similarly, the information can also be measured
using conditional probability:

fHC(i) = log p(iA|iB). (2.42)

All these point similarity measures are based on statistics, specifically on
the estimated global joint intensity distribution, which is used for estimation
of intensity dependence. The intensity dependence is better estimated when
images are better matched and cannot be exactly determined before the images
are registered. However, the estimation can be improved by using additional
knowledge. One of the possibilities is to use additional knowledge about intensity
distributions, which links point similarity measures and therefore registration
with segmentation.
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2.4 Point similarity measures and segmentation

Some of the intensities that are present in the images are closely related and
represent the same tissue type. If their close relation is taken into account, an
improvement in the registration can be expected. Finding such relations between
the intensities is called image segmentation and allows registration to operate
directly with tissue types instead of image intensities. Thus, registration and
segmentation are related. Segmentation can be performed by registering image
to an anatomical atlas, while registration can gain from better biological image
representation, obtained by segmentation. In this section we propose a method
that integrates both tasks, such that they can be performed simultaneously. Due
to the additional information, which can be used for each of the tasks, it is
expected that such simultaneous operation should improve registration as well as
segmentation.

Both, segmentation and registration, operate on the intensity distributions.
The first one groups image intensities into classes, which represent different tissue
types, while the second one uses joint distributions for computing multi-modality
point similarities. Thus, to understand point similarity measures and relate them
to segmentation, it is important to understand joint intensity distributions and
their relation to the quality of image match.

2.4.1 Joint intensity distributions

Joint intensity distribution is a quantitative representation of the intensity re-
lationship at certain image alignment, and changes during the registration [76].
Only the joint distribution of correctly matched images corresponds to the actual
intensity relationship. However, the actual intensity relationship is not known
until the images are correctly registered. In this section we analyze how joint
intensity distribution changes with respect to the degree of image misalignment,
and how it is related to image segmentation.

Imagine we have two simple images A and B representing the same object, see
Fig. 2.2. Let each image consist of only two intensity values, i1A and i2A for image
A, and i1B and i2B for image B, where i1A corresponds to i1B and i2A corresponds
to i2B. When images are correctly registered, the joint distribution consists of
only two extrema, at intensity pairs [i1A, i1B] and [i2A, i2B], because the intensity
regions perfectly overlap. Let us call these intensity pairs true intensity pairs,
as they correspond to the correctly matched image regions. When images do
not overlap exactly, additional ’false’ intensity pairs appear, in our case [i1A, i2B]
and/or [i2A, i1B]. Probabilities of these true and false intensity pairs depend on
the size of overlapping regions.

Real images are corrupted by noise and intensity distortion, and so each region
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[i1A, i1B]

[i2A, i2B]

[i1A, i1B]

[i1A, i2B]

[i2A, i1B]

[i2A, i2B]

(a) (b)

iA

iB

[i1A, i1B]

[i2A, i2B]

iA

iB

[i1A, i1B]

[i1A, i2B]

[i2A, i1B]

[i2A, i2B]

(c) (d)

Figure 2.2: Joint distribution (c) of registered images (a) and joint distribution
(d) of misregistered images (b).

overlap is represented by numerous intensity pairs that form an intensity class.
Therefore, true and false intensity pairs become true and false intensity classes.
Each class represents a tissue type pair. Furthermore, real images consist also
of some intensities that do not belong to any of the mentioned intensity classes.
In case of 3D anatomical medical images most of them appear on the transitions
between different tissues and belong to partial volume voxels. In joint distribution
they are positioned within a rectangle defined by corresponding intensity classes,
see examples in Fig. 2.3.

Point similarity functions presented in Section 2.3 are closely related to the
joint intensity distributions. However, the similarity function should model in-
tensity dependence of correctly registered images and should have large values
only for intensity pairs that belong to true classes, while similarity values for
false classes should be minimal. Furthermore, intensity pairs from true classes
should all produce comparable similarity values. Unfortunately similarity func-
tions differ from such ideal form. A higher level of image misalignment reflects in
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(a) (b)

Figure 2.3: Examples of joint distributions for MRI T1 and PD medical im-
ages of head: registered images (a) and not registered images (b). Dashed lines
correspond to mean intensity values of tissue types: cerebrospinal fluid (CSF),
gray matter (GM), white matter (WM), surrounding tissues (S), and background
(BG). Partial volume voxels are positioned inside rectangles defined by these lines.

higher estimated probabilities for false classes, while probabilities for true classes
decrease. The described similarity functions do not discriminate between true
and false classes and are directly related to the estimated probabilities. Thus, if
the level of misalignment is too high, similarities for false classes become larger
than similarities for true classes, and non-rigid registration in such case does not
converge to the correct image match. Moreover, similarities of intensity pairs
also depend on the amount of tissues that form these intensities. This may result
in differences in their registration speed and registration correctness. To solve
these problems we develop a segmentation based point similarity measure, which
combines registration with segmentation.

2.4.2 Segmentation based point similarity measure

By modeling the intensity classes, the point similarity function can be estimated
as a probability of an intensity pair belonging to one of the true classes. Such
an estimatie improves two similarity function properties. Firstly, it equalizes
similarities among correctly matched tissues in the sense that probability that
an intensity pair belongs to a certain true class is not related to the amount of
corresponding tissue. Secondly, such a similarity measure lowers similarities for
incorrectly matched regions, as knowledge of intensity distribution can be used
to distinguish between true and false classes, see Subsection 2.4.1 and Figs. 2.2
and 2.3.

The basic idea of the segmentation based point similarity measure is to define
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its point similarity function as a probability of certain intensity pair to belong to
one of the true classes:

fS(i) = p(CT |i) =
∑
m

p(Cm|i)p(CT |Cm). (2.43)

Here, Cm denotes intensity class, which represents certain tissue type pair, and
CT is a set of all true intensity classes. Remember that true classes are classes
which correspond to the same tissue in both images. The first factor in (2.43)
therefore represents probability of m-th class at a given intensity pair i. The
second factor is a probability that certain class Cm is a true class and therefore
belongs to CT .

The first step towards segmentation based similarity measure is modeling of
joint distribution, which consists of several classes, each of them representing
a different tissue type pair. Joint distribution p(i) is thus a weighted sum of
individual class distributions p(i|Cm),

p(i) =
∑
m

p(i, Cm) =
∑
m

p(i|Cm)p(Cm). (2.44)

The class distributions can be obtained by segmenting the images into the tissue
types and then estimating the probability distribution of each tissue type pair.
This approach requires pre-segmentation of images, which is not an easy task.
Various image segmentation methods can be used, for review see [16, 61]. Note
that image segmentation is in close relation with modeling intensity distribu-
tion. Not only that joint distribution can be modeled by using segmentation, the
segmentation is also often based on modeling intensity distribution.

We propose another approach, which models joint distribution directly and is
equivalent to simultaneous segmentation of both images. Because images are not
yet registered the number of intensity classes is initially not known and precise
modeling is difficult, as most standard approaches cannot be directly used. Our
approach automatically detects how many intensity classes exist and is computa-
tionally efficient, as it models only the required single-tissue intensities, excluding
mixtures that appear in partial volume voxels. Assuming Gaussian intensity dis-
tribution within each tissue type, each class Cm can be modeled by a 2D Gaussian
function with mean value µm and covariance matrix Σm. Low intensities, e.g.
background, which are approximately Rayleigh distributed [37] can be modeled
by a Gaussian model sufficiently well, because the significant difference appears
only at lowest intensities, where probability of other tissues is low. Let us as-
sume that classes are far enough from each other to achieve dominance of class
Cm in its neighborhood Om, such that contributions of all other classes can be
neglected. Classes that are merging can be modeled together as a single class
and separated in later registration steps, when their overlap decreases. Number
of classes M , their mean values µm and joint intensity distribution maxima am
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can be estimated by an exhaustive search for maxima in joint intensity distribu-
tion. When maximum is found, its position is used as a class mean value µ, while
the value itself is used as an amplitude of probability p(i, Cm). Probabilities of
intensity pairs in Om can be approximated by

p(i)|i∈Om ≈ p(i, Cm) = am exp

(
−1

2
(i − µm)TΣ−1

m (i − µm)

)
; m = 1 . . .M.

(2.45)
By taking a logarithm of (2.45) we get

2 ln

(
am

p(i)

)
= (i − µm)TΣ−1

m (i − µm) ; i ∈ Om (2.46)

Σ−1
m =

[
u11 u12

u12 u22

]
(2.47)

2 ln

(
am

p(i)

)
= u11(iA−µmA)2+2u12(iA−µmA)(iB−µmB)+u22(iB−µmB)2 (2.48)

which can be solved for Σ−1
m using least squares method for all intensity pairs i in

the neighborhood Om. The covariance matrices Σm can then be used to estimate
the class a priori probabilities p(Cm).

p(Cm) =

∫
p(i, Cm)di =

=

∫
am exp

(
−1

2
(i − µm)TΣ−1

m (i − µm)

)
di

= am2π|Σm| ; m = 1..M (2.49)

Theoretically the sum of all a priori probabilities p(Cm), m = 1...M , should
be 1. In reality this is seldom the case even if all class parameters are estimated
absolutely correct, due to the fact that some intensity pairs with low joint prob-
abilities do not belong to any of the estimated classes. The majority of such
intensity pairs represent partial volume (PV) voxels. The correct position of PV
voxels in joint distribution is hard to predict, as they can be positioned any-
where in the rectangle defined by the true classes, see Fig. 2.3. Currently we are
not dealing with partial volume voxels explicitly. We simply model them with
additional class C0 with uniform distribution:

p(i, C0) = ε. (2.50)

The selection of ε is not critical and we set it to 1/N where N is a total number
of overlapping voxels.

A posterior probability p(Cm|i) of class Cm, which shows the chance that
certain intensity pair i belongs to a particular class Cm, is according to Bayes
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rule

p(Cm|i) =
p(i, Cm)

M∑
l=0

p(i, Cl)

. (2.51)

This concludes the modeling of joint intensity distribution. Other modeling
or segmentation approaches can be used as well. The described method is used
because of its low computational cost at sufficient accuracy. The obtained model
depends on correctness of match and improves during the registration. Thus, im-
age registration and image segmentation/modeling are performed simultaneously.

After joint distribution model is obtained, probabilities p(CT |Cm) that certain
class Cm is a true class must be estimated in order to determine point similarity
function (2.43). The set CT includes all the true classes. We cannot know exactly
which classes are true classes, but using knowledge of joint distributions, it is pos-
sible to estimate this probability for each of the classes. Let us assume that each
tissue type has a unique intensity representation with mean value µ. Therefore,
among all maxima positioned at the same intensity of image A (or image B) only
one can belong to the set of true classes CT . Let a set of classes CµA consist of
all classes with the same mean value µA (we allow a difference of one standard
deviation), then it is expected that classes Cm ∈ CµA with higher probabilities
p(Cm) are more likely to be true classes. Therefore, we can estimate probability
pA(CT |Cm) of class Cm being a true class according to image A as follows:

pA(CT |Cm) =
p(Cm)∑

Cl∈CµA

p(Cl)
; Cm ∈ CµA. (2.52)

Such a probability estimation of a certain class being a true class is not sufficient.
For example, when one of the tissues dominates, all classes with µB that corre-
spond to that tissue could have the highest probability pA(CT |Cm), although it is
expected that only one of them is a true class. This problem can be resolved by
using probability pB(CT |Cm) of class Cm being a true class according to image B.
Estimation of this probability is equivalent to the estimation of pA(CT |Cm):

pB(CT |Cm) =
p(Cm)∑

Cl∈CµB

p(Cl)
; Cm ∈ CµB, (2.53)

where a set CµB comprises all the classes with the same µB. Class Cm can be
assumed to be a true class only if it is a true class according to image A as well
as to image B. The estimates pA(CT |Cm) and pB(CT |Cm) are based on different
observations so they can be considered independent. Therefore, the final estimate
of probability that class Cm is a true class can be obtained as a product of both
probabilities:

p(CT |Cm) = pA(CT |Cm) · pB(CT |Cm). (2.54)
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If two or more tissue types have the same intensity representation µA or µB our
presumption is incorrect. Let us suppose there are ω tissue types with the same
µA or µB and therefore, there should also be ω corresponding true classes. Our
estimated probabilities pA(CT |Cm) or pB(CS|Cm) of these classes are reduced, in
general ω times. Nevertheless, ratios between probabilities p(CT |Cm) of these
true classes and their competitive false classes remain in proportion and so the
registration should still tend to correctly minimize the false classes, although it
may require more registration iterations. Of course, tissues with the same µA or
µB cannot be distinguished.

Once the required probabilities are estimated (i.e. p(Cm|i) and p(CT |Cm)),
segmentation based point similarity function fS(i) can be computed using (2.43).

Note that segmentation based point similarity measure SS(x1,x2) =
fS(iA(x1), iB(x2)) requires that the image data form intensity classes, which can
be modeled by Gaussian functions. This is a reasonable assumption and does not
need to be exactly true in practice. Due to such modeling of joint distribution
measure SS does not model partial volume voxels. Matching of partial volume
voxels is difficult as their intensity relations are not known. Linear intensity
relation is often suggested, but in reality it may not be valid due to the multi-
modality. Measure SS does not assume any relation between partial volume voxel
intensities. It only matches pure tissues and when a correct spatial deformation
model is used, partial volume voxels are expected to match correctly as well.

2.4.3 Point similarity measures without segmentation

In some cases image intensity distribution does not form intensity classes. Inten-
sities of medical images form classes in case of 3D anatomical imaging techniques,
but in other cases classes may not be formed. Furthermore, even if classes exist
they may be difficult to model when images include large intensity variations
within tissue types, e.g. intensity inhomogeneity. Functional techniques do not
form intensity classes at all. Consequently, matching of such images using previ-
ously described segmentation based measure SS is not expected to produce good
results. Nevertheless, some intensity pairs always represent correct match and
some other intensity pairs represent incorrect match. Every intensity of source
image tends to match some intensities of target image, and vice versa. Therefore,
each intensity pair can be treated as its own intensity class Ci with probability
p(Ci) = p(i), mean value µ = i and p(Ci|i) = δ(i), where δ(i) is a Dirac’s delta
function. If these classes are used the same way as in segmentation based similar-
ity measure, a new point similarity measure SU is obtained. Its point similarity
function fU can be estimated as follows:

pA(CT |i) =
p(i)

p(iA)
= p(iB|iA), pB(CT |i) =

p(i)

p(iB)
= p(iA|iB), (2.55)
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fU(i) = p(CT |i) = pA(CT |i) · pB(CT |i) = p(iB|iA) · p(iA|iB) =
p(i)2

p(iA) · p(iB)
. (2.56)

Here, CT is a set of all intensities that represent correct match, while pA(CT |i) and
pB(CT |i) are probabilities that intensity pair i represents correct match accord-
ing to images A and B, respectively, which are actually conditional probabilities.
Probability pB(CT |i) is equivalent to point similarity function fPC(i), see (2.41).
The difference between similarity functions fU and fPC is therefore in conditional
probability p(iB|iA), which is expected to improve registration of non-dominant
tissues. Although grouping intensities into classes is not used, measure SU still in-
corporates some knowledge about joint distributions, adopted from segmentation
based approach.

It cannot be expected that a certain intensity in one image corresponds to
only one intensity in the other image, in the same way as it can happen for mean
intensity values of tissue types (µA and µB) in case of a segmentation based
measure. Each intensity in one image corresponds to several intensities in the
other image. Estimated probabilities p(CT |i) depend on the amount of noise,
which can differ according to tissue type. To reduce the differences between
similarities of correctly registered intensity pairs, a logarithmic function can be
applied in the same way as in case of entropy based point similarity measure
SH(i), to depend on uncertainty rather than probability. So we get a new point
similarity measure SUH with the following point similarity function:

fUH(i) = log p(CT |i) = log (p (iB|iA) p (iA|iB)) = log
p(i)2

p(iA) · p(iB)
. (2.57)

The obtained point similarity measure SUH is related to previously described
measures SH and SMI , such that

fUH(i) = log p(i) + log
p(i)

p(iA) · p(iB)
= fH(i) + fMI(i). (2.58)

2.5 Benefits of point similarity measures

Point similarity measures were designed for high-dimensional non-rigid registra-
tion and provide some advantages over the conventional similarity measures. The
most important advantage is that they provide the two required properties: lo-
cality and multi-modality. In addition there are other advantages, which can
contribute not only to high-dimensional registration, but also to low dimensional,
e.g. rigid registration. We focus on advantages of point similarity measures in
detail in the following subsections.
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2.5.1 Locality and spatial deformation models

Here we focus on the phenomena that similarity measures may constrain the
deformation and as such act as a spatial deformation model. An illustrative
example is the work of Maintz [52], who performed non-rigid image registration
without specific spatial deformation model. The only regularization comes from
the similarity measures, which constrain the deformation because of the spatial
voxel interdependencies used during the similarity measurement. Explicitly, the
constraint is in the similarity measurement that uses large image regions, where
region by itself cannot deform during the similarity measurement. The larger the
regions are, the more constraint the deformation is. This can be explained using
the Bro-Nielsen’s approach [5], by which most spatial deformation models can be
explained and implemented by convolution filtering, see Chapter 4.

Similarity of an image region or a whole image SR can be computed from
point similarities S(x) = S(x,x) by averaging:

SR = S(x) =
1

NR

∑
x∈R

S(x), (2.59)

where R denotes image region for which similarity is being measured and NR is
number of estimated point similarities in this region. This relation can also be
expressed as convolution filtering with some spatial filter GR,

SR(x) = GR ∗ S(x). (2.60)

The larger the region is, the wider is the impulse response of the filterGR and more
global information is extracted from the point similarities. For example, when the
region spreads over the whole images only global image properties, appropriate
for global registration (e.g. rigid) are extracted, while detailed local information
is blurred. Such extraction of more global knowledge from multiple more localized
image features is characteristic for spatial regularization. When measuring region
similarity this regularization is substantial and shall be considered when designing
spatial deformation models.

As explained in Chapter 4., the majority of spatial deformation models can
also be performed by convolution filtering [5]. For example, an incremental elastic
registration can be performed iteratively as follows:

T(x)t+1) = T(x)(t) +GE ∗ ∂S(x)

∂T(x)
, (2.61)

where GE denotes a filter with impulse response of the elastic media and t is the
iteration number. When spatial deformation model is used in combination with
the similarity of image region SR, the Eq. (2.61) can be rewritten:

T(x)(t+1) = T(x)(t) +GE ∗ ∂GR ∗ SP (x)

∂T(x)
= T(x)(t) +GE ∗GR ∗ ∂SP (x)

∂T(x)
. (2.62)



32 Point Similarity Measures

Similar results could also be obtained for other spatial deformation models, e.g.
viscous fluid or elastic. The regularization is therefore duplicated, which means
that the final effect does not directly follow the spatial deformation model, see
Fig. 2.4. Point similarity measures solve this problem. They push the limits
of the locality into extreme and, consequently, similarity of one point does not
presume any spatial relation with neighboring image points. Therefore, the trans-
formations are not regularized by GR, such that regularization remains solely in
the domain of spatial deformation model, which gains a full control over the
transformation properties.

GE GR GE ∗GR

Figure 2.4: An example of convolution filters used for regularizing non-rigid
registration: elastic filter GE (left), filter GR that corresponds to region averaging
(middle), and their convolution GE ∗GR (right).

Note that spatial regularization is necessary, otherwise matching of individual
image points is ill-posed if they are matched independently [24, 52]. Because
point similarity measures do not provide regularization implicitly, it must be
provided by a suitable spatial deformation model. However, the final spatial
deformation properties exactly follow properties defined by this model, as there
is no regularization provided by the point similarity measures. This is not the
case when using similarity measures with larger image regions.

2.5.2 Interpolation artifacts

Image registration methods search for such a transformation that maximizes the
image similarity. Thus, it is important to study how the similarity changes with
respect to the transformation. A common problem are the so-called interpolation
artifacts, i.e. disproportional change of similarity with respect to image transfor-
mation, which may result in local similarity extrema that rules out the subvoxel
accuracy and deteriorate the registration. In case of non-rigid image registration
interpolation artifacts cannot be reduced using approaches proposed for rigid or
low dimensional registration [63, 47], because they can only be applied when
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comparing large image regions. Here we analyze interpolation artifacts of point
similarity measures and compare them with interpolation artifacts of conventional
similarity measures.

Let us suppose we have two images, A and B, and transform image B with
transformation T. The transformation moves each point B(x) from its original
position x for some displacement T(x) to a new position x + T(x), where it gets
matched with a point A(x + T(x)). Let us observe a point similarity S(vB) at
voxel point vB in image B, where

S(vB) = S(A(x + T(x)), B(x)). (2.63)

This point similarity can change due to two reasons. The first one is the change
of point pair, and the second one is a possible change of the joint intensity dis-
tribution, which changes the point similarity function f(i). Both of them could
potentially cause interpolation artifacts.

First we focus on the changes of point similarity due to the changes of the
point pair and assume that the point similarity function f(i) does not change.
Thus, point similarities S(vB) change only because points in image B are com-
pared with different points in image A. However, due to the discrete nature of
the images and due to the image transformation, voxel points in image B do not
match exactly with voxel points in image A, and measuring of point similarities
requires interpolation. In case of mutual information there are two interpolation
methods commonly used: interpolation of intensity and partial volume interpola-
tion. Interpolation of intensity can also be employed in case of point similarities
such that:

S(vB) = f(iA(x + T(x)), iB(vB)), (2.64)

where the unknown intensity iA(x + T(x)) is interpolated from intensities of
neighboring voxels:

iA(x + T(x)) = iA(vB) =
∑
vA

ω(vA, vB)iA(vA). (2.65)

Here ω stands for weights used for the interpolation. However, the interpolation
of intensity assumes a linear intensity dependence, which may not necessarily
comply with the intensity dependence estimated from the images, and can cause
interpolation artifacts, as shown in Fig. 2.5. To avoid the interpolation artifacts,
we propose to interpolate point similarity instead of intensity:

S(vB) =
∑
vA

ω(vA, vB)S(vA, vB), (2.66)

where the weights ω are the same as in the case of interpolating intensity and
S(vA, vB) is a point similarity between a point at voxel vA in image A and a point
at voxel vB in image B. This approach results in a linear relationship between
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iA

iB

xx0x1 x2iA(x1) iA(x2)

iB(x0)

S(x,x0)S(i)

Figure 2.5: Illustration of measuring point similarity with interpolation. Sim-
ilarity between some voxel point B(x0) and corresponding point A(x0) requires
interpolation. In case of interpolation of intensity, an intensity iA(x0) is inter-
polated from intensities of neighboring points iA(x1) and iA(x2), and the point
similarity is S(x0,x0) = S(iA(x0), iB(x0)) (cross mark). Because the interpolated
intensity does not comply with the complex intensity dependence estimated from
the images, the similarity does not have a correct meaning, which introduces in-
terpolation artifacts (dashed line). The problem can be solved by interpolating
point similarity instead of intensity, such that S(x0,x0) is interpolated from point
similarities S(x1,x0) and S(x2,x0). In this case interpolation of intensity is not
required and interpolation artifacts do not appear (solid line).

the point similarity and point displacement in a range of one image voxel, thereby
avoiding the interpolation artifacts, see Fig. 2.5. The difference between results
obtained by using different interpolation methods is illustrated in Fig. 2.6.

When interpolation of point similarities is used to measure similarity of the
whole images by averaging point similarities, it is equivalent to the partial volume
interpolation, which is often used for global statistical measures, e.g. mutual
information. In order to prove the equivalence let us first mathematically express
the partial volume interpolation:

p(j) = p(jA, jB) =
1

N

∑
vB

∑
vA

ω(vA, vB)δ(iA(vA) − jA)δ(iB(vB) − jB), (2.67)

where N is the number of all image voxels, δ is a Dirac’s delta function and
ω(vA, vB) is a weight used for interpolating point at voxel vB with voxel points of
image A. The same weights ω are used for interpolating point similarities. Thus
the global similarity SR, computed by averaging point similarities S(vB) can be
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expressed as follows:

SR =
1

N

∑
vB

S(vB)

=
1

N

∑
vB

∑
vA

ω(vA, vB)f(iA(vA), iB(vB))

=
1

N

∑
vB

∑
vA

ω(vA, vB)
∑

j=[jA,jB ]

f(j)δ(iA(vA) − jA)δ(iB(vB) − jB)

=
∑

j=[jA,jB ]

f(j)
1

N

∑
vB

∑
vA

ω(vA, vB)δ(iA(vA) − jA)δ(iB(vB) − jB)

=
∑

j=[jA,jB ]

f(j)p(j). (2.68)

In the case that point similarity function f(i) is also computed from the same joint
distribution p(i), then according to the Eq. 2.14 the global similarity SR equals
the global similarity SG, obtained by corresponding global similarity measure by
using the same joint distribution p(i).

SR =
∑

i

f(i)p(i) = SG. (2.69)

Note that p(i) was obtained by partial volume interpolation, such that Eq. 2.69
proves our statement about the equivalence of partial volume interpolation and
interpolation of point similarity.

The second possible source of changes in point similarity is the change of the
intensity distributions. In general, the transformation T changes the marginal
and joint intensity distributions p(iA), p(iB) and p(i). If the point similarity func-
tion f(i) is recomputed using the updated distributions, then it changes as well
and so do the point similarities. The relation between the transformation and
the change of intensity distributions is complex, nonlinear and depends on the
information of the whole images. Furthermore, the relation between the intensity
distributions and the corresponding point similarity function is usually not linear
either, see Eq. (2.38). The nonlinear relation reflects in interpolation artifacts,
which cannot be avoided when using conventional multi-modality similarity mea-
sures, e.g. mutual information. Nevertheless, point similarity function f(i) is in
all cases, not regarding the transformation T, an approximation of the same inten-
sity dependence, i.e. the intensity dependence of correctly registered images. The
only difference between the obtained point similarity functions is in the quality of
the estimation, which depends on the level of global image mismatch. However,
the change of point similarity caused by reestimation of point similarity function
does not provide reliable information about the quality of image match, because
the changes of point similarity function do not originate only in the quality of
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Figure 2.6: An example of mutual information MI (left) and point based sim-
ilarity SR = SMI (right) with respect to image translation, for the two different
interpolation methods. The dashed lines denote interpolation of intensity, while
the solid lines denote partial volume interpolation for MI (left) and interpolation
of similarity for SR (right). The difference between MI and SR is due to using the
same point similarity function fMI(i) for all the estimations of point similarity,
not regarding the image translation. Keeping the point similarity function fixed
therefore enables point similarity measures to completely avoid the interpolation
artifacts. This cannot be achieved when using MI.

image match, but also in the artifacts caused by image processing algorithms,
e.g. interpolation used to obtain the intensity distributions. Consequently, in
order to avoid interpolation artifacts we propose to estimate point similarities,
without recomputing the similarity function. In support of this approach we
show that registration based on point similarity measures always tends towards
the transformation that would be obtained when using point similarity function
estimated from the registered images, see Fig. 2.8. When the point similarity
function is estimated at better match, the similarity better distinguishes between
correct matches and mismatches, while the positions of maxima that correspond
to different tissue types in the point similarity function do not change. This is
illustrated in the experiment performed using simulated Brainweb images [42]
and mutual information based point similarity measure SMI in Fig. 2.7. Note
that the quality of image match used for estimation of point similarity function
affects the sensitivity of point similarity, such that the sensitivity decreases with
increasing image mismatch. Therefore, to avoid the interpolation artifacts and
still achieve good sensitivity, we propose to use the same point similarity function
for all the measurements of similarity that need to be compared, and recompute
point similarity function only once per registration step or registration iteration.

To summarize, in order to avoid the interpolation artifacts we recommend to
keep the point similarity function f(i) fixed and use interpolation of similarity
instead of interpolation of intensity. This avoids all the interpolation artifacts
of point similarity measures, as illustrated in Figure 2.6. Conventional statisti-
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Figure 2.7: Point similarity functions for simulated MRI-T1 and MRI-PD images
of the head, at different levels of image mismatch: 10 mm displacement (left), 2
mm displacement (middle), and registered images (right). Darker color represents
higher similarity. Note that the positions of maxima that correspond to different
tissue types in point similarity function do not change.

cal measures, e.g. mutual information, cannot avoid interpolation artifacts in a
similar way, because they always implicitly reestimate the intensity dependence
between the images. This suggests that point similarity measures can contribute
not only to high dimensional registration, which they were designed for, but also
to low-dimensional registration, which also faces with the problem of interpolation
artifacts.

2.6 Comparison of point similarity measures

So far we have described different methods to estimate point similarity functions
and show some advantages of the point similarity approach. However, one im-
portant question remains: Which similarity measure to use? In this section we
aim to answer this question. First we present a general strategy for choosing a
similarity measure in Subsection 2.6.1, then we compare the similarity measures
with respect to their similarity functions in Subsection 2.6.2 and finally, we com-
pare them as an integral part of a high-dimensional non-rigid registration system
in Subsection 2.6.3.

2.6.1 Selection of point similarity measures

An important question is which similarity measure to use for solving a given
registration problem. It is well known that some similarity measures, in particular
mutual information measures, are so general that they can be used for almost any
kind of images. However, better results may be obtained by using appropriately
more constrained measures. Estimation of a parameter that is known in advance
is not reasonable, as the result may be biased due to its imperfect estimation.
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Figure 2.8: Mutual information (MI) (dashed line) and similarities obtained
using the mutual information based point similarity measure based on different
estimations of point similarity function S(i) (solid lines), with respect to image
displacement. Similarity is measured between MRI-PD and MRI-T1 data, using
simulated images (top) and real images of the head (bottom). Point similarity
functions fMI(i) were estimated at different image displacements. At this dis-
placement the point based similarity equals the mutual information (marked with
circles). All point based similarities reach the maximum at displacement 0, i.e.
where images are correctly registered. The experiment based on real images (bot-
tom) shows that point similarity measures can succeed even in the cases when MI
fails.
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Moreover, estimation of additional parameters requires additional information,
or the uncertainty of results increases. Undoubtedly, the best results can be
expected when the model fits well to the real situation.

Selection of a similarity measure should follow the same principle. Specifi-
cally, a similarity measure should be chosen according to the characteristics of
the images. We have already classified similarity measures into mono-modality
and multi-modality. However, additional classifications are possible [65]. Mono-
modality similarity measures could be further classified according to model as-
sumptions into iB = iA, iB = k · iA or iB = k · iA + n. Similarly, multi-modality
similarity measures are sometimes classified into measures with functional in-
tensity dependencies and those with statistical intensity dependencies [65]. Fur-
thermore, multi-modality similarity measures could be classified according to the
model assumptions into those that model intensity classes, and those where no
intensity classes are modeled.

Let us illustrate the selection of similarity measures with some examples.
Firstly, non-rigid registration of images taken in a single time series can often
presume mono-modality intensity dependency iB = iA, and thus it is expected
that best results can be obtained when using similarity measures MAD, MSD or
their derivatives. Secondly, for registration of 3D anatomical images, in the case
that intensity classes can be modeled, good results are expected by using point
similarity measure SS (2.43). Thirdly, when intensity classes cannot be modeled,
measures SMI (2.38), SU (2.56) or SUH (2.57) are preferred. Finally, images that
include functional information may use SMI , SU or SUH measures as well.

2.6.2 Comparison of similarity functions

A reasonable approach to compare global similarity measures is to observe simi-
larities according to the applied image transformation, e.g. displacement of whole
image, and evaluate some properties of such similarity function, e.g. number of
local extrema, smoothness, position of global extremum, capture range, etc [62].
However, comparison of point similarity measures turns out to be more prob-
lematic as any transformation of such an extremely small image region makes a
drastic change in region overlap. This makes such comparison impossible. How-
ever, point similarity measures can be compared in the intensity domain instead of
the transformation domain. Thus, in this subsection we compare point similarity
measures according to their similarity functions.

Similarity functions are estimates of intensity dependence between the images,
when they are registered. Ideally, they should have high and equal values (sim-
ilarity) for all intensity pairs that represent correct matching (true classes) and
furthermore, they should have low and equal values for all other intensity pairs
(including false classes). There are two issues that are especially important for
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the non-rigid registration. The first one is the ratio between similarity for correct
and incorrect match, which should be low to enable good distinction between
correct and incorrect matching and the second one is the ratio between similarity
for different correctly matched intensity pairs, which should be close to 1 in order
to treat all tissue types equally, such that all of them could get registered equally
well, and prevent domination of some tissue types over the others.

In this subsection we analyze and compare point similarity measures accord-
ing to their similarity functions. We analyze and compare all previously described
measures: SP , SH , SPC , SHC , SU , SUH , SMI and SS. For each of them we com-
pute the similarity functions for two cases. First, for correctly matched images,
where joint intensity distribution consists only of true classes, which represent cor-
rectly matched tissues, and second for mismatched images, which were displaced
for 10mm, such that the additional false intensity classes that represent incorrect
match appear as well. All these experiments are performed using Brainweb sim-
ulated images of human head, specifically, normal high resolution MRI-T1 and
MRI-PD images. The results are shown in Figures 2.9 to 2.16. Which intensity
pair belong to which tissue type pair is shown in Fig. 2.3.
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Figure 2.9: Point similarity function fP (i) obtained from matched images (a),
and mismatched images (b), for MRI-T1 and MRI-PD images of head. Darker
color represents higher similarity.

Point similarity function fP (i), see Fig. 2.9, of point similarity measure SP ,
is directly an estimate of a current joint intensity distribution. The similarity
for certain intensity pair is therefore linearly related with the amount of tissue
that is represented with these intensities. Consequently, the similarity of more
frequent tissues is higher than the similarity of infrequent tissues, such that the
quality of registration of the later ones are expected to be deteriorated due to
the dominance of the first ones. In addition, this point similarity function poorly
distinguishes between intensity pairs that represent true and those that represent
false matching.
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Figure 2.10: Point similarity function fH(i) obtained from matched images (a),
and mismatched images (b), for MRI-T1 and MRI-PD images of head. Darker
color represents higher similarity.

Point similarity measure SH is related to SP . Its point similarity function
fH(i), see Fig. 2.10, is only a non-linearly scaled version of fP (i), using a log
function. Consequently, its ability to distinguish between correct and incorrect
match is poor as well. However, the log function makes the similarity for different
tissues less dependent on their amount, and so, the improvement of registration
can be expected.
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Figure 2.11: Point similarity function fPC(i) obtained from matched images (a),
and mismatched images (b), for MRI-T1 and MRI-PD images of head. Darker
color represents higher similarity.

Point similarity function fPC(i), see Fig. 2.11, of measure SPC , tends to make
the similarities for different tissues more similar by normalizing the joint inten-
sity distribution with the marginal intensity distribution of image B. This can
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Figure 2.12: Point similarity function fHC(i) obtained from matched images (a),
and mismatched images (b), for MRI-T1 and MRI-PD images of head. Darker
color represents higher similarity.

be justified by the fact that the majority of registration techniques estimate the
external forces as a gradient of similarity of certain point in one image (B) ac-
cording to its displacement with respect to the other image (A). However, the
difficulties appear when certain intensity of image B could correspond to vari-
ous intensities of image A, e.g. intensities that represent different tissues. Such
situation is when the point similarity function is obtained from mismatched im-
ages. In this case, the similarities of different correctly matched tissues may differ
considerably, and furthermore, the discrimination between correct and incorrect
matches is relatively bad.

Point similarity function fHC(i), see Fig. 2.12, of measure SHC is a logarith-
micaly scaled version of the similarity function fPC(i). This makes similarities of
different correctly matched tissues more similar, but however, this also deterio-
rates discrimination between correct and incorrect match.

Point similarity function SU(i), see Fig. 2.13, for measure SU , could be under-
stood as an improvement of fPC(i), as it uses normalization with marginal inten-
sity distributions. The difference is that in this case normalization is performed
twice, i.e. with both marginal distributions. This considerably improves the
discrimination between correct and incorrect matching. However, it also shows
larger differences between similarities of different correctly matched tissues.

Point similarity function fUH(i), see Fig. 2.14, for measure SUH , is a log-
arithmicaly scaled version of the similarity function fU(i). It retains a good
discrimination between correct and incorrect matches, but makes similarities of
different correctly matched tissues more equal. This measure is therefore one of
the best similarity measures in both of the observed aspects.
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Figure 2.13: Point similarity function fU(i), obtained from matched images (a),
and mismatched images (b), for MRI-T1 and MRI-PD images of head. Darker
color represents higher similarity.

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(a) (b)

Figure 2.14: Point similarity function fUH(i) obtained from matched images (a),
and mismatched images (b), for MRI-T1 and MRI-PD images of head. Darker
color represents higher similarity.
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Figure 2.15: Point similarity function fMI(i) obtained from matched images (a),
and mismatched images (b), for MRI-T1 and MRI-PD images of head. Darker
color represents higher similarity.
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Figure 2.16: Point similarity function fS(i) obtained from matched images (a),
and mismatched images (b), for MRI-T1 and MRI-PD images of head. Darker
color represents higher similarity.

Point similarity function fMI(i), see Fig. 2.15, for measure SMI is derived from
mutual information. According to this, events with lower probability provide
higher information. In the case of point similarity measures this means that
tissue types with lower probability dominate over more frequent tissues. In this
manner fMI(i) is exactly the opposite to all other point similarity functions,
where more frequent tissues obtain higher similarity. However, fMI(i) is good in
booth observed aspects, as it also provide relatively good discrimination between
correct and incorrect matching.

Point similarity function fS(i), see Fig. 2.16, for measure SS, considerably
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differs from other point similarity functions as it does not directly model partial
volume voxels. They are modeled only if they form a peak in joint intensity
distribution. However, the strength of fS(i) is in good discrimination between
correct and incorrect match (true and false classes) as well as in no discrimination
between the true classes. However, this similarity function can be used only in
the cases when joint distribution can be modeled as a sum of intensity classes.
In our case the classes are approximated with Gaussian functions, although this
is in nature often not absolutely correct. This makes it sensitive to intensity
inhomogeneity, and furthermore, the problems may appear when classes are very
close to each other. The later situation is evident in the example in Fig. 2.14 (b),
where the true class for surrounding tissues S (see Fig. 2.3) and a false class for
GM/WM are modeled as a single class, i.e. with a single Gaussian function, and
thus, they cannot be distinguished well.

To summarize, measures SP , SPC and SU highly depend on the amount of
different tissue types. In our case background dominates over the tissues and
thus registration of tissue intensities is much slower than registration of back-
ground, which can result in relatively bad registration results. A log function,
which is used for measures SH , SMI , SHC and SUH , makes similarities for differ-
ent correctly registered tissues less different. However, similarities for incorrectly
registered parts become more similar to those for correct match as well. This
becomes problematic especially in case of measure SHC . Similarity functions for
SH , SMI and SUH are related (2.58). SH is directly related to joint intensity
distribution p(i) and produces high similarity for intensity pairs with high prob-
ability p(i), e.g. for true classes. On the other hand measure SMI provides good
discrimination between true and false classes, while similarity is higher for less
frequent tissues and relatively low for more frequent ones, e.g. for background.
This is disadvantageous when high tissue misalignment exists, which is common
for initial registration steps. Measure SUH improves that, and equalizes the simi-
larities of true classes, while discrimination between true and false classes remains
good. Similarity function for measure SS differs from other measures, as it mod-
els the joint distribution as a sum of intensity classes, while other intensity pairs,
e.g. partial volume voxels, are not modeled. In comparison to the other point
similarity measures it better distinguishes between true and false classes.

Overall, according to the distinction between correct and incorrect matches,
and likeness between similarities for correctly matched tissues, the most promising
are measures SS for images where intensity distribution can be modeled with
classes and SUH for other cases.

2.6.3 Comparison of registration results

The most meaningful way to compare point similarity measures is to compare
registration results obtained using these measures. To perform such a compari-
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son we used our system for multi-modality non-rigid image registration, which is
described in Chapter 6. To show performance of point similarity measures un-
der different registration configurations, we have compared them using two force
estimation methods: a standard approach, which uses forward forces only, and
symmetric approach, which uses forward and reverse forces and is described in
Chapter 3. In the experiments we used four resolution levels, each consisting
of 10 registration iterations and spatial deformation model with Gaussian filters
with standard deviations σG1 = σG2 = 3.

In the experiment we used simulated and real images. First we have used MRI
T1 and PD Brainweb simulated images [42] with 1 × 1 × 1 mm voxel size. The
tests were performed using images of a whole head and images of brain only, both
of them in three different image qualities: normal images, 9% noisy images and
40% intensity inhomogeneous images. In total 6 simulated image pairs were used.
The same experiment was performed using real MRI images. For that purpose
we used MRI T1 image as target with voxel size 0.86× 0.86× 0.99 mm, while the
MRI PD source image had 0.98×0.98×1.1 mm voxel size. The images were pre-
viously corrected for intensity inhomogeneity using the information minimization
approach [48]. The comparison based on real images is more demanding, because
the quality of real images is worse than the quality of simulated images. Namely,
target image (MRI-T1) had poor intensity resolution, while source image (MRI-
PD) included large image artifacts (intensity inhomogeneity and wrap arround
artifacts), see Figure 2.17.

(a) (b)

Figure 2.17: Real images used for evaluation. The target image MRI-T1 (a) has
poor intensity resolution, while source image MRI-PD (b) includes large image
artifacts, i.e. intensity inhomogeneity and wrap around artifacts.

Our comparison of multi-modality point similarity measures is based on recov-
ering a synthetic deformation, see Chapter 5., Section 5.3.1. We used a synthetic
deformation generated as a sum of Gaussian functions. Specifically, six functions
with standard deviation ranging between 15 and 60 mm were used, resulting in
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Table 2.1: Comparison results for simulated images of a whole head. All results
are in millimeters and represent residual errors after the registration.

Forward force estimation:
measure normal 9% noise 40% shading

eRMS emax eRMS emax eRMS emax

SP 5.35 14.21 5.08 14.51 6.15 15.32
SH 0.89 5.39 0.99 5.77 22.70 44,09
SMI 1.09 6.83 1.23 7.29 3.00 10.01
SPC 10.20 22.04 15.69 26.21 22.63 43.64
SHC 0.86 5.35 1.03 6.14 23.02 44.56
SS 0.68 2.44 0.73 3.09 3.72 10.71
SU 2.78 10.42 3.17 11.41 5.97 15.01
SUH 0.83 4.90 1.09 6.36 2.68 9.18

Symmetric forces:
measure normal 9% noise 40% shading

eRMS emax eRMS emax eRMS emax

SP 3.67 12.32 3.48 12.18 4.65 13.54
SH 0.80 4.50 0.87 4.93 7.47 24.13
SMI 0.83 5.04 0.99 6.05 2.39 8.09
SPC 1.05 6.87 1.47 8.35 3.11 10.07
SHC 0.71 4.23 0.91 5.43 15.69 37.85
SS 0.51 1.91 0.55 2.08 4.02 11.12
SU 2.00 9.22 2.00 9.31 4.55 13.21
SUH 0.72 4.08 0.79 4.59 2.59 9.25

initial displacement error erms = 6.90 mm for simulated Brainweb images, and
erms = 14.15 mm for real images. The difference between real and simulated
images arose due to different position and orientation of head. We cannot argue
that Gaussian deformation can be used to model actual deformations in clinical
multi-modal applications. However, due to functional independence of force es-
timation stage and deformation model used, the results obtained that way are
appropriate for comparing force estimation methods and their fundamental part
- similarity measures. While the spatial deformation model may favor some type
of deformation, ordering of different external force estimation approaches is still
preserved.

The results of registering simulated images are tabulated in Table 2.1 and
Table 2.2. For all compared similarity measures sensitivity to noise is low while
sensitivity to intensity inhomogeneity (shading) is relatively high. The most
sensitive to intensity inhomogeneity was registration of whole head images with
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Table 2.2: Comparison results for simulated images of brain only. All results are
in millimeters and represent residual errors after the registration.

Forward force estimation:
measure normal 9% noise 40% shading

eRMS emax eRMS emax eRMS emax

SP 5.20 13.24 5.72 14.78 7.03 16.59
SH 0.73 3.99 0.99 5.88 2.14 8.95
SMI 1.65 9.17 1.79 9.32 2.42 10.18
SPC 0.72 3.48 0.95 3.50 3.01 9.98
SHC 1.29 7.69 1.54 8.50 2.24 9.61
SS 0.55 2.19 0.77 2.58 3.96 11.82
SU 1.57 4.25 1.98 4.49 8.04 17.22
SUH 0.56 2.56 0.68 3.23 1.54 5.96

Symmetric forces:
measure normal 9% noise 40% shading

eRMS emax eRMS emax eRMS emax

SP 3.35 12.18 3.36 12.21 3.42 12.29
SH 0.50 2.50 0.65 3.36 2.09 9.45
SMI 0.95 6.07 1.11 6.89 1.92 9.48
SPC 0.98 6.14 1.10 6.39 2.28 9.35
SHC 0.65 3.40 0.79 4.33 1.91 8.94
SS 0.48 1.98 0.59 2.19 3.22 10.14
SU 0.63 2.49 0.84 2.77 7.72 18.65
SUH 0.43 2.10 0.49 2.23 1.77 7.98
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Table 2.3: Comparison results of multi-modal point similarity measures using
simulated deformation and real MRI-PD/T1 images of human head for forward
force estimation (F = FF ) and for symmetric forces (F = FF − FR). All results
are in millimeters.

measure F = FF F = FF − FR

eRMS emax eRMS emax

SP 10.17 22.95 7.11 21.17
SH 2.67 13.80 2.07 10.91
SMI 2.17 12.23 2.11 10.99
SPC 11.41 25.68 2.36 11.54
SHC 2.67 13.79 2.08 9.87
SS 1.56 6.56 1.66 7.33
SU 8.04 20.21 5.44 18.80
SUH 2.32 12.50 1.83 10.22

forward force estimation, where registration was successful only when using mea-
sures SMI , SS and SUH . Note that the level of intensity inhomogeneity was higher
than is expected for real data. The problem appears due to intensities of tissues
surrounding brain, which are similar to intensities of some brain tissue in the
source image, and some other tissue in the target image. In such a situation
registration can deteriorate, especially when it is based on measures SPC , SU

and SP , and in more extreme cases also measures SH and SHC . Shading has
smaller influence on eRMS for images of brain, as they do not include surrounding
tissues, and consequently, class overlap at intensity shading is lower than in the
case of images of whole head, where surrounding tissues form additional intensity
classes. In general, when images are not subject to intensity inhomogeneity, the
best results are mostly obtained using measure SS, in other cases the best results
are mostly obtained by measure SUH . When images include only intensity classes
that are easy to distinguish, e.g. in case of registering brain images, almost every
measure gives good results and differences between them are less apparent. The
results also show that symmetric forces in general give better results than forward
forces.

Results obtained for registering real images, which are tabulated in Table 2.3,
are not as good as results obtained for the simulated images. There are two possi-
ble reasons. First, quality of real images is worse that quality of simulated images,
and second, worse results may be caused by higher initial misalignment. How-
ever, comparison of results obtained from real images suggest similar conclusions
as we made for simulated images. Segmentation based measure SS performed
best, measures SMI and SUH were also good, especially for consistent force esti-
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mation. On the other hand measures SP , SU and eventually SPC are shown to
be less appropriate for such registration tasks.

2.7 Conclusion

In this chapter we described a novel approach for measuring similarity of ex-
tremely small image regions, which we named point similarity measures. We
presented several point similarity measures, showed their advantages and dis-
cussed the obtained results. The most important advantage of the proposed
approach is decoupling of spatial regularization from similarity measurement,
which allows better control over the spatial deformation properties by the spatial
deformation model. The next important advantage is the ability to avoid inter-
polation artifacts, which improves the convergence of registration. Furthermore,
the computational cost of point similarity measures is low, which in practice en-
ables higher dimensional and more precise registration. The comparison results
of point similarity measures show that the best measures are the segmentation
based point similarity measure SS and point similarity measure SUH . They gave
the best results according to the point similarity function criteria and, further-
more, they performed best with respect to the obtained registration results. Due
to the described advantages of point similarity measures and promising registra-
tion results obtained in the experiments, we found these measures suitable for
multi-modality non-rigid registration. We anticipate that the quality of multi-
modality registration based on point similarity measures can be compared to the
quality of mono-modality registration.



3. Symmetric Image Registration

A quality of image match is usually estimated by measuring image similarity.
However, similarity measures cannot assess transformations that do not change
the appearance of the deformed image. In the case of non-rigid registration this
causes differences between results obtained by registering images in different reg-
istration directions. This asymmetric relation leads to registration inconsistency
and reduces the quality of registration. In this chapter we present a registration
approach, which tends to improve the registration by establishing a symmetric
image interdependence. In order to gather more information about the image
transformation it measures the similarity in both registration directions. The
presented solution is based on the interaction between the images involved in
the registration process. Images interact with forces, which according to the
Newton’s action-reaction law form a symmetric relationship. These forces may
transform both of the images, although in our implementation one of the im-
ages remains fixed. The experiments performed to demonstrate the advantages
of the symmetric registration approach involve registration of simple objects, re-
covering synthetic deformation and interpatient registration of real images of the
head. The results show that the symmetric approach improves the registration
consistency and the registration correctness.

3.1 Introduction

The aim of image registration is to find a transformation that puts two im-
aged anatomies into a spatial correspondence. Each anatomical point in the first
anatomy is expected to have exactly one homologous point in the second anatomy.
It is intuitively expected that more correct registration reflects in higher image
similarity, which is also a common assumption of image registration procedures.
However, this assumption may not always be valid, as similarity measures com-
pare images by their appearance and cannot asses transformations that do not
change them in that aspect.

Let us suppose that the overall transformation consists of several transfor-
mation components. Such components can correspond to changes of individual
transformation parameters. The problem arises when some of the components

51
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do not cause any change in the image appearance and therefore they cannot
be assessed by measuring image similarity. By increasing the dimensionality of
the transformation the portion of transformation components that cannot be as-
sessed by measuring similarity increases. This induces difficulties in non-rigid
registration and its validation [89], see Chapter 5.

One of the properties of the similarity measurement is asymmetry. The re-
sults of measuring image similarity in different registration directions, i.e. by
transforming the other image to obtain the same match, may depend on differ-
ent transformation components. This is illustrated in Figure 3.1. Let us first
assume that image A is being registered to image B. The transformation T im-
proves the match of image A to image B, but consists only of such transformation
components that do not change the appearance of image A. Consequently, the
improvement of match cannot be detected by measuring the similarity S(TA,B).
However, the same match as obtained by transforming image A using transforma-
tion T can also be obtained by transforming image B using the inverse transfor-
mation T−1. This corresponds to the other registration direction, where image B
is registered to image A. The inverse transformation T−1 transforms image B into
image T−1B, such that its appearance changes and the improvement of match
can be detected by measuring similarity S(A,T−1B). This illustration shows that
measuring the similarity in different registration directions may detect different
transformation components.

Asymmetry of similarity measurement reflects in asymmetry in external en-
ergy, such that external energy also depends on the registration direction. Con-
sequently, when registering images in different registration directions, different
registration results are obtained, i.e. different point to point image correspon-
dence. These differences are also known as inverse inconsistency and indicate
that at least one of the registration results is subjected to corresponding registra-
tion error. Similarly, differences between the registration results can also appear
due to asymmetry of internal energy, defined by spatial deformation models [12].
However, in contrast to asymmetry of external energy, the asymmetry of inter-
nal energy can be physically and anatomically justified. Internal energy of some
real tissue at certain transformation normally differ from internal energy of the
same tissue at applied inverse transformation. Thus, when one image needs to
be registered to the other one, incorrect results may be obtained by registering
in the opposite registration direction, because of assuming different (incorrect)
undeformed configuration.

One solution to the problem of inconsistency was proposed by Christensen
and Johnson [13]. Their consistent image registration tends to improve the reg-
istration by jointly registering images in both registration directions and linking
both processes with an additional consistency constraint. Another solution to
this problem was presented by Cachier and Rey [12], who proposed inversion-
invariant energies. Both solutions comprise measuring of similarity in both reg-
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A B

TA T−1B

Figure 3.1: Illustration of similarity measure asymmetry. Measurement of
similarity in different registration directions may assess different transforma-
tion components. Similarity S(TA,B) between image TA and image TA do
not differ from similarity S(A,B) between the original (untransformed) images,
which indicates that none of the transformation components present in transfor-
mation T can be assessed by measuring similarity in this registration direction.
On the other hand, the same image correspondence as obtained by transform-
ing image A with T can also be obtained in the other registration direction, by
transforming image B with T−1. This transformation changes the appearance
of image B and consequently, the similarity S(A,T−1B) differs from similarity
S(A,B), which indicates that at least some transformation components can be
assessed in this registration direction. This holds for any intensity based similar-
ity measure. When using an overlap measure, the similarities are the following:
S(TA,B) = S(A,B) = 0.75 and S(A,T−1B) = 0.85.

istration directions, which solves the problem of asymmetry of external energy.
In addition, both approaches symmetrize the internal energies, which may not be
always justifiable. Furthermore, both approaches require computation of inverse
transformations, which is a difficult and computationally complex task.

We propose an alternative registration approach, which does not force the
consistency, but improves the registration by establishing a symmetric image
interdependence. The symmetric relationship enables the registration to gather
more information about the image transformation by measuring the similarity in
both registration directions, in order to symmetrize the external energy and thus
improve the registration results. In addition, the proposed symmetric approach
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does not restrict the properties of spatial deformation models, such that physically
justifiable asymmetric deformation properties can be obtained as well. Finally,
the proposed approach does not require computation of inverse transformation
and is computationally effective.

3.2 Symmetric image registration

The symmetric registration approach treats both images involved in the regis-
tration process in the same manner. Both of the images share the same world
coordinate system and can overlap. Both of the images may be modeled by spatial
deformation models, possibly different ones, such that both of them may move
and/or deform. Finally, the most distinctive feature of symmetric registration
approach is interaction between the images. Images interact through forces, in
accordance with the Newton’s third law of motion. Forces on one image reflect
in opposing forces on the other image, which forms the basis for the symmetry.
The result of the interaction is transformation of the images that puts the whole
system into the equilibrium state of minimal energy.

Let A and B be the images involved in the registration. Each of them is
defined in its own coordinate system, xA for image A and xB for image B. Images
are mapped to the world coordinate system x by transformations TA and TB,
such that TAA and TBB represent the transformed images as they appear in
the world coordinate system x. Here, the mappings of image coordinates to the
world coordinates are:

x = xA + TA(xA), (3.1)

x = xB + TB(xB), (3.2)

where TA(xA) and TB(xB) denote displacements of points A(xA) and B(xB)
from its initial (untransformed) position.

Following a widely used gradient descent optimization algorithm, external
forces are defined as a gradient of image similarity S(TAA,TBB). Forces FA,
which act on image A in order to match it with image B are then the following:

FA =
∂S(TAA,TBB)

∂TA

. (3.3)

In addition to image A, image B also tends to improve the matching. Forces FB

are exerted on image B in order to improve matching of image B with image A:

FB =
∂S(TAA,TBB)

∂TB

. (3.4)

The obtained forces, FA and FB, which we call forward forces, are not sym-
metric and thus, they do not comply with physical laws, such that

FA(x) �= −FB(x), (3.5)
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where FA(x) and FB(x) denote forces at the same world coordinates x. Note that
forces FA and FB act on different images. This asymmetry is also a source of
inconsistency in the case of conventional non-rigid registration approach. Forces
FA and FB are actually estimated by measuring similarity in different registration
directions and so they are based on different information about image transfor-
mation. Each of the gradients of similarity as defined in Eq. (3.3) and Eq. (3.4)
depend only on the gradient of one image. For example, if S is some global sim-
ilarity measure, then forces FA can differ from zero only at points with nonzero
gradient of image A, while forces FB differ form zero at points with nonzero
gradient of image B. For illustration of the forward forces see Figure 3.2.

A

B

A

B

FA FB

Figure 3.2: Illustration of forces FA acting on image A and FB acting on im-
age B when matching two rectangles. Note the asymmetry of the forces with
respect to the registration direction, which is the main source of inconsistency of
conventional registration procedures.

However, the asymmetry does not affect the symmetric registration approach.
In accordance with the Newton’s third law of motion, each force exerted in one of
the images reflects in another force of the same magnitude that act in the other
image in the opposite direction. Thus, forces FA reflect to forces F′

A, which act
on image B such that F′

A(x) = −FA(x), and forces FB reflect to forces F′
B,

which act on image A such that F′
B(x) = −FB(x). The new forces are called

reverse forces and are illustrated in Figure 3.3. The resultant forces that act on
image A are the sum of forward and reverse forces:

FA(x) = FA(x) + F′
B(x) = FA(x) − FB(x), (3.6)

and likewise the resultant forces on image B are

FB(x) = FB(x) + F′
A(x) = FB(x) − FA(x). (3.7)

For illustration of resultant forces FA and FB see Figure 3.4.

Forces FA and FB are symmetric. They have the same magnitude but act on
different images and in the opposite direction:

FA(x) = −FB(x). (3.8)



56 Symmetric Image Registration

A

B

A

B

F′
B F′

A

Figure 3.3: Illustration of reverse forces F′
B acting on image A and F′

A acting
on image B when matching two rectangles.
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Figure 3.4: Illustration of symmetric forces FA acting on image A and FB acting
on image B when matching two rectangles. Note the increased amount of infor-
mation available for transforming each of the images and the obtained symmetry
FA = −FB, which is required for achieving the registration consistency.

When the symmetric forces are used for the registration, each of the resulting
transformations, TA and TB tend to correct all the image differences, i.e. those
that can be detected in one and those that can be detected in the opposite regis-
tration direction. However, transformation TA may be regularized with different
spatial deformation model than transformation TB, which opens new possibili-
ties of the registration. If the same spatial deformation model is used for both
of the images, the registration is symmetric in all the aspects and registration
results are absolutely consistent. However, it is often assumed that one of the
images represents the undeformed configuration of the anatomy, and the other
one is its deformed version. In this case the most correct results are obtained
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when transforming only one of the images, while the other image should remain
untransformed. Consequently, images must be modeled by two different spatial
deformation models. The target image A, which should not get transformed,
must be fixed (modeled as a rigid body and anchored to the coordinate system),
while the source image B must be modeled using a suitable deformable model.
Note that although the target image is fixed, the forces FA still exist and they
still contribute to the registration. Even if they cannot change the configuration
of image A they still have influence on the transformation of source image B.
Therefore, the advantages of the symmetric registration approach remain and
improvement in registration correctness can be expected.

3.2.1 Implementation details

In our implementation of registration we assume that only one of the images
needs to be transformed (image B), while the other image (A) is modeled as fixed.
However, the forces that drive the registration are obtained using a symmetric
approach, such that information of both registration directions is used.

For measuring the quality of image match we use point similarity measures
described in Chapter 2., which are capable of estimating the similarity for in-
dividual image point pairs (A(x1), B(x2)). Instead of optimizing the similarity
of the whole images, the improvement of image match is searched by optimizing
similarities of individual image voxels. This is convenient for high dimensional
registration, where transformation components represent displacements of indi-
vidual voxels. Consequently, estimation of external forces, which are also esti-
mated for individual voxels, can be simplified, as each force F(x) depends only
on one transformation component T(x) and not on the whole transformation (of
the whole image) T.

Transformation TB, which transforms image B into image TBB, moves each
point from its original (untransformed) position x = xB to a new position x =
xB + TB(xB). Consequently, point at coordinate x in image TBB, denoted
TBB(x), is actually point xB in image B (according to image coordinate system),
denoted B(xB):

TBB(x) = B(xB), (3.9)

Point TBB(x) gets matched with point TAA(x), but because image A is fixed
(TA(xA) = 0) its image coordinates equal world coordinates xA = x, see eq.(3.1).
Thus, at coordinate x, image point TAA(x) matches with image point TBB(x),
such that

TAA(x) = A(x) = A(xB + TB(xB)). (3.10)
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At this position the forward force FB(x) is the following:

FB(x) =
∂S(TAA(x),TBB(x))

∂TB

=
∂S(A(xB + TB(xB)), B(xB))

∂TB(x)
. (3.11)

The gradient of point similarity can be computed numerically, using similarities
that correspond to point displacements ∆TB(x) = [−ε, 0,+ε]3 and form a 3×3×3
point similarity window, see Figure 3.5. Similarities for points in image A that
are not positioned on the image grid are interpolated from the similarities of
neighboring grid points. Further estimation of forces, i.e. gradients of similarity,
follows Bajcsy and Kovačič [4].

voxel B(xB)

points A(xB + TB(xB) + ∆TB(x))

image grid A

ε

Figure 3.5: 2D illustration of points used for estimation of forward forces FB.

For the computation of reverse forces F′
A = −FA, a gradient of similarity with

respect to transformation TA must be obtained. Although the TA is in reality
zero (image A is fixed) we need to compute how the similarity would change
when registering in the opposite direction. In this case point A(xB + TB(xB))
would no more match with point B(xB), but with some other point in image B,
displaced from coordinate xB for some displacement u. To avoid interpolation
of image B, which is difficult because image B may be deformed, the gradient
of similarity is numerically estimated at applied small displacements u instead of
computing it at applied displacements TA(x). Thus, the derivation is performed
in the coordinate system of image B instead of using the world coordinate system
x, see Figure 3.6. The reverse force FA(xB) estimated in this point according to
coordinate system of image B is the following

FA(xB) =
∂S(A(xB + TB(xB)), B(xB + u))

∂u

∣∣∣∣
u=0

. (3.12)

However, the final reverse forces must be defined according to the world coordi-
nate system x. The local transformation between the coordinate systems follows
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voxels B(xB + u)

point A(xB + TB(xB))

image grid B

J

J−1

FA(xB)
FA(x)

Figure 3.6: 2D illustration of points used for numerical computation of reverse
forces. The numerical derivation is performed in the coordinate system of image
B and the result is mapped to the world coordinate system using a Jacobian matrix
J .

Eq. (3.2) and equals the Jacobian matrix J :

∂x

∂xB

= J = I +
∂T(xB)

∂xB

, (3.13)

∂xB

∂x
= J−1. (3.14)

Thus, the reverse forces defined in a world coordinate system are

FA(x) = J−1FA(xB). (3.15)

When both sets of forces, FB and FA, are obtained, the resultant forces FB,
used for registering image B to image A, are obtained as (3.7):

FB(x) = FB(x) − FA(x). (3.16)

3.3 Results

Three sets of experiments were performed to demonstrate the symmetric regis-
tration approach and compare it with mono-directional approaches. The experi-
ments involve registration of simple objects, recovering of synthetic deformations,
and interpatient registration of real images of human head.

Each pair of images (A,B) used in the experiments was registered using the
three different force estimation approaches, one symmetric and two unidirectional
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approaches, and in both registration directions. In total, six transformations were
obtained for each image pair. Registration of image B to image A results in
transformations TF for standard registration with forward forces FB, TR for reg-
istration based on reverse forces F′

A, and TS for symmetric registration approach
driven by forces FB. When registration is performed in the opposite direction,
registering image A to image B, transformations T′

F , T′
R and T′

S are obtained,
see Figure 3.7.

TF

TR

TS

T′
F

T′
R

T′
S

Figure 3.7: Transformations obtained by registering images A and B, with respect
to the method used for estimating forces (forward, reverse and symmetric) and
the registration direction.

All the experiments were performed using the system for high-dimensional
multi-modality registration, which is described in Chapter 6. and based on multi-
modality point similarity measure SUH , see Chapter 2. Eq. 2.57. The registration
was regularized using a combined elastic-incremental model, see Chapter 4., which
follows the implementation of linear elasticity proposed by Bro-Nielsen [5].

Three different methods were used to assess the registration quality. First,
when the correct transformation T0 was known, the registration quality was mea-
sured directly by computing RMS displacement error ERMS,

ERMS(T) =

√
1

N

∑
x

(T(x) − T0(x))2. (3.17)

Here N is the number of image voxels. The second method measures the registra-
tion consistency by computing a RMS deviation of point correspondences defined
by transformations T and T′, which are obtained by registering the same images
using the same method but in different registration directions.

CRMS(T,T′) =

√
1

N

∑
x

(
T(x) − T′−1(x)

)2
(3.18)
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T′−1 denotes the inverse of transformation T′, such that it forms the same im-
age correspondence in the other registration direction. The last method used
for assessing the registration quality was measuring of image similarity. This
method is less appropriate [89, 68] as it can only judge transformation components
that change the image appearance. For our experiments correlation coefficient
CC(A,TB) was used, see Eq. (2.3) and [39].

3.3.1 Registration of simple objects

Two images of simple objects were generated, a rectangular prism for image A
and a sphere for image B. Central image slices are shown in Figure 3.8.

A B

Figure 3.8: The central slices of the simple 3D images, representing a rectangular
prism (image A) and a sphere (image B).

After registering the images with all three registration approaches in both
directions, the results were compared by measuring consistency CRMS and simi-
larity of registered images CC. As the ideal transformation T0 is not known in
this case, the registration error ERMS can not be obtained. The results are shown
in Figure 3.9. Although all three resulting images look very similar, the consis-
tency measure CRMS indicates the advantage of the symmetric approach. The
results of the other two methods are worse, especially when using only the reverse
forces (transformation TR). However, different conclusions could be drawn when
observing the image similarity. Here, the method based on the reverse forces
gives the best result, better than the symmetric approach. To find out which of
the approaches is more correct we performed the second experiment, based on
recovering synthetic deformations.

3.3.2 Recovering synthetic deformations

In this experiment Brainweb [42] simulated images of human head were used.
Firstly, the original MRI-T1 image was used for A and its synthetically deformed
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TFB TRB TSB

A− TFB A− TRB A− TSB

CRMS = 1.349 CRMS = 1.658 CRMS = 0.893
CC = 0.968 CC = 0.984 CC = 0.976

Figure 3.9: Results of registering the simple image pair using different methods
for estimating external forces. The first row represents the resulting images TB,
and the second row shows the difference to the target image A. Below the images,
consistency results CRMS and final image similarities SMAD are shown for each
of the methods.

version for B. Secondly, we performed a multi-modality registration by using
MRI-PD image as a target A, while B remained the same synthetically deformed
MRI-T1 image, see Figure 3.10.

Five different synthetic deformations T0 were used, each of them generated
as a sum of five three-dimensional Gaussian functions with randomly selected
parameters, where the amplitude was in the range of 0 to 26mm, and standard
deviation was in the range of 5 to 50mm.

The synthetically generated transformation T0 enabled the evaluation of reg-
istration correctness ERMS, the consistency CRMS and image similarity CC. Be-
cause the original images MRI-T1 and MRI-PD were registered, measure CC
and original MRI-T1 image were used also for evaluation of the multi-modality
registration results (TB). The results are tabulated in Table 3.1. In all the
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T0

A (mono-modality)A (multi-modality) B

MRI-T1MRI-T1MRI-PD

Figure 3.10: Images used for the experiment based on recovering synthetic defor-
mations. Image A was an original untransformed MRI-T1 image (mono-modality
registration) or MRI-PD image (multi-modality registration). Image B was in all
the cases generated by deforming the original MRI-T1 image.

cases the symmetric approach performed the best regarding to the registration
correctness and registration consistency, while measuring of final image similarity
gives similar results for all three registration approaches (considering the average
initial image similarity S0 = 0.841). It is also evident that mono-modality and
multi-modality registration produce practically identical registration results.

3.3.3 Registration of real interpatient data

In the last experiment we tested how the symmetric registration approach per-
forms in case of real medical images and complex interpatient transformations.
Specifically, six real MRI-T1 images of human head were used, such that one of
them always served as image A and the other five images were used as image B.
Thus, altogether there were five image pairs and each one of them was registered
six times, by all three different methods and in both directions. Example images
are shown in Figure 3.11.

The registration results were evaluated by measuring the consistency CRMS

and image similarity CC, while registration error ERMS cannot be measured due
to the unknown ideal transformation T0. The results are tabulated in Table 3.2.
One can observe that consistency of symmetric registration is in all cases much
better than the consistency of the other two methods. Consequently, it can be
expected that the results of the symmetric registration are also more correct.
However, it is also evident that the symmetric approach does not improve the
final image similarity, which is similar for all the three methods. This indicates



64 Symmetric Image Registration

Table 3.1: Results of recovering the synthetic deformations.
Experiment Method Mono-modality Multi-modality

ERMS CRMS CC ERMS CRMS CC

TF 1.267 0.548 0.974 1.302 0.854 0.973

T
(1)
0 TR 1.382 1.570 0.976 1.876 2.050 0.974

TS 1.052 0.322 0.977 1.108 0.400 0.976
TF 1.520 0.908 0.911 1.241 1.020 0.993

T
(2)
0 TR 1.358 1.885 0.995 1.791 2.086 0.995

TS 1.242 0.356 0.994 1.093 0.326 0.995
TF 1.413 0.785 0.988 1.716 0.819 0.986

T
(3)
0 TR 1.225 2.066 0.994 1.760 2.200 0.992

TS 0.981 0.768 0.991 1.040 0.672 0.992
TF 1.043 0.305 0.995 1.166 0.565 0.994

T
(4)
0 TR 1.233 1.509 0.995 1.801 2.001 0.994

TS 0.919 0.192 0.995 1.037 0.255 0.994
TF 1.580 1.005 0.990 1.661 1.103 0.989

T
(5)
0 TR 1.501 1.663 0.993 1.970 2.203 0.992

TS 1.425 0.491 0.992 1.521 0.509 0.992

TF 1.578 0.916 0.987 1.417 0.872 0.987
average TR 1.489 1.731 0.991 1.840 2.108 0.989

TS 1.330 0.510 0.990 1.160 0.433 0.990

that similarity measures are not capable of detecting differences between trans-
formations obtained by different methods.

3.3.4 Discussion

All the results show that symmetric registration approach performs better in
terms of consistency than standard registration approaches, thereby indicating
more correct registration. Furthermore, the results of recovering synthetic de-
formations prove that the symmetric registration also improves the registration
correctness. However, the improvement of registration error is smaller than the
improvement of consistency, which indicates that some transformation compo-
nents cannot be detected by measuring image similarity in any of the registration
directions. Note that gradients of similarity and external forces still appear only
for image points with nonzero gradient of intensity, which renders the exact reg-
istration of homogeneous image regions impossible. To improve the registration
correctness of these regions an appropriate spatial deformation model must be
used.

The results also show that the final image appearance in general becomes most
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A B

TB

Figure 3.11: An example of interpatient registration of real MRI-T1 images of
human head. Image A is a target used for registering image B, and TB is the
registered image.

similar to the target image when only the reverse forces are used. One possible
explanation is that the reverse forces actually optimize the image similarity in
the same registration direction as observed after the images are registered. As
such, all the external energy is used exclusively for recovering the transforma-
tion components that improve appearance of the final deformed image, and not
for other transformation components, which would also improve the registration
correctness.

While in our implementation the reverse forces appear at the intensity gra-
dients of the source image, the forward forces appear at gradients of the target
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Table 3.2: Results of interpatient registration of real images of head.
Experiment Method CRMS CC

TF 3.090 0.788
MRI01 TR 4.859 0.839

TS 1.384 0.818
TF 3.145 0.851

MRI02 TR 5.136 0.878
TS 0.963 0.875
TF 3.155 0.859

MRI03 TR 4.142 0.864
TS 1.062 0.870
TF 3.410 0.874

MRI04 TR 5.323 0.880
TS 1.023 0.883
TF 2.951 0.863

MRI05 TR 4.747 0.881
TS 0.911 0.880

TF 3.150 0.847
average TR 4.841 0.868

TS 1.068 0.865

image.During the registration the image match changes and the later forces ap-
pear at different coordinates with respect to the image that is being registered
(TB). This contributes to the registration consistency of forward force estimation
method (comparing to the results for the reverse forces).

The consistency of the symmetric registration approach is considerably better
than consistency of the other two methods, although not as good as one would
expect. We have to emphasize that differences between results obtained in differ-
ent registration directions are also caused by spatial deformation model, or to be
more specific, by using different initial image configuration for the undeformed
state of the anatomy [12]. Because properties of real tissues are not symmetric,
two transformations that are inverses of each other require different deformation
energies. Therefore, more correct registration results can be obtained when the
correct undeformed configuration of anatomy is presumed. This is also a source
of differences that contribute to the inverse inconsistency. However, note that
such inconsistency may also be desired, as it allows more correct registration if
the registration direction is selected properly.

In contrast to the approach proposed by Christensen and Johnson [13] the
symmetric registration does not force the consistency. Instead, it improves the
registration in one direction, without performing it in the opposite direction. As
such it allows realistic asymmetric assumptions about the undeformed configu-
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ration of anatomy and/or about the spatial deformation models. Furthermore,
in comparison to the approach proposed by Cachier and Rey [12] it only sym-
metrizes the similarity energy while it does not constrain the regularization en-
ergies. When the symmetrization of the regularization energies is also desired
it can be obtained by using the same spatial deformation model for both of the
images. Finally, the implementation of the symmetric registration is computa-
tionally efficient and does not require computation of inverse transformations.

3.4 Conclusion

Symmetric image registration is a new aspect of the registration process, which
is physically oriented and uses general physical laws. This solves the problem of
asymmetry of similarity measurement, which is the main source of inconsistency
and one of the sources of the registration errors.

Three different experiments were performed to demonstrate the symmet-
ric registration approach and compare it with two standard unidirectional ap-
proaches. The results prove that the symmetric registration approach does im-
prove the registration consistency as well as the registration correctness. In ad-
dition, the computational cost of the symmetric approach is still relatively low,
as it does not require computation of inverse transformations.

The symmetric approach in general allows both images to be modeled by
suitable deformable models and thus both of them could actually deform. Such
approach could better suit to certain registration tasks when both of the images
actually represent the deformed anatomy. In addition to this generalization, it
would also be possible to use more than two images, which would interact with
forces at the same time.

Finally, note that the registration process is completely symmetric only if both
of the images are modeled using the same spatial deformation model. When this
is not the case, the registration error depends on the selection of registration
direction and some inconsistency appears due to the different assumptions in
different registration directions.



4. Spatial Deformation Models

Spatial deformation models regularize registration by introducing spatial inde-
pendence of neighboring image points, and thus preventing anatomically unlikely
transformations. Several approaches regularize registration by modeling physi-
cal material properties, e.g. elasticity or viscosity. Such physical modeling is in
general expected to aid to more correct transformation and thus better registra-
tion results. However, the deformation depends not only on spatial deformation
model, but also on external forces, which drive the registration. Thus, in order
to obtain realistic results, the external forces should equal the forces that have
actually deformed the anatomy. Unfortunately, this is never the case because im-
ages do not contain sufficient information about the deformation of anatomy, and
the external forces act only on information rich image regions (edges). Spatial
deformation models have to be designed carefully to obtain realistic transforma-
tions from such unrealistic external forces. In this chapter we focus on spatial
deformation models based on convolution. We analyze advantages and disad-
vantages of most commonly used spatial deformation models, i.e. elastic model,
viscous model and incremental model, and propose a new combined model, which
combines advantages of the elastic and the incremental model. Furthermore, we
compare different models and two common convolution kernels: an elastic kernel
and a Gaussian kernel.

4.1 Convolution models

Deformation of materials is in physics described by various physical laws. The
same deformation properties as characterize real materials are usually expected
from spatial deformation models that are used for non-rigid registration. How-
ever, in order to exactly model the behavior of realistic materials multiple physical
laws must be employed at the same time. In practice, such an exact modeling
is not required and spatial deformation models follow only a single, the most
characteristic physical law, i.e. elasticity [4, 13, 33, 34] or viscosity [25, 14, 6].
Furthermore, each characteristic behavior of deformations can be linearized and
thus the deformation properties of real materials can be approximated by linear
models, which are computationally more efficient. Such idealized spatial de-

68
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formation models can be implemented using a couple of approaches. Initially,
they were modeled exclusively by implementing corresponding partial differential
equations [4]. Later a finite element approach [26] and a convolution approach [6]
were proposed. In this work we follow the convolution approach, proposed by
Bro-Nielsen [5, 6]. The idea of this approach is that every linear model can be
implemented by convolution filtering, where the filter kernel equals the impulse
response of the deformable media. Such regularization can be applied to voxel
displacements or to voxel velocities. Thus, common spatial deformation models
differ only in two aspects: according to the filter kernel and according to the data
that is being filtered.

4.1.1 Elastic models

The characteristic behavior of the elastic materials is that they deform due to
the external forces and when the forces are retracted the elastic materials return
back into the undeformed configuration. Following the work of Bro-Nielsen [5],
this relation between forces F and transformation T can be described using a
convolution approach:

T = G ∗ F, (4.1)

where G stands for the spatial convolution filter with kernel that equals the
impulse response of the deformable media. However, this equation cannot be
directly used for image registration purposes, because the forces that would bring
the images into register cannot be directly computed from the mismatched images.
External forces, which drive the registration, are only an estimate how the forces
should act to improve the image match.

In order to solve this problem we separate the spatial deformation model
into two parts. The first part follows the Hooke’s law to compute unregularized
displacement of image points, while the second part regularizes them according to
the impulse response of the deformable media to obtain the final transformation
T, see Fig. 4.1. In accordance with this we separate the convolution filter G into
two terms, a filter gain kF and a normalized kernel GE, such that

G = kFGE, (4.2)∫
GE(x)dx =

∑
x

GE(x) = 1. (4.3)

Consequently, the elastic model (4.1) can be rewritten in the following way:

T = GE ∗ (kFF) = GE ∗ TF , (4.4)

where TF is a transformation, i.e. displacements of independent image points due
to the applied force, as follows from the Hooke’s law, TF = kFF. Convolution
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Figure 4.1: Elastic model separated into the Hooke’s law, which maps external
forces into a transformation (displacements) of independent image points, and
spatial regularization filter GE, which models interdependencies between the points
to regularize the transformation.

filter GE models interdependencies of image points, which imposes certain spatial
deformation properties and thus regularize the transformation.

External forces obtained during the registration procedure tend to improve the
transformation iteratively. Consequently, the transformation in the t-th iteration
T(t) is a sum of the transformation obtained in the previous iteration T(t−1) and
the increment T

(t)
F that follows the Hooke’s law, and furthermore, all together

must be regularized by the spatial regularization filter, see the block scheme in
Figure 4.2:

T(t) = (T(t−1) + T
(t)
F ) ∗ GE (4.5)

This can be rewritten in the following form:

T(t) = T
(t)
F ∗ GE + T

(t−1)
F ∗ G2

E + T
(t−2)
F ∗ G3

E + ...+ T
(1)
F ∗ Gt

E, (4.6)

where Gn
E stands for n-times convolution with filter GE. By increasing the num-

Figure 4.2: A block scheme of the elastic model suitable for iterative non-rigid
registration procedures.

ber of convolution steps n the convolution kernel becomes wider and approaches
towards averaging. Consequently, if the external forces do not exist (F = 0),
the model gradually returns back to the undeformed configuration. As forces
in earlier iterations are regularized with wider kernels they contribute to more
global matching, while forces in later iterations are regularized with narrower
kernels and deal with more localized image mismatches. This is advantageous
because the estimated forces do not act directly in the direction of the correct
match, and thus include a local error. This is more obvious in initial registration
iterations, when images are more mismatched, than in later registration itera-
tions, when points used for estimating external forces are already close to their
correct position. However, the elastic model also has one important disadvan-
tage. The problem appears because external forces exist only if there is some
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image mismatch, while they are necessary to maintain the deformed state of the
image. Thus, local image discrepancies can never be registered absolutely correct
as there is always some mismatch required to maintain the deformation. The
mismatch is a systematic error and is larger for larger deformations. This makes
the elastic model less suitable for large deformations. In such cases viscous fluid
or incremental models are often used instead.

4.1.2 Viscous fluid models

Viscous fluid models were introduced in order to avoid the systematic error of
elastic models and enable large deformations [14]. They model motion of highly
viscous fluids. Instead of applying restriction to point displacements, they restrict
point velocities V:

V(t) = (V(t−1) + V
(t)
F ) ∗ GV , (4.7)

VF = kFF, (4.8)

where GV is a normalized kernel of convolution filter used to regularize point
velocities. ∫

GV (x)dx =
∑
x

GV (x) = 1. (4.9)

The transformation T, i.e. the point displacements, is obtained from point veloc-
ities V by integration, which is in the discrete time (iteration) domain performed
by summation:

T(t) =
t∑

n=1

V(t). (4.10)

The block scheme of the viscous fluid model based on convolution is shown in
Fig. 4.3. The difference to the elastic model is only in the second summation,
which serves as an integrator.

Figure 4.3: A block scheme of the viscous fluid model.

The viscous model considerably differs from the deformation properties of
real tissues. When forces are retracted the material remains in the deformed
configuration. Viscous model also enables very large deformations, even such
that are not expected for real tissues. The disadvantage of this approach is in
accumulation of registration error. External forces do not always act exactly in
the direction of the correct match, which is most obvious in the initial registration
steps. Components of external forces, which are perpendicular to the direction of
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the correct match, represent an error, which accumulates in point velocities and
point displacements, and therefore also reflects in the registration error. Thus,
the ability to perform large image deformation is related to larger registration
error. This is the main disadvantage of the viscous fluid model, which makes it
less suitable for modeling deformations of real tissues.

4.1.3 Incremental models

Incremental models were introduced to avoid systematic error of the elastic ap-
proach. They are also based on the elasticity and assume that the total force F0,
which is required for registering two images, can be obtained by summing the
estimated external forces over all registration iterations:

F0 =
∑

t

F(t), (4.11)

where t denotes the iteration number. Following the principle of linearity, the
final transformation T can also be computed as a sum of partial transformations
(displacements) T(t)

T = kFGE

∑
t

F(t) =
∑

t

GET
(t)
F , (4.12)

and consequently,
T(t) = T(t−1) + GET

(t)
F , (4.13)

A block scheme of incremental spatial deformation model is shown in Fig. 4.4.

Figure 4.4: A block scheme of the incremental model.

This kind of model has similar characteristics as viscous fluid models. When no
external forces are applied it does not return into the undeformed state. Con-
sequently, it accumulates the registration error, which is its main disadvantage.
On the other hand it does allow large deformations and does not suffer from the
systematic error known from the elastic models.

4.1.4 Combined elastic-incremental model

All the models described earlier have certain advantages and certain disadvan-
tages. The elastic model provides physically and anatomically reasonable defor-
mation properties and thus assures relatively low registration error for information
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poor image regions, e.g. homogeneous image regions. However, it suffers from
the systematic error, which is the most obvious in information rich regions, e.g.
edges of anatomical structures may not perfectly overlap. On the other hand,
deformation properties of the incremental model and the viscous model differ
from deformation properties that are expected for most real tissues, which re-
sults in higher registration errors in information poor image regions. However,
because these models do not suffer from the systematic error, they better register
information rich image regions.

In order to combine the advantages of different spatial deformation models
and improve the registration we devised a combined elastic-incremental model.
The elastic part is expected to contribute to low registration error for information
poor image regions, while the incremental part is expected to aid to matching of
information rich image regions. The combined model would thus enable larger
deformations and provide lower systematic error than the elastic model, and,
on the other hand, improve the anatomical suitability of the incremental model.
The obtained model consists of two convolution filters, where the first one, GI ,
follows the principle of the incremental model and regularizes transformation
improvements TF , and the second filter, GE, represents the elastic properties
and regularizes the overall transformation T, see the block scheme in Figure 4.5:

T(t) = (T(t−1) + T
(t)
F ∗ GI) ∗ GE (4.14)

The first filter (GI) enables large deformations and precise registration while the
second one (GE) serves to improve the linearity of the results.

Figure 4.5: A block scheme of the incremental model.

The total regularization G, i.e. the normalized impulse response of the com-
bined model, suits to the convolution of both filter kernels:

G = GI ∗ GE. (4.15)

If Gaussian filters are used, see Section 4.2, then the obtained standard deviation
is

σG =
√
σGI

+ σGE
. (4.16)

The behavior of the combined spatial deformation model depends on the ratio
between regularization provided by each of the filters, such that in the extreme
cases the incremental model is obtained when GE = δ and the elastic model is
obtained when GI = δ. Here δ is a Dirac’s delta function. If both filters differ
from δ, then the improvements are expected. A practical comparison between
different settings of the filters is shown in Section 4.1.5.
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4.1.5 Comparison

To test the combined elastic-incremental model and compare it with the elastic
and the incremental model, we performed an evaluation study based on recovering
synthetic deformations, see Section 5.3.1. The synthetic deformation was gener-
ated as a sum of six three-dimensional Gaussian functions with standard deviation
ranging between 15 and 60 mm, such that the initial RMS displacement error was
eRMS = 7.09 mm and the maximal displacement error was emax = 16.84 mm. The
experiment was performed using two spatially aligned Brainweb [17, 42, 20] im-
ages of human head with voxel size 1 × 1 × 1 mm. The first image, MRI-PD,
was synthetically deformed and used as the target for registering the other im-
age, MRI-T1. For more information about the system used for the registration
see Chapter 6. In all the experiments a point similarity measure SUH was used,
see Section 2.4.3. Gaussian convolution kernels were used for the regularization,
such that the standard deviation of the overall regularization was in all the cases
the same, σG = 4.24. The comparison was made between the results for nine
different settings of the combined spatial deformation model, where one of the
settings suited to the elastic model (σGI

= 0,σGE
= 4.24) and one to the in-

cremental model (σGI
= 4.24,σGE

= 0). In all the cases the coefficient kF was
recomputed in each iteration, such that the increment TF (x) was limited to the
size of one image voxel. The comparison was made for three resolution levels of a
multiresolution registration strategy. First, images subsampled by factor 4 were
registered in resolution level 2, then the registration continued in level 1 with
images subsampled by factor 2, and finally, the original images were registered
in level 0. The best result of each level (with respect to maximal displacement
error emax) was used as the initial deformation for the next resolution level. The
results are tabulated in Tables 4.1, 4.2 and 4.3.

Table 4.1: Evaluation of the combined elastic-incremental spatial deformation
model for the resolution level 2.

σGI
σGE

eRMS emax CC

0.00 4.24 5.03 14.05 0.9206
0.50 4.21 4.72 13.60 0.9305
1.00 4.12 4.11 12.85 0.9444
2.00 3.74 3.16 11.42 0.9565
3.00 3.00 2.13 8.40 0.9657
3.74 2.00 1.37 4.68 0.9523
4.12 1.00 1.30 4.13 0.9532
4.21 0.50 1.17 4.64 0.9611
4.24 0.00 1.49 4.95 0.9523

In all three resolution levels the best results were obtained when both of
the filters of the combined model were employed. Thus, the combined model
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Table 4.2: Evaluation of the combined elastic-incremental spatial deformation
model for the resolution level 1.

σGI
σGE

eRMS emax CC

0.00 4.24 3.19 11.32 0.9626
0.50 4.21 2.96 10.93 0.9671
1.00 4.12 2.44 9.98 0.9751
2.00 3.74 1.44 7.25 0.9819
3.00 3.00 0.80 3.74 0.9838
3.74 2.00 0.55 1.95 0.9837
4.12 1.00 0.59 2.41 0.9827
4.21 0.50 0.68 2.83 0.9806
4.24 0.00 0.73 3.09 0.9809

Table 4.3: Evaluation of the combined elastic-incremental spatial deformation
model for the resolution level 0.

σGI
σGE

eRMS emax CC

0.00 4.24 1.51 6.19 0.9827
0.50 4.21 1.39 5.95 0.9840
1.00 4.12 1.16 5.33 0.9856
2.00 3.74 0.76 3.82 0.9869
3.00 3.00 0.50 2.62 0.9870
3.74 2.00 0.39 1.97 0.9863
4.12 1.00 0.43 1.78 0.9857
4.21 0.50 0.49 1.80 0.9854
4.24 0.00 0.51 1.92 0.9852

performed better than the incremental or the elastic model. The elastic model
resulted in a large registration error due to small external forces, which were
limited in order to limit the change of transformation in one registration iteration
to the size of one image voxel. Consequently, the registration cannot result in
larger deformations than those, that can be maintained by such small external
forces. On the other hand, the incremental model also results in larger errors
than the optimal combined model, which is due to non-linear relationship between
external forces and required image transformation. The best results were obtained
when both of the convolution filters were used, such that elastic and incremental
properties were combined. In our case, the best results were obtained when the
standard deviation of the incremental kernel was a bit larger than the standard
deviation of the elastic kernel, but in general the optimal settings may depend
on the type of deformations that need to be recovered.
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4.2 Filter kernels

Kernels of the convolution filters define spatial deformation properties of the mod-
eled material. Firstly, the kernel width defines stiffness of the model, such that
wider kernels correspond to more stiff materials and narrower kernels correspond
to more flexible materials. Secondly, the type of the kernel defines some other
characteristics of the deformation, e.g. compressibility, isotropy, etc. Because the
continuum mechanic non-rigid registration follows the principles of deformation
of real-world materials, the elasticity and the viscosity are the most characteristic
properties. When this two properties are modeled using a convolution approach,
they require an elastic convolution kernel, which was proposed by Bro-Nielsen [6].
However, due to differences between real forces, which deform the anatomy, and
the estimated forces that drive the registration, even such a realistic kernel does
not guarantee good registration correctness. This gives rise to the use of simpler
kernels, where the most frequently used one is a Gaussian kernel.

4.2.1 Elastic kernel

The elastic kernel was proposed by Bro-Nielsen and Gramkow in 1996 [6]. It en-
ables modeling of linear elasticity and viscousity using the convolution approach.
This approach speeds up the registration by the factor of 1000 with respect to
the approach based on solving Navier-Stokes partial differentials equations [82].
For the details about the elastic kernel see [5, 6, 31]. An example of the elastic
convolution kernel is shown in Figure 4.6.

4.2.2 Gaussian kernel

The Gaussian kernel can be regarded as a separable approximation to the elas-
tic kernel. Due to the separability a three-dimensional Gaussian filter with the
size N3, which originally requires N3 multiplications, reduces to three indepen-
dent one-dimensional filters (one for each dimension), which requires only 3N
multiplications. The substantial increase of speed is the main reason why Gaus-
sian kernels have been extensively used. Here, let us mention only a popular
’demons-based’ algorithm, proposed by Thirion in 1995 [80].

The main difference between the separable kernels, e.g. Gaussian, and more
realistic elastic kernel is in the compressibility of the modeled material. Due
to the independence of spatial dimensions the separable kernels do not provide
control over the compressibility, and a longitudinal stretch does not induce a
lateral shrink, see Figure 4.7.
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Figure 4.6: An example of elastic kernel presented by a deformed grid (top) and
by displacement vectors (bottom).
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Figure 4.7: An example of Gaussian kernel presented by a deformed grid (top)
and by displacement vectors (bottom).
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4.2.3 Comparison

In order to compare the elastic kernel and the Gaussian kernel with respect to
their suitability for image registration, we performed a simple 1D experiment,
where the ability of the kernels to describe elastic deformations was observed.
1D experiments do not expose all the differences between the kernels, which
are important in the case of 3D registration, because the relations between the
spatial dimensions, which in the case of 3D registration define compressibility of
the material, cannot be observed. Despite of this, the 1D experiment enables the
analysis of registration error with respect to the position of forces, which in reality
deform the registered anatomy. We have analyzed two possible situations: first,
if the forces, which in reality deform the anatomy, act on edges of anatomical
structures, and second, if the forces act on points inside the structures.

The situation, when the anatomy is deformed by forces that act on edges
of anatomical structures, is illustrated in Figure 4.8. The figure represents an
image of an edge between two tissue types, which are represented by two dif-
ferent intensity values. In our experiment both tissues have the same elastic
deformation properties. If the tissues are subjected to a force F0, they deform.
The deformation (displacements of each point from the original position) is il-
lustrated in Figure 4.9 with the thin solid line. Now, let us suppose that we
register the original, undeformed image to the deformed one, using two different
convolution kernels: first, the elastic kernel, which suits to the impulse response
of the deformed material, and second, the Gaussian Kernel. The external force
FR estimated during the registration would ideally act on the same point as the
force F0, which was used to deform the tissues. Consequently, when the elastic
kernel is used, the deformation can be perfectly recovered, see Figure 4.9, dashed
line. However, if the Gaussian kernel is used, the deformation cannot be per-
fectly recovered, see Figure 4.9, dotted line. The point on the edge is correctly
transformed, which means that the registration still manages to make the images
look equal, but transformation deviates from the ideal one in points inside the
homogeneous image regions.

In the second situation the force F0 does not act on the edge between the tis-
sues, but on some point inside a homogeneous region near the edge, as illustrated
in Figure 4.10. The consequent deformation is similar to the deformation in the
previous case, the only difference is in the position with respect to the edge, see
Figure 4.11 thin solid line. However, when the original image is registered to the
deformed one, the deformation in the homogeneous regions cannot be detected
by measuring image similarity, such that the forces FR act only on points with
nonzero intensity gradient, which is mainly at the edges of anatomical structures,
see Figure 4.10. Although the registration may deform images such that they look
equal, the original deformation cannot be recovered correctly, not even when the
realistic elastic kernel is used, see Figure 4.11, dashed line. However, if the Gaus-
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F0,FR

Figure 4.8: An illustration of a force F0 acting on the edge of an imaged structure.
It can be expected that force FR estimated during the registration acts on the same
point as F0, which enables good registration results.

deformation

elastic

Gaussian

xF0 = xFR
x

T(x)

Figure 4.9: Recovering of deformation of elastic material, deformed by the force
F0 that acts on the edge of an anatomical structure (the deformation is presented
by the thin solid line). Registration may perfectly recover the deformation when
the convolution kernel suits to the properties of the deformed media (dashed line).
When different kernels are used, e.g. Gaussian, the registration cannot perfectly
recover the deformation and some registration error exists (dotted line).
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F0 FR

Figure 4.10: An illustration of a force F0 acting on a point in a homogeneous im-
age region. The deformation, which it causes, cannot be recovered by registration,
because the estimated forces FR always act on the points with nonzero intensity
gradient, which mostly correspond to edges of anatomical structures.

deformation

elastic

Gaussian

xF0 xFR
x

T(x)

Figure 4.11: Recovering of deformation of elastic material, deformed by the force
F0 that acts on the point inside the homogeneous image region (the deformation
is presented by the thin solid line). Although the registration may always be able
to make the images look the same, it cannot perfectly recover such deformation,
because the forces FR that are estimated during the registration act only on the
edges of anatomical structures. In this case the convolution kernel that suits to
the properties of the deformed media (dashed line), may cause larger registration
error than some other less realistic kernels, e.g. Gaussian (dotted line). In the
presented experiment the elastic kernel (dashed line) results in 30% larger RMS
registration error than the Gaussian kernel (dotted line).
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sian kernel is used, it may produce more correct results. For example, in our
experiment the optimal Gaussian kernel, see Figure 4.11 dotted line, performed
30% better than the elastic kernel, with respect to the RMS registration error
eRMS .

The experiments show that the best registration results are not necessarily
obtained by spatial deformation models that exactly follow deformable properties
of the anatomy. This justifies the use of Gaussian models, which are often used
due to their lower computational cost. The selection and setting of the model
is therefore not straightforward an depend on the application, specifically on
the expected distribution of body forces, required compressibility and volume
preservation, etc.

4.3 Discussion and conclusion

In this chapter we focused on spatial deformation models based on convolution.
In the first part we devised the combined elastic-incremental model and compared
it with the elastic model and the incremental model. The combined model tends
to reduce the systematic error of the elastic model and the accumulated error
of external forces, which is characteristic for the incremental model. It turns
out that these two errors are related, such that the decrease of the first one
increases the second one, and vice versa. The combined model enables to find an
optimum, where the total error is the lowest. The comparison results prove that
the combined model does perform better than the other two models individually.
However, the optimal settings, including the ratio between elastic and incremental
regularization, may depend on the nature of the deformation.

In the second part of the chapter we analyzed and compared two different
convolution kernels: the elastic kernel and the Gaussian kernel. The elastic kernel
models the real tissue properties better than the Gaussian kernel. Its major
advantage is to provide control over the material compressibility and thus enable
volume preservation. As expected it turned out that it gives better results when
the anatomy is deformed by forces that act on the edges of anatomical structures.
If this is not the case, the situation is more difficult and transformation cannot be
recovered exactly. It turns out that in the case, when forces act in homogeneous
image regions, the realistic elastic model gives even worse results than some other,
nonrealistic models, because estimated external forces differ from the ones that
actually deformed the tissues. We have illustrated this with the 1D experiment,
in which the Gaussian kernel resulted in 30% lower RMS registration error than
the elastic kernel. This justifies the use of Gaussian models, which furthermore
have an additional advantage of lower computational cost.

The presented results indicate that the optimal convolution based spatial de-
formation model is the combined elastic-incremental model. Because in reality
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the forces that deform the anatomies are not expected to be limited to the edges
of anatomical structures, the elastic kernel is not necessarily the best one and
computationally less demanding Gaussian kernel may be used instead. Because
the best model does not necessarily suit to the realistic deformation properties,
the setting of such model is difficult and depends on the application. It does not
depend only on the properties of the real tissues, but also also on the expected
distribution of body forces, which cause the deformation. In reality, it is diffi-
cult to take into consideration all the factors that have influence on the optimal
setting of the spatial deformation model. Consequently, we expect that the best
setting can be obtained experimentally.



5. Evaluation of Multi-Modality Non-Rigid

Registration

Image registration is used to find a transformation, which maps one image to
the other one, such that anatomical features are brought into a spatial corre-
spondence. The evaluation of registration should therefore judge the correctness
of the obtained transformation. In practice this is difficult, because the cor-
rect transformation is in reality never known, and consequently, evaluation must
be accomplished using other approaches, based on synthetic deformation, image
segmentation or direct image comparison. In this chapter we analyze these ap-
proaches and expose their limitations. Because none of these methods can reliably
deal with all kinds of misregistration, we propose a three step evaluation strat-
egy, which alleviates the problem by separately evaluating individual functionally
independent stages of the registration.

5.1 Introduction

In the last decades, there has been a growing interest in developing new and bet-
ter techniques for non-rigid registration, particularly in medical imaging field. A
variety of non-rigid registration methods exist [82], and several validation schemes
have been proposed [89], particularly on rigid registration [88]. In spite of this,
objective evaluation of non-rigid image registration remains an open question.
Following the definition of image registration, evaluation should judge the qual-
ity of a given registration according to the correctness of transformation, which
for every point in the source image specifies the displacement with respect to its
initial position. True transformation of real medical images, however, is gener-
ally not available, rendering such direct approaches difficult or even impossible.
Other, indirect evaluation approaches, based either on synthetic deformation,
manual and automatic image segmentation, or straight image comparison have
been used instead [32, 36, 13, 41]. The danger with these indirect approaches
is that they can lead to questionable interpretation of evaluation results. Let us
imagine an image of a square, rotate this image by 30 degrees and then register it
back to the original one using a non-rigid registration technique, see Figure 5.1.
According to the Figure 5.1 the obtained image appears to be quite similar to the

84
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original one, suggesting successful registration. Nevertheless, a detailed exami-
nation of the corresponding transformation shows that back-transformed image
was not only rotated as required, but it was also largely deformed. Is this reg-
istration correct, as indicated by the image appearance, or is it in error due to
the induced deformation? One could argue that, if the goal were to align the
images region-wise, the result could be considered adequate, regardless of the
actual mapping. But should the answer to this question depend only on the cir-
cumstances under which the method is to be used? Our next example involves
two morphologically different images, see Figure 5.2. Depending on the deforma-
tion model non-rigid registration of such images can yield a number of different
results. Which registration is better and which one is the correct one? Should reg-
istration make the resulting image as similar to the target as possible, or should
it preserve morphologically important features of source image, although leaving
much greater difference between the resulting and the target image? Thus, how
to evaluate non-rigid registration results? We believe that these questions should
be answered by following the definition of image registration.

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Registration of squares, rotated by 30 degrees. (a) target image, (b)
source image, (c) registration result, (d) and (e) expected and obtained trans-
formation of image grid respectively, (f) obtained displacements shown for edge
points.



86 Evaluation of Multi-Modality Non-Rigid Registration

(a) (b)

(c) (d) (e) (f)

Figure 5.2: Registration of images that have some morphological differences. (a)
target image, (b) source image, (c-f) possible registered images.

5.2 Non-rigid registration issues

Non-rigid image registration is in medicine used to bring homologous points in
images that represent related anatomies or/and their functionalities into corre-
spondence. In other words, the aim of registration is to transform one of the
anatomy representations to match the other in a way of putting anatomically
important features that are present in both images into correspondence. Reg-
istration therefore tries to geometrically transform one of the images, with the
purpose of making the images more similar, but the basic problem associated
with this is that the images can become similar even if anatomical features do
not correctly correspond. This is clearly demonstrated in Figure 5.1. Although
the transformed image seems to be aligned with the target, one can observe that
pixels representing square corners are actually mapped to points on the sides
(Figure 5.1f). Other points are mapped incorrectly as well. In this example the
source of misregistration lies in inappropriate spatial model. Generally, the se-
lection of spatial model should be based on the properties of modeled object or
on the expected differences between target and source object/anatomy. In case
of intrasubject registration, where both anatomies are approximately the same,
spatial model should be based on deformable properties of tissues. Unfortunately
real tissue properties are usually not exactly known, and furthermore, they dif-
fer according to tissue types. Thus, deformation model of registered anatomy is
usually simplified in a way of using only one model for all the tissues, see Chap-
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ter 4. The model should favor those kinds of deformation that are admissible
(realistic) and penalize the deformations that are not. If a registration model does
not enable correct deformation, e.g. if the model is too stiff, detailed differences
remain and such registration can be characterized as underregistration. On the
opposite, too loose models introduce new detailed differences (as shown in our
example in Figure 5.1) and can be considered as overregistration.

Intersubject registration, due to high intersubject biological variability, makes
the problem even harder. For example, each brain has a unique configuration of
gyri and sulci. In fact, some sulci are not found in all individuals [57]. This causes
difficulties when trying to precisely register such images. Nevertheless, precise
registration may not be even desirable [89] and can be treated as overregistration.
Although overregistered images may look more similar, they can not provide
reliable conclusions about the morphological correctness, if the morphology can
be arbitrarily changed by the registration. This phenomenon is illustrated in
Figure 5.2. If angles are important for further studies, the solution that removes
one angle and adds two new ones is inappropriate. Furthermore, would it be
better to match the remaining angle of triangle with one of two remaining angles
of square? Similar problems and questions can appear when matching sulci and
gyri in intersubject brain studies. Is it therefore better to remove only those
differences, which can be removed with reasonable level of reliability and accuracy
[89]? Or maybe all the differences shall be removed as assumed in [35]? Visual
appearance, or direct comparison of registered images is clearly not sufficient
criterion for evaluation of image registration, as even visually similar images do
not give adequate information about the correctness of deformation.

It is obvious that registered images will look more similar if a more loose
model is used. By reducing the model stiffness, it may be possible to completely
remove all visual differences (e.g. deform circle to C shape). The question re-
mains whether such registration is also better than one obtained by using a more
stiff model that may yield visually less appealing results? Registration should
not tend to remove all image differences but only those that are anatomically
plausible. Unfortunately it is not clear how to distinguish between plausible and
implausible deformations. Perhaps the best we can do is to calibrate the reg-
istration algorithm, e.g. by setting stiffness of the spatial deformation model
according to the application specific knowledge. Evaluations should take that
knowledge into consideration as well.

5.3 Evaluation methods

Following the definition of image registration, evaluation should judge the regis-
tration by measuring remaining deviation of anatomical feature positions. Specif-
ically, evaluation should measure the difference between obtained and correct
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displacements for all image points that represent studied anatomy. To perform
such evaluation the correct transformation must be known, but unfortunately
this is not the case when registering real medical images. In general, there are
two ways how to tackle this problem. Firstly, by using synthetic deformations,
and secondly by using anatomical features that can be identified in both images.
However, sometimes none of previous two approaches is possible, and the only
method that remains applicable is a direct image comparison. In this section we
analyze these three evaluation methods and identify their limitations.

5.3.1 Recovering synthetic deformations

In practice, the correct registration is available only if deformation is generated
synthetically. In that case, registration can be evaluated as illustrated in Fig-
ure 5.3. The procedure requires two images, A and B, that are correctly regis-
tered, e.g. acquired at the same time, simulated or taken into correspondence by
some validated registration approach. It is also possible to use the same image
for A and B, but results may be biased because of correlated image noise or high
correlation between image artifacts. Image A is then deformed using a known
transformation T0 to image T0A which is then used as a target for registering
image B. The result of registrering image B to image T0A is transformation
TR, which should in the ideal case equal the synthetic transformation T0, but in
reality it differs. The quality of registration can be measured by comparing the
transformations. Such comparison can be based on measuring a RMS residual
difference eRMS between displacements T0(x) and TR(x):

eRMS =

√
1

NΩ

∑
x∈Ω

(T0(x) − TR(x))2. (5.1)

Voxels representing background do not provide reliable information about regis-
tration quality and may be removed by mask Ω. NΩ denotes number of voxels
accepted by the mask Ω and x are spatial coordinates. Similarly, it is also possible
to compute mean, median and maximal registration errors.

The limitation of the evaluation based on synthetic deformations is in the
synthetic nature of the transformation T0. If the transformation is not realis-
tic, the obtained evaluation results may be biased, because spatial deformation
models may systematically favor the simulated deformation. In order to perform
unbiased evaluation of registration, the synthetic deformation must be generated
by precise modeling of the deformed anatomy, such as in [75]. Evaluation by
recovering synthetic deformations is therefore less suitable for intersubject regis-
tration, where deformations are difficult to be modeled due to high intersubject
anatomical variability.

When the system for non-rigid registration consists of functionally indepen-
dent stages, the evaluation based on synthetic deformations enable unbiased anal-
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Figure 5.3: Evaluation based on recovering synthetic deformations. Image A is
synthetically deformed with transformation T0. The obtained image T0A is used
as a target for registering image B. The evaluation is then based on comparison
of transformations T0 and TR.

ysis of performance for those stages that do not use spatial information. In the
case of non-rigid registration based on point similarity measures, see Chapter 6.,
the only stage that uses spatial information is the spatial deformation model. The
performance of the other stage, estimation of external forces, can thus be ana-
lyzed properly even by using less realistic synthetic deformations. Although the
registration results depend on the capability of the spatial deformation model
to fit to the synthetic deformation, the relative ranking of results reflects the
suitability of the methods for estimation of external forces.

To illustrate the evaluation based on recovering synthetic deformations we
compared different point similarity measures. Point similarity measures do not
use any spatial information, and consequently, they can be compared using this
approach. The experiment was performed using several different synthetic de-
formations, all of them generated as a sum of Gaussian functions. The differ-
ence between the deformations were in the amplitude of the Gaussian functions,
A = {5, 10, 15}, and their standard deviation, σ = {10, 20, 30, 40, 50}. The ob-
tained results are tabulated in Table 5.1. Relative performance of different point
similarity measures is compared for different synthetic deformations in Figure 5.4.

The results show that similar conclusions about the performance of different
point similarity measures can be made almost regardless to the synthetic defor-
mation. The only limitation is that comparison cannot be made well when the
spatial deformation model cannot fit to the synthetic deformation. In this case
the obtained results are poor for all of the similarity measures, e.g. for σ = 10.
In all the other cases, it can be concluded that measures SP and SU are not a
good selection, other measures are better and the best measure is the measure
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Table 5.1: Recovering of synthetic deformations used for comparison of point
similarity measures. Synthetic deformations were generated as a sum of Gaussian
functions, using three different amplitudes, A = {5, 10, 15} mm, and five different
standard deviations, σ = {10, 20, 30, 40, 50} mm.

σ = 10 σ = 20 σ = 30 σ = 40 σ = 50
S eRMS emax eRMS emax eRMS emax eRMS emax eRMS emax

A = 5
− 0.30 6.41 0.87 6.23 1.67 6.04 2.70 6.75 3.91 7.89
SP 0.42 7.08 0.94 7.29 1.70 7.39 2.38 7.77 2.85 8.25
SH 0.38 4.85 0.56 4.09 0.78 3.75 0.85 3.27 0.82 3.32
SMI 0.29 4.79 0.49 4.43 0.70 4.10 0.75 3.80 0.75 3.64
SPC 0.26 5.13 0.46 3.32 0.68 3.12 0.71 2.90 0.69 2.50
SHC 0.44 4.61 0.61 4.31 0.82 4.07 0.90 3.52 0.89 3.48
SS 0.32 4.53 0.45 2.83 0.67 2.76 0.71 2.92 0.66 2.54
SU 0.27 6.39 0.68 6.60 1.18 6.41 1.49 6.16 1.60 6.43
SUH 0.32 4.47 0.55 4.29 0.74 4.09 0.84 3.79 0.79 3.49

A = 10
− 0.60 12.82 1.74 12.46 3.34 12.08 5.40 13.51 7.83 15.79
SP 0.66 13.54 1.75 13.59 3.14 13.04 4.21 13.42 5.29 13.92
SH 0.51 11.62 0.89 9.06 1.01 8.75 0.84 4.53 0.83 3.88
SMI 0.48 11.30 0.80 9.41 0.95 8.89 0.80 5.32 0.76 3.71
SPC 0.50 11.76 0.86 10.45 0.93 7.61 0.81 5.46 0.79 4.68
SHC 0.54 11.48 0.93 9.61 1.04 8.36 0.89 4.07 0.89 3.62
SS 0.43 11.14 0.66 8.61 0.75 5.08 0.72 3.83 0.69 3.20
SU 0.55 12.99 1.45 12.96 2.44 11.93 3.04 11.64 3.39 10.78
SUH 0.49 11.23 0.80 9.51 0.97 9.21 0.81 4.42 0.80 3.74

A = 15
− 0.89 19.23 2.61 18.69 5.02 18.12 8.11 20.26 11.74 23.68
SP 0.94 20.00 2.59 19.89 4.59 18.67 6.74 20.10 6.70 17.57
SH 0.78 17.91 1.51 14.71 1.57 10.92 1.03 7.79 1.02 6.49
SMI 0.75 17.55 1.48 14.23 1.61 12.16 1.19 9.38 0.94 6.10
SPC 0.75 18.05 1.56 17.18 1.86 13.74 1.91 11.55 1.74 10.15
SHC 0.78 17.99 1.56 14.60 1.47 9.95 1.10 7.91 1.08 6.60
SS 0.70 17.65 1.28 14.95 1.11 9.61 1.00 8.15 0.75 4.68
SU 0.85 19.58 2.30 19.40 3.87 17.59 5.42 18.05 5.52 16.02
SUH 0.75 17.65 1.46 14.30 1.53 11.85 1.03 8.06 0.89 5.76

All results are in millimeters and represent residual errors after the registration.
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Figure 5.4: Comparison of point similarity measures based on recovering synthetic
deformations. The synthetic deformations were generated as a sum of Gaussian
functions, using three different amplitudes, A = {5, 10, 15} mm, and five different
standard deviations, σ = {10, 20, 30, 40, 50} mm. Graphs show residual RMS
errors eRMS relatively, according to the initial error.
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SS. Of course, the results could differ if using different type of data (in our case
MRI-PD and MRI-T1 images were used). Because the same conclusion can be
made for very different deformations (different σ), this proves the functional in-
dependence of point similarity measures and the spatial deformation model, and
furthermore, this also proves the suitability of evaluation based on recovering
synthetic deformations for such comparisons.

5.3.2 Segmentation based evaluation

The purpose of image registration is to put anatomical features in both images
into correspondence. Registration can therefore be evaluated by measuring the
correspondence of anatomical features. For that purpose images must be seg-
mented to know the positions of features in both images. Different types of fea-
tures can be used, e.g. point landmarks, segmented structures or segmented tissue
types. The problem of using point landmarks is in finding the correct homology,
as even experts are likely to disagree about the correct position of landmarks in
some brain regions [89]. Extraction of three-dimensional anatomical structures
is much easier, although it is still tedious. Correspondence of segmented regions
can be measured using the same methods as used for evaluation of image segmen-
tation [30]. One of the most widely used overlap measures is a Jaccard coefficient
J , defined as intersection of corresponding regions on both images (RA and RB)
divided by their union:

J =
RA ∩RB

RA ∪RB

(5.2)

where J = 1 means perfect agreement and J = 0 complete disagreement. How-
ever, evaluation based on segmented structures can only judge position of re-
gion surfaces and cannot detect incorrect matching within individual structures,
which can be caused by overregistration. For example, the evaluation of regis-
tration shown in Figure 5.1 would not detect any irregularity. Furthermore, it
is not possible to distinguish between registration errors and true morphological
variability. For example in Figure 5.2 evaluation would show best overlap for
registration result Figure 5.2f, which is morphologically different and therefore
possibly incorrect. Instead of using segmented structures evaluation can also be
based on segmented tissues. This approach is even more problematic, as all pre-
viously mentioned problems remain, but segmented regions are larger and consist
of numerous structures, which are not distinguished. On the other hand seg-
mentation of tissues is much easier than segmentation of structures and can be
performed automatically.

One of important issues concerning evaluation based on segmentation is qual-
ity of the segmentation. Evaluation cannot be more reliable than segmentation
itself, as evaluation only estimates the overall error that comprises registration as
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well as segmentation incorrectness. Note that registration can morphologically
change the source image, so images must be segmented prior the registration.

An additional difficulty of segmentation based evaluation is the need that
the same anatomical features can be identified in both of the images. This is
problematic in the case of multi-modality registration, where different images
represent different physical material properties, and as such, only a limited (small)
number of corresponding anatomical features can be segmented in both of the
images.

For the illustration we show how segnentation based approach can be used
for evaluation of intersubject registration of MRI brain images. Segmentation of
certain brain structures is a tedious task and such images are rare and valuable.
As our dataset only contains some 2D segmented regions, measuring of 3D overlap
is not applicable. However, visualization of such curves overlayed on registered
image can be used for evaluation performed by medical experts (see Figure 5.5).

We have also evaluated intersubject registration using segmentation to differ-
ent tissue types. We have obtained 60% overlap of white matter and 54% of gray
matter. However, as mentioned, such results depend on the quality of segmenta-
tion and furthermore, they do not distinguish between registration error and real
morphological differences.

5.3.3 Evaluation based on registered images

If segmentation is not available for both images (target and source), evaluation
can only rely on images themselves. It should be used with extreme caution as
images can become similar even because of incorrect registration or overregistra-
tion. Still, for images that are not overregistered and are obtained by using a
sufficiently stiff model, better registration in general also reflects in more similar
images. Evaluation based on registered images can be made either by measur-
ing global image similarity or by providing visual comparison, without numerical
evaluation. Results can be visually shown as an overlay of one image on top of
the other, either by using different methods for showing the whole images (im-
age difference, chessboard image), or only by showing important edges or points.
Results presented by using this approach often require some expert knowledge,
as results are actually not yet evaluated. Such results can be furthermore numer-
ically evaluated by experienced users, e.g. medical experts, specially if specific
knowledge is required (e.g. for identifying certain structures on both images).

In some cases evaluation based on resulting images seems to be unavoidable.
One of the examples is PET-CT registration of thoracic images. Although this
is intrasubject registration there are large differences between the images due to
different respiration during image acquisitions. An example of such registration
results obtained by our non-rigid registration approach is shown in Figure 5.6.
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(a) (b)

(c) (d)

Figure 5.5: Intersubject registration of MRI head images. Target (a), regions of
interest segmented on the target image (b), segmented regions overlayed on rigidly
and nonrigidly registered source image (c,d).

5.4 Three step evaluation strategy

Evaluation of the registration systems is difficult, because all the evaluation meth-
ods presented earlier have some limitations, which can result in evaluation errors.
The recovering of synthetic deformations may be biassed due to unrealistic syn-
thetic deformations, while the other methods rely only on matching of edges of
anatomical structures and thus cannot assess all the transformation components,
which renders detection of overregistration impossible. Furthermore, there is ad-
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(a) (b)

(c) (d)

Figure 5.6: PET-CT registration of thoracic images: CT image (a), PET trans-
mition image (b), rigidly registered (c) and nonrigidly registered (d) PET trans-
mition image overlayed with contours obtained using Canny edge detector on CT
image.

ditional difficulty when evaluating multi-modality registration: the images may
look very different and only a small number of anatomical features may be iden-
tified in both of them. To alleviate the problem of evaluation of multi-modality
registration systems, we propose a three step evaluation strategy.

When the system for multi-modality non-rigid registration can be separated
into functionally independent stages, this stages can be evaluated separately and
independently of the whole system. Non-rigid registration can sometimes be sep-
arated into two functionally independent stages: the external stage, which drives
the registration, and the internal stage, which regularizes the registration. In the
case of our registration system described in Chapter 6. the external stage is the
estimation of external forces, and the internal stage is the spatial deformation
model. It is important, that the external stage does not provide any regulariza-
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tion, because it drives the registration on the basis of individual points (thanks
to the point similarity measures used, see Chapter 2.).

We have already shown that the external stage can be evaluated indepen-
dently to the internal stage, by recovering synthetic deformations. This avoids
the problem of generally unknown realistic deformations. Such evaluation can
be used to compare and select methods of this stage (e.g. similarity measure,
force estimation approach, etc.) and set them appropriately. For this purpose
realistic images should be used, while the deformations do not necessarily need
to be realistic and can be generated synthetically.

The internal stage (spatial regularization) can be evaluated separately as well.
It requires evaluation based on realistic deformations, but however, it does not
depend on actual images, which thus do not need to be of different modality.
The segmentation based evaluation can be used, where the actual transformation
can be assessed from mono-modality images instead of multi-modality ones. This
alleviates the problem that in general only a small number of anatomical features
can be identified in both of the images when they are of different modality. Con-
sequently, this approach enables more precise setting of the internal stage than
evaluation of the whole system.

Even if both of the stages are evaluated separately, this does not provide an
absolute evaluation of the whole system. For this purpose, the whole system
needs to be evaluated using realistic images as well as realistic deformations.
Furthermore, segmentation based evaluation can be used if the segmentation is
available, or it can be based only on the registered images if this is not the
case. However, if both of the stages are already evaluated and appropriately set,
they do not need to be set again. Consequently, evaluation of the whole system
requires lower number of images, and furthermore, it reduces the possibility for
overregistration.

To summarize, the three step evaluation strategy consists of the following
three steps:

1. Evaluation and settings of external stage based on realistic images and
recovering of synthetic deformations. The synthetic deformations do not
need to be realistic.

2. Evalaution and settings of internal stage based on realistic deformations and
segmentation based evaluation. The images do not need to be of different
modality.

3. Evaluation of the whole system using realistic images and realistic defor-
mations, and segmentation based or image based evaluation.
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5.5 Conclusion

In this chapter we have illustrated some of the problems pertaining to evaluation,
and discussed their origins. Because of the unknown transformation that would
ideally register real medical images, evaluation must be accomplished using other
approaches, based on synthetic deformation, image segmentation or direct image
comparison. However, all these approaches can lead to certain evaluation error,
as no method can reliably deal with all kinds of misregistration.

Evaluation based on synthetic deformation is less appropriate for evaluation
of whole registration systems, because it favors deformations that are similar to
the synthetic ones. It is still appropriate for comparison of methods that are not
related to the spatial model as well as for testing overall registration capabilities.
Segmentation based evaluation cannot detect misregistration within segmented
features and furthermore does not distinguish between registration errors and true
variability. However, by using a large number of correctly segmented smaller fea-
tures, such evaluation converges towards the ideal evaluation. Evaluation based
only on the images is the least reliable as images can also become similar due
to inappropriate morphological changes. To improve the evaluation we have pro-
posed a three step evaluation approach, which is based on independent evaluation
of two registration steps: estimation of external forces and spatial deformation
model.

One of the non-rigid registration problems is overregistration. It often cannot
be detected even by using segmentation based evaluation. This problem is related
to settings of spatial deformation model. If a more loose model is used, resulting
images may be more similar even if deformation is worse. On the other hand,
too stiff models lead to underregistration that prevents correspondent structures
to be registered correctly. Therefore, a spatial model should be tuned to the
problem under consideration.

There is also a question of registering morphologically different structures.
Should morphological differences remain or not? Most evaluation methods cannot
distinguish between registration errors and true variability, so ”good”registration
results can be obtained only by changing source image morphology. If morpho-
logical differences are supposed to be preserved, registration can be correctly
evaluated only when it is controlled by medical experts.

The results shown are based on the evaluation of our non-rigid multi-modality
registration method presented in Chapter 6. However, the results shown in this
chapter only serve for the illustration of different evaluation methods. Evaluation
of registration components, i.e. similarity measures, force estimation methods and
spatial deformation model is provided in Chapters 2., 3. and 4. respectively.



6. Image Registration System

In this chapter we present an image registration system, which we have designed
to support the development of approaches presented in previous chapters of this
thesis. The system is based on point similarity measures and can be used for
multi-modality rigid and non-rigid registration. The system was not built with
some specific application in mind, but to demonstrate general solutions, which
could be used for all kinds of 3D medical image registration problems. As such it
does not incorporate any prior knowledge specific to certain modality or anatom-
ical structures. Due to the generality of the system it can be used to demonstrate
the capabilities of medical image registration and to aid to the future develop-
ments and medical research. The system was also used to perform the experiments
shown in this thesis.

6.1 Introduction

We have built an image registration system to enable development of the proposed
methods and their testing. The system is based on the methods presented in pre-
vious chapters. It employs point similarity measures, the symmetric registration
approach and the combined elastic-incremental spatial deformation model. It
does not employ any application specific knowledge such that it can deal with
a variety of registration tasks: rigid and non-rigid, mono-modality and multi-
modality, intra-subject and inter-subject, and for any part of the body. As such
it can be used not only for evaluation of the proposed methods, but also for
demonstration of capabilities of non-rigid registration and further medical re-
search. It is not suitable for use in clinical medicine, as it was not designed
for that purpose. For clinical tasks additional task-specific knowledge could be
employed and the system should be extensively evaluated and validated.

6.2 Implementation

There are two types of registration implemented in the system: rigid and non-
rigid. They represent two basic registration steps, which can be combined ar-
bitrarily to obtain the final registration. Both, rigid and non-rigid registration

98
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A

B

Tregistration

transformationB TB

T

Figure 6.1: The result of the registration is the transformation T (left). The
registered image TB can be obtained after the registration by applying the trans-
formation T to the source image B (right).

steps allow multi-modality data. They are both based on point similarity mea-
sures, which adapt to the intensity dependence of the registered data, and do not
use image processing algorithms that presume linear intensity dependence, in-
cluding intensity interpolation and image resampling. Approaches that presume
certain intensity dependence introduce new intensity values, which are originally
not present in the images, and lead to unpredictable changes of intensity distribu-
tions, which may deteriorate the registration [50]. Because no image resampling
is performed during the registration, the result of registration does not include
the registered image TB, but only the transformation T, which puts the source
image B into a spatial correspondence with the target image A. The registered
image TB can be obtained after the registration by applying the transformation
T to the source image B, see Figure 6.1. The registration may be performed
in several resolution levels, such that each registration step may operate on ar-
bitrary resolution level. This enables different multi-resolution strategies, which
increase registration speed, avoid local extrema of similarity and thus improve
the registration.

6.2.1 Rigid registration

Rigid registration is usually performed such that optimal parameters of rigid
transformation are searched by some optimization procedure that maximizes a
global similarity between the images. However, function of similarity with re-
spect to transformation is not smooth, it includes local extrema, and further-
more, a global extremum may not appear exactly at the best image alignment.
To overcome these problems several optimization procedures [51] and similarity
measures [62, 39] have been introduced. Our implementation follows the same
concept, but however, it does not use conventional similarity measures. Instead,
the computation of global image similarity is based on point similarity measures,
as described in Chapter 2.

A global image similarity SG can be computed by averaging point similarities
S(v) over all image voxels v, or, as shown in Eq. (2.14), directly from joint inten-
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Figure 6.2: A scheme of rigid registration based on point similarity measures.
The registration consists of two stages: in the first stage the point similarity
function f(i) is estimated and in the second stage optimization is performed. The
optimization loop is presented by thicker lines.

sity probabilities p(i) and point similarity function f(i). Here, the point similarity
function f(i) needs to be computed only once, while the joint probabilities p(i)
must be reestimated for each different transformation T. In accordance to this,
the rigid registration consists of two stages, as illustrated in Figure 6.2. In the
first stage the point similarity function f(i) is computed from the target image A
and the source image B transformed by an initial transformation T0. The initial
transformation is provided by the previous registration step, or initially, it is set
to identity T0 = I such that T0(x) = 0. The point similarity function f(i) can
be obtained by any of the point similarity measures, from initial joint intensity
distribution p0(i), which is estimated using partial volume interpolation [50]. In
the second stage of the rigid registration, an additional rigid transformation TR

is searched by optimization. The criterion function is the global image similarity
SG:

SG =
∑

i

p(i)f(i). (6.1)

Here, point similarity function f(i) is provided by the first registration stage, while
joint intensity distribution p(i) is reestimated for each different transformation
TR using partial volume interpolation. Measuring the global similarity in such a
way is computationally efficient, as all complex operations that may be required
to compute the point similarity function f(i) are performed only once. In addi-
tion, this approach avoids interpolation artifacts, illustrated in Figure 2.6 where
mutual information (MI) is compared to point based global similarity. Finally,
this approach may also improve the position of global maximum of similarity,
as in the example in Figure 2.8. The optimization is performed using Powell’s
method. The rigid transformation TR, which is searched by the optimization, is
defined by six parameters: three translations (d1, d2 and d3) and three rotations
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Figure 6.3: A scheme of non-rigid registration.

(roll ψ, pitch φ and yaw θ):

TR =




cos θ cosφ cos θ sinφ sinψ − sin θ cosψ cos θ sinφ cosψ + sin θ sinψ d1

sin θ cosφ sin θ sinφ sinψ + cos θ cosψ sin θ sinφ cosψ − cos θ sinψ d2

− sinφ cosφ sinψ cosφ cosψ d3

0 0 0 1




(6.2)
This transformation moves each point from original position x to a new position
x′ such that [

x′

1

]
= TR

[
x
1

]
(6.3)

Finally, the overall transformation T, which is the result of the non-rigid regis-
tration, is obtained by applying the transformation TR after the initial transfor-
mation T0:

T = TRT0. (6.4)

Because the sensitivity of point similarity measures depends on the quality of
image match used for estimating the point similarity function f(i) it is recom-
mended that rigid registration consists of (at least) two rigid registration steps
(in the same resolution level), as described in Section 6.2.3.

6.2.2 Non-Rigid registration

The non-rigid registration implemented in our registration system follows the
continuum mechanic approach. A block scheme is shown in Figure 6.3. The reg-
istration consists of two functionally independent stages: estimation of external
forces, which drive the registration in order to improve similarity of the images,
and spatial deformation model, which spatially regularizes registration in order to
suit the deformable properties of the registered anatomy. Both stages are iterated
by the predefined number of iterations.

Estimation of external forces is implemented as described in Chapter 3. There
are two methods implemented: a symmetric method and a conventional unidirec-
tional method. It was shown that the symmetric method yields more consistent
and also more correct registration results. Both methods are implemented using
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point similarity measures. In contrast to rigid registration, a point similarity func-
tion f(i) is in this case updated in each registration iteration to obtain optimal
sensitivity. This is admissible because only similarities of point pairs obtained in
the same iteration need to be compared. These similarities are always based on
the same f(i). External forces are computed for each individual voxel of image B
independently. The position of voxel points in a world coordinate system x can
easily be computed from their image coordinates xB and transformation T, and
is updated in each iteration:

x = xB + T(xB). (6.5)

Because external forces are computed for individual voxels with known position
x, there is no need for image resampling. Furthermore, because of point similarity
measures, it is also possible to avoid interpolation of intensities, see Section 2.5.2.
Consequently, presumption of (linear) intensity dependence can be completely
avoided and registration can better adapt to the actual intensity dependence
estimated from the images. Another advantage due to point similarity measures
is that estimation of external forces does not influence the spatial regularization,
because it is based on similarity of individual points rather than larger image
regions. Consequently, spatial regularization remains only in the domain of the
spatial deformation model in the second non-rigid registration stage. This makes
setting and evaluation of the system easier, as each of the stages can be set and
evaluated independently, see Section 5.4.

The spatial deformation model used in the system uses the combined elastic-
incremental approach, which is described in Section 4.1.4. Here, the convolution
kernels are Gaussian, due to their low computational cost. Standard deviations of
the Gaussian kernels can be set arbitrarily to enable different model stiffnesses and
different ratios between elastic and incremental regularization. The parameter
kF , which controls the registration speed, is chosen such that maximal possible
change of transformation T(x) equals the size of one image voxel. The required
number of iterations depends on the initial image mismatch. If a multi-resolution
strategy is used, see Section 6.2.3, each registration step requires from 10 to 20
iterations.

6.2.3 Multiresolution strategy

In order to increase registration speed, avoid local minima and improve registra-
tion correctness, the overall registration can be performed in multiple resolution
levels. Specifically, each registration step (rigid and non-rigid) can run in an ar-
bitrary resolution level. Resolution levels are defined by resolution of the source
image B, such that in resolution level 0 an original image B is used (B(0) = B),
while in higher resolution levels image resolution is lower. Specifically, image B(k)

of the resolution level k is obtained by subsampling image B(k−1) of the resolution
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level k−1 by the factor of 2. However, because images may have non-rectangular
grid it may not be reasonable to subsample images in all spatial dimensions,
such that subsampling is not performed in dimensions in which grid step already
exceeds the minimal grid step (among all dimensions) by the factor of 2.

Note that discrete images have a limited frequency spectra and only frequency
components that appear in both of the registered images can contribute to regis-
tration. Other frequency components may cause local extrema of similarity with
respect to transformation T. Consequently, it is important that image A is sub-
sampled as well. An appropriate resolution of image A needs to be selected for
each resolution level k, such that resolutions of both images, A(k) and B(k) are
similar. Subsampling of image A is performed in the same way as subsampling of
image B, the only difference is in number of subsamplings, which in this case does
not necessarily equal the resolution level k. An optimal number of subsamplings
nk for resolution level k is defined as

nk = min

(⌊
log2

s(B(k))

s(A)

⌋
, 0

)
, (6.6)

where s(B(k)) and s(A) denote minimal grid step (among all dimensions) of images
B(k) and A respectively.

The registration is performed in multiple steps, such that transformation ob-
tained in one step is used as the initial transformation in the next step. Because
every step can operate in arbitrary resolution level the transition between res-
olution levels is needed. In the case of rigid registration the transtion between
two resolution levels does not require any modification of transformation, because
rigid transformation is parametric and defined according to the world coordinate
system. On the other hand, in the case of non-rigid registration, transition be-
tween resolution levels requires some processing, because the transformation is
defined by displacements of image voxels. Whenever resolution of source image
B(k) changes, the displacement filed needs to be resampled accordingly.

In order to prevent aliasing, each resampling of data requires filtering. For
this purpose Gaussian filter is commonly used, but due to its disadvantage of
producing new intensity values, which were originally not present in the images,
it is less appropriate for filtering multi-modality images. Consequently, we use it
only for subsampling non-rigid transformations, while for subsmpling the images
we use 3 × 3 × 3 median filtering. The advantage of median filtering is that it
does not introduce new intensity values and cause minimal changes of intensity
distribution. This enables usage of potential prior knowledge of intensity distri-
butions in all resolution levels, irrespective to which image resolution the prior
knowledge originally corresponds.

In general, registration steps can be arbitrarily threaded into the overall regis-
tration, such that each step can be rigid or non-rigid and performed in arbitrary
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resolution level. However, note that higher resolution levels (lower image res-
olution) enable faster but coarser registration, with less local extrema of the
similarity, and larger capture range, while lower resolution levels (higher image
resolution) enable more precise registration. Furthermore, the quality of non-rigid
image registration depends on the initial image misalignment, such that better
registration results can be expected when the initial misalignment is lower. Due
to all this we recommend that rigid registration is performed first, and after that
the obtained transformation is improved by non-rigid registration. Both, rigid
and non-rigid registration are recommended to follow the multi-resolution strat-
egy shown in Figure 6.4. Here, the registration is performed in K resolutions
(k = 0..K − 1). It starts at the highest resolution level k = K − 1 with the
lowest image resolution, continues at lower registration levels and finishes at level
0, (k = 0), where the highest resolution images are used. Each resolution level
may consist of multiple registration steps, such that resolution level k consists
of Lk registration steps l = 1..Lk. Each of the registration steps can be set
independently.

The registration starts from the initial transformation, which can be either
set to identity, T0 = I; T(x) = 0, or provided by previous registration, such as
in the case of non-rigid registration, where the initial transformation is obtained
by rigid registration. The initial transformation of the registration step l + 1 is
always set to the result of the previous registration step l:

T
(k,l+1)
0 = T(k,l) ; l = 1..(L− 1). (6.7)

or when changing the resolution level,

T
(k,1)
0 = T(k+1,L). (6.8)

For rigid registration it is recommended that multiple registration steps are
performed in each resolution level. In practice we found that three registration
steps, L = 3, in each resolution level are sufficient in most of the cases. Non-rigid
registration does not require multiple registration steps in each resolution level
such that we use a single registration step, L = 1.

6.3 Results

The system for multi-modality image registration was tested separately for rigid
and non-rigid registration. Rigid registration was evaluated as a part of ”The
Retrospective Image Registration Evaluation Project”(RIRE), [88], which was
designed to compare retrospective CT-MR and PET-MR registration techniques
developed by different research groups. The results obtained by our system are
presented in Section 6.3.1.
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Figure 6.4: Multi-resolution registration scheme, used for both, rigid and non-
rigid registration. Registration is performed in K resolutions (k = 0..K − 1),
each of them consisting of Lk registration steps (l = 1..Lk). Each registration
step can be set independently. The initial transformation T0 is either set to
identity, T0 = I; T(x) = 0, which is common for rigid registration, or provided
by previous registration, as required by non-rigid registration.
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In contrast to the rigid registration, the non-rigid registration was not com-
pared to other non-rigid registration techniques. Evaluation of non-rigid regis-
tration is more difficult than evaluation of rigid registration, see Chapter 5. The
reason is in unknown non-rigid transformations in the case of registering real
medical images, which cannot be assessed using prospective techniques, such as
marker-based techniques can be used to assess rigid transformations. Further-
more, the evaluation of non-rigid registration methods is always application spe-
cific, because different applications may require (at least) different (settings) of
spatial deformation model. Consequently, non-rigid registration systems cannot
be directly compared such as rigid registration systems are compared by RIRE.
Even if the comparison is made, it is indirect and application specific, such as [35].

Evaluation of individual components used in our system was presented in
Chapters 2., 3. and 4. In this section we present a number of experiments, which
have been performed within the scope of medical research, see Section 6.3.2.

6.3.1 Rigid registration

The rigid registration was evaluated by RIRE [88], (the project was formerly
called RREP - ”The Retrospective Registration Evaluation Project”), which was
designed to compare retrospective CT-MRI and PET-MRI registration techniques
used by a number of groups. It involves the use of FTP image database to allow
the downloading of image volumes on which the registrations are to be performed.
The idea is that the collaborating groups perform registrations on the image
volumes, using their own retrospective techniques, and the group at Vanderbilt
University evaluates the accuracy of these transformations by means of their own
prospective, marker-based technique.

The image database includes images of 18 subjects, marked pt001-pt009 and
pt101-pt109. The evaluation of registration accuracy was obtained by measuring
registration errors for 10 points in brain anatomy marked as VOI1-VOI10. From
all the results (for all points in all registered images) mean, median and maximum
error is computed.

CT to MRI registration

Registration of CT images to MRI-T1 images was performed using 16 available
CT-MRI image pairs (CT images for patients pt008 and pt009 are missing).
Images have different voxel sizes: images of subjects pt001-pt009 have 0.65 ×
0.56 × 4 mm voxel size for CT images and 1.25 × 1.25 × 4 mm for MRI images,
while subjects pt101-pt109 have 0.45 × 0.45 × 3 mm voxel size for CT images
and 0.86× 0.86× 3 mm for MRI images. Sample images and corresponding joint
intensity distribution are shown in Figure 6.5.
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1.097213
1.045764

1.617440
1.564693

pt105
2.355182

2.300441
2.360760

2.145938
2.283106

2.047241
2.451419
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2.220994

2.397404
pt106
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2.207116
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pt107
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2.111907
3.040904
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pt108
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1.411851

1.406748
1.438731

pt109
1.621355

1.494555
1.463794

1.536585
1.541295

1.373264
1.296285

0.841338
1.660091

1.655860
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The results of registering CT images to MRI-T1 images are tabulated in Ta-
ble 6.1. All the registrations were successful, resulting in overall mean error 1.76
mm, median error 1.76 mm and maximal error 3.11 mm. Results for subjects
pt101-pt109, where images have smaller voxel sizes, were in general not better
than the results for subjects pt001-pt107, as one may expect. This indicates that
the source of registration errors is not in the discrete nature of data, but in the
images themselves. Note that imaged anatomies are not absolutely rigid and fur-
thermore, MRI images may be deformed due to the magnetic field inhomogeneity,
caused by presence of the subject.

PET to MRI registration

Registration of PET images to MRI-T1 images was performed using 7 available
CT-MRI image pairs (patients pt001-pt009, excluding subjects pt003 and pt004
where PET images were missing). The voxel size for PET images is 2.6× 2.6× 8
mm, while the voxel size for corresponding MRI-T1 images is 1.25 × 1.25 × 4
mm. Sample images and corresponding joint intensity distribution are shown in
Figure 6.6.

The results of registering PET images to MRI-T1 images are summarized in
Table 6.2. One can observe that registration error for subject pt006 is high for all
10 anatomical points, which indicates that this registration was not successful.
Including this subject, the overall mean error of 3.58 mm, median error of 3.00 mm
and maximal error of 11.22 mm were obtained. Excluding the wrong registration,
which could be detected by visual inspection of registered images, the mean error
is 2.55 mm, median error is 2.47 and maximal error is 5.47 mm.

Errors for registration of PET images are in general higher than errors for
registration of CT images. There are two reasons: first, the resolution of PET
images is much lower than resolution of CT images, and second, PET is a func-
tional imaging technique such that PET images comprise relatively low amount
of anatomical information, required for matching with MRI images.

Comparison with other systems

We have compared the results of our method with results obtained by other
research groups, see [1]. To the date of our analysis, there were 43 participating
groups, which contributed 113 sets of results. For the comparison we used only
result sets with both CT-MRI T1 and PET-MRI T1 registration results, each
of them obtained from registering at least 7 patients. Among these result sets
we selected only the best one from each research group, and so we finally got
24 comparable result sets. We have compared them according to obtained mean
registration errors. Comparison results are shown in Figure 6.7. Dashed lines and
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Table 6.3: Registration errors obtained by technique proposed by Collignon,
Maes, Delaere, Vandermulen, Stuens and Marchal (CO), technique proposed by
Studholme, Hill and Hawkes (ST) compared with results obtained by our registra-
tion system (RO).

CT to MRI-T1 PET to MRI-T1
mean median max mean median max

CO 1.90 1.53 6.69 4.63 3.64 12.73
ST 1.36 1.17 2.78 3.50 3.25 9.32
RO 1.59 1.55 3.11 3.58 3.00 11.22
All results are in mm.

a circle correspond to mean values obtained by our rigid registration system, while
other marks denote best results of other research groups. The darker shading
corresponds to the region with better results for both types of registration while
lighter shading corresponds to regions with better results in only one type of
registration. Considering both types of registration, CT-MRI T1 and PET-T1,
our system is one of the top six among 24 compared systems.

In [88] the Vanderbilt group, which governs the RIRE project, compared
eleven different methods for rigid registration. Two of them use mutual infor-
mation based similarity measures: a technique proposed by Collignon, Maes,
Delaere, Vandermulen, Stuens and Marchal [18], and a technique proposed by
Studholme, Hill and Hawkes [77]. In Table 6.3 we compare their results, (CO)
and (ST), with results obtained with our system (RO). In the case of CT to MRI-
T1 registration our method did not perform as good as the ST method, which
performed best according to mean, median as well as maximal error, but better
than the CO method. Similar results were obtained in the case of PET to MRI-
T1 registration. Here our method and the ST method performed comparably
well, ST method performed slightly better according to the mean error, while our
method performed better according to the median error. The CO method did
not perform as good as the other two methods. Here we have to note that in the
case of PET to MRI-T1 registration all three methods misregistered one of the
image pairs, which reflects in large maximal errors. The comparison of results
obtained by CO and ST also show that the quality of registration highly depends
on the system implementation.

The obtained results indicate that point similarity measures are comparable
to mutual information measures in the case of rigid registration. Here, we have to
point out that point similarity measures were designed for non-rigid registration
tasks. Furthermore, the results show that our registration system is suitable
for solving various multi-modality, not only non-rigid, but also rigid registration
tasks.
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6.3.2 Non-rigid registration

We present some experiments, which we have performed using our implemen-
tation of non-rigid registration. The purpose of the experiments was to aid to
medical research. The experiments include mono-modality and multi-modality
registration of 2D and 3D medical images.

Combining anatomical and functional information

By combining functional and anatomical images function can be related to struc-
ture. Intrinsically better resolution anatomical images, e.g. CT or MRI images,
improve interpretation of the functional images, e.g. PET or fMRI images. How-
ever, the observed activity can be precisely mapped to the anatomical structures
only if images are registered. In Figure 6.8 we present combining of anatomical
information of thoracic CT images and functional information of corresponding
PET images. Two types of PET images are available: emission image PET-em,
which provides functional information, and transmission image PET-tr, which
represents tissue attenuation and thus provides rough anatomical information. It
is difficult to directly register PET-em image to CT image, while registration of
PET-tr and CT images is easier. Because PET-tr and PET-em images are usu-
ally in register, PET-tr images are usually used for registration and the obtained
transformation is used for combining PET-em images with CT images.

Brain activation experiments

Brain activation studies require averaging of functional fMRI (or PET) images
of many individuals. The averaging improves the signal to noise ratio and the
sensitivity of the method. However, since there is considerable individual vari-
ation in brain anatomy, images must be registered to the reference brain before
being averaged. Because functional images do not comprise sufficient anatomi-
cal information they cannot be accurately registered to the reference image. To
overcome the problem, the registration can be performed using anatomical MRI
images, which are already in register with the functional images, and the obtained
transformation applied to the functional fMRI images. For the illustration see
Figure 6.9.

Computational morphometry

Computational morphometry of MRI images has become a standard tool in the
statistical analysis of differences in brain structure between two groups of subjects.
It searches for local differences, such as changes in gray matter density or spatial
positioning. It requires spatial normalization of images of all the subjects in
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(a) (b)

(c) (d)

Figure 6.8: Combining anatomical information of thoracic CT images and func-
tional information of corresponding PET images. PET-tr (b) image is registerd
to the CT image (a) and the obtained transformation is used for combining PET-
em image (c) with the CT image (a). In the combined image (d) CT anatomical
information is represented in grey while functional information of PET-em image
is represented in red.
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(a) (b)

(c) (d)

Figure 6.9: Illustration of registration for brain activation studies. In order to put
fMRI images (b) of many patients into correspondence, the corresponding MRI
images (a) are registered to the reference image (c). The obtained transformations
are applied to the fMRI images which thus get spatially aligned with the reference
(d).
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the study into the same stereotactic space, which is performed by registering
all the images to the same template. The normalized images are studied by
analyzing differences in intensity values of the voxels (voxel-based morphometry
VBM) [2] or by analyzing the deformation fields (deformation-based morphometry
DBM and tensor based morphometry TBM) [15]. In Figure 6.10 we illustrate the
registration for VBM, DBM and TBM with sample images and corresponding
deformed image grid.

Recovering of breathing motion

MRI-T1 images of lungs were acquired successively during the subject was breath-
ing. The aim of registration was to recover the non-rigid breathing motion by
finding the correspondence between the successive images. The images have a
voxel size of 2.73× 2.73× 10.00 mm and the array size 128× 128× 1 voxels. For
the illustration see Figure 6.11, where two successive images and their overlap
before and after the registration are shown. The corresponding transformation,
which represents the assessed non-rigid breathing motion, is shown in Figure 6.12.

Finding an average anatomy

Registration can be used to find a mean shape of anatomical structures over
several subjects. For the illustration we show a computation a mean shape of
corpus callosum, see Figure 6.13. Images of several subjects were registered such
that one of them served as a reference for registering all the others. The displace-
ment maps obtained by the registration were averaged and used for deforming the
reference image. The result of the deformation represents the average anatomy.

6.4 Conclusion

In this chapter we presented our system for medical image registration. It uses the
approaches proposed in this thesis, i.e. point similarity measures, the symmetric
registration approach and the combined spatial deformation model. The system
was used to perform the experiments presented in this thesis, which prove the
capabilities of the proposed methods. Furthermore we have used the system to
perform several registrations intended for further medical research.

The system can be used for further research in the filed of medical image
processing and also for the medical research. However it is not suitable for use
in clinical medicine, because it is not yet suitably validated. However the system
can be used to demonstrate capabilities of medical image registration in order to
further promote the field of medical image processing.
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(a) (b) (c)

−8
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−4

−2
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(d)

Figure 6.10: Registration for computational morphometry. Each image from
many subjects (a) is non-rigidly registered to the template (c), to obtain a nor-
malized image (b). A slice of the deformed image grid, which is used for DBM
and VBM, is shown in (d). Here, the grey level represents the deformation in the
third spatial dimension.
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(a) (b)

(c) (d)

Figure 6.11: Recovering of breathing motion. Each two successive images (a) and
(b) were non-rigidly registered to assess the breathing motion. The image overlap
before and after the registration is shown in (c) and (d) respectively. Here, the
orange color represents higher intensity value in the first image, blue represents
higher intensity values of the second image and grey represents equal intensity
values in both of the images, indicating good image match.
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Figure 6.12: The breathing motion assessed by non-rigid registration.
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A1

A2

A3

A4

A

T1

T2

T3

T4

T

Figure 6.13: Finding an average shape of corpus callosum. A reference image B
was registered to images An of several subjects to obtain transformations Tn for
each of them. The transformation T was then computed by averaging transfor-
mations Tn and applied to the reference image B such that image of the average
anatomy A = TB was obtained.



7. Conclusion

In this thesis we focused on multi-modality non-rigid registration, which is one of
the most difficult registration tasks. The main difficulty originates in detecting
and localizing complex local multi-modality image discrepancies. Conventional
multi-modality similarity measures, which are normally used to assess image dis-
crepancies, are limited to large image regions and do not enable direct assessment
of local image mismatches. Although these measures can be used to assess lo-
cal image mismatches indirectly, by measuring global similarity at applied local
transformations, they in practice limit the dimensionality of the registration by
their high computational cost, which prevents detailed image registration. To
solve this problem we devised a new group of similarity measures, which we call
point similarity measures. They separate the process of measuring similarity into
two steps: estimation of image intensity dependence and actual measurement of
image similarity. This approach enables direct measurement of multi-modality
similarity of arbitrary large image regions, including individual image points. It
also leads to other advantages: the ability to avoid interpolation artifacts, possible
improvement of position of the point similarity maxima and low computational
cost. As such they perfectly suit the requirements of multi-modality non-rigid
registration and enable its additional development. Because point similarity mea-
sures do not use any spatial information, the overall registration can be separated
into two functionally independent registration stages: the first one that drives the
registration in order to improve image similarity, and the second one that regu-
larizes the registration according to the expected spatial deformation properties
of imaged tissues. Both of the stages benefit from the point similarity measures.
The first stage can follow the proposed principle of the symmetric image registra-
tion, which improves consistency and registration correctness. The benefit of the
second stage is in the functional separation of both registration stages, which al-
lows more precise modeling of spatial properties of the registration. We have also
devised a new combined elastic-incremental spatial deformation model, which
reduces the registration error with respect to popular elastic and incremental
models. Finally, point similarity measures also enable the three step evaluation
strategy, which improves evaluation of the overall registration system.

We have built an image registration system, which uses the proposed meth-
ods: point similarity measures, the symmetric image registration and the com-
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bined elastic-incremental spatial deformation model. The system enables rigid
and non-rigid registration of mono-modality and multi-modality images. It was
used for the experiments presented in this thesis, which show the capabilities of
the proposed methods. The system was also used to perform several different
registration tasks for medical research. This proves the generality of the system,
which makes it suitable for medical research as well as for promotion of the field
of medical image registration. However, the system is not suitable for clinical
use, because it has not been validated as required fot that purpose.

The system could be adapted to specific applications by using additional task
specific knowledge, which would improve the registration results. Integration of
prior knowledge to point similarity measures is straightforward. Point similar-
ity functions could be improved by different kinds of prior knowledge of actual
intensity dependence, e.g. by priorly marking certain intensity pairs as true or
false or by providing a rough estimation of intensity dependence between the im-
ages. However, point similarity measures could also contribute to improvement
of spatial deformation models, which still offer high potentials for future research.
For example, segmentation based point similarity measure gives an estimate of
segmentation in each registration iteration, which could be used to automatically
build or improve a biomechanical spatial deformation model.

The methods proposed in this thesis deal with general problems of high di-
mensional and multi-modality registration. They improve the capabilities and
performance of multi-modality non-rigid registration and make it, in this aspect,
comparable to the mono-modality registration. In addition, the methods can be
adapted to specific registration tasks by using additional knowledge and can be
applied to specific clinically important applications.
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Proceedings of the first international workshop on image and signal pro-
cessing and analysis in conjunction with 22nd international conference on
information technology interfaces, Pula, Croatia, June 14-15, 2000. Za-
greb: University Computing Center, University of Zagreb, 2000, pp. 81-86,
graf. prikazi. [COBISS.SI-ID 1874004]
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[14] ROGELJ, Peter, KOVAČIČ, Stanislav. Point similarity measure based on
mutual information. In: GEE, James C. (ed.), MAINTZ, J. B. Antoine
(ed.), VANNIER, Michael W. (ed.). Biomedical image registration : revised
papers, (Lecture notes in computer science, 2717). Berlin; Heidelberg; New
York: Springer-Verlag, cop. 2003, pp. 112-121. [COBISS.SI-ID 3912788]
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