
Point Similarity Measures for Non-Rigid Registration of
Multi-Modal Data

Peter Rogelj, Stanislav Kovačič
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Abstract

High-dimensional non-rigid registration of multi-modal data requires similarity measures with two

important properties: multi-modality and locality. Unfortunately all commonly used multi-modal

similarity measures are inherently global and cannot operate on small image regions. In this paper

we propose a new class of multi-modal similarity measures, which are constructed from information of

the whole images but can be applied pointwise. Due to their capability of measuring correspondence

for individual image points we call them point similarity measures. Point similarity measures can be

derived from global measures and enable detailed relative comparison of local image correspondence.

We present a set of multi-modal point similarity measures based on joint intensity distribution, and test

them as an integral part of non-rigid multi-modal registration system. The comparison results show

that segmentation based measure, which models the joint distribution as a sum of intensity classes,

performs best. When intensity classes do not exist or cannot be accurately modeled, each intensity

pair can be treated as a separate class, which results in a more general measure, suitable for various

non-rigid registration tasks.

Key Words: similarity measure, point similarity, multi-modality, non-rigid registration.
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1. INTRODUCTION

Multi-modal registration and non-rigid registration have mainly been considered as two

different and independent problems. Evolution of non-rigid registration has focused on devel-

opment of algorithms for high-dimensional warping, but remained limited to mono-modal data.

On the other hand evolution of multi-modal registration has been mainly concentrated on de-

velopment of multi-modal similarity measures and parametric optimization techniques, while

limited to low-dimensional transformations, e.g. rigid or affine.

Recently there have also been efforts to develop algorithms with both multi-modal and non-

rigid properties. Such algorithms enable combining information of different modality images of

body parts that undergo non-rigid motion between image acquisitions. They can be used for

various medical applications, e.g. development of anatomical atlases, comparison of subjects,

medical examination, planing and inspection of medical treatment, intraoperative localization,

etc. In general, registration can be landmark based or intensity based, for the review of reg-

istration procedures see [24, 37]. Landmark based approaches [32, 27] involve extraction of

landmarks that need to matched. By interpolating the discrete matching of the landmarks,

one tries to obtain a dense mapping for the whole image. Intensity based approaches use the

information of the whole images and find the dense mapping by optimizing some criterion

function that incorporates a measure of image similarity. In this paper we focus on intensity

based approaches, which form an active area of research in the field of non-rigid multi-modality

registration. We classify these approaches into four categories.

The first category is registration based on global similarity measures [33, 25, 31], which

detect improvement of local image correspondence by observing global image similarity. These

approaches are appropriate for detecting simple smooth deformations, which can be modeled

by low parameter deformation models. When models with large number of parameters are used

these approaches became very time consuming, as every estimation of local properties requires

recomputation of similarity of the whole images.

The second category of registration algorithms comprises block matching techniques [5, 10,

14, 17, 20]. They divide a source image into smaller regions that are independently registered

to target image using multiple low-dimensional transformations. Region registration results are

then used to obtain a smooth global transformation. In general, registration results improve

by reducing region sizes and thus increasing the number of regions. However, regions cannot

be arbitrarily small, as reduction of region size decreases performance of multi-modal similarity
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measures that are used for estimating image correspondence.

Approaches in the third category are based on intensity transformation. One such ap-

proach to the problem of precise non-rigid registration was proposed by Guimond et al. [13].

The method is based on applying intensity transformation to one of the images, so that it

matches the intensity properties of the other image. After that, images can be registered using

high-dimensional mono-modal, instead of multi-modal, non-rigid registration algorithm. Such

approaches are suitable for images with functional intensity dependency.

Finally, the fourth category of registration approaches directly follows high-dimensional

mono-modal solutions. This strategy requires the use of similarity measures that can estimate

multi-modal correspondence of small image regions. The size of image regions is crucial, as

smaller regions enable detection of more local image differences, enabling better correction

and therefore better registration of highly deformed images. However, matching of small image

regions, e.g. individual voxels, is ill-posed [10, 23], if displacements are calculated independently

for each region. To regularize the registration, voxel interdependencies must be introduced by

spatial deformation model, based on elasticity, fluid mechanics or any other physical or fictitious

continuum mechanics property. Due to the use of small image regions these approaches provide

good control over spatial deformation properties and enable correction of most localized image

discrepancies.

To make the last category of registration approaches possible, image properties must be

measured for small image regions. This requires multi-modal similarity measures that can be

used locally. We propose a new class of multi-modal similarity measures, which can measure

properties of arbitrary small image regions, including the smallest meaningful image regions

that cover only individual voxels. The problem of locality of multi-modal similarity measures

is highlighted in the following subsection. The proposed solution is described in Section 2.

1.1. Locality and multi-modality of similarity measures

A variety of similarity measures exist [15, 16], and were mostly developed for specific image

registration tasks. In general they can be divided into mono-modal measures, which are appro-

priate for comparing and registering images of similar intensity characteristics, and multi-modal

measures, which can deal with complex image intensity relations that appear in cross-modality

registration. Similarity measures can also be divided into local and global measures, but this

classification is not clear unless the term locality is strictly defined. Given a local similarity

measure, its global equivalent can be derived by summing up over the whole image. On the
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opposite, global similarity measures can be used to measure local image correspondences, but

the performance of most similarity measures gradually decreases as the region size decreases.

The minimum region size depends on the nature of the similarity measure in a way that more

general measures, which have more free parameters, require larger regions.

The simplest similarity measures are based on difference of scalar intensity, e.g. mean

absolute difference MAD(A,B) or mean squared difference MSD(A,B),

MAD(A,B) =
1
N

∑
v

|iA(v) − iB(v)|, (1)

MSD(A,B) =
1
N

∑
v

(iA(v) − iB(v))2, (2)

where iA(v) and iB(v) are image intensities in images A and B at position of voxel v, and N is

the number of overlapping voxels. These measures do not tolerate any difference in brightness

or contrast, but they do allow the use of arbitrarily small image regions, including individual

voxels (N = 1).

Measures that can deal with certain image differences require larger regions. Correlation

based measures, which are the most commonly used mono-modal similarity measures, belong

to that group too. Such measure is the correlation coefficient CC(A,B) [3],

CC(A,B) =
1
N

∑
v (iA(v) − iA)(iB(v) − iB)

(
∑

v (iA(v) − iA)2
∑

v (iB(v) − iB)2)
1
2
. (3)

Here, iA and iB denote mean image intensity values. Correlation coefficient assumes linear

intensity relationship and therefore it can deal with differences in image contrast and brightness.

Two unknown parameters of linear intensity relationship (brightness and contrast) require at

least three samples (voxels). In practice 3 × 3 × 3 voxel regions or larger regions are used.

The minimum region size requirement becomes much more problematic in the case of cross-

modality registration, when the images are acquired using different imaging procedures. In such

multi-modal cases the relation between image intensities can be quite complex and is generally

not known. Multi-modal measures must be able to deal with such complex relationships. The

most widely used multi-modal similarity measures are mutual information MI(A,B) [38, 8]

and normalized mutual information NMI(A,B) [35],

MI(A,B) = H(A) + H(B) − H(A,B), (4)

NMI(A,B) =
H(A) + H(B)

H(A,B)
. (5)
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Here, H(A), H(B) and H(A,B) are marginal and joint entropies,

H(A) = −
∑
iA

p(iA) log p(iA), (6)

H(B) = −
∑
iB

p(iB) log p(iB), (7)

H(A,B) = −
∑
i

p(i) log p(i), (8)

where i denotes an intensity pair [iA, iB ], p(iA), p(iB) are marginal intensity probabilities and

p(i) = p(iA, iB) is a joint intensity probability, estimated from the images. Mutual information

measures actually measure statistical dependence between the image intensities, to estimate

how much one image tells about the other one. But when the image regions used to estimate

the joint distribution are small, its statistical significance is low and the similarity measures

poorly represent actual image correspondence.

Various solutions have been proposed in order to improve locality of multi-modal measures.

The most obvious solution is intensity binning, decreasing the number of intensity bins [21].

This directly improves the estimation of joint distribution, but on the other hand it lowers the

intensity sensitivity, e.g. different features that are represented by similar intensity values can

be grouped into the same bin.

Another approach is to use Parzen window estimation of joint distribution [26]. It can be

efficiently implemented as post-filtering of normalized joint histogram. This method lowers

intensity sensitivity too. Another way to improve locality of multi-modal measures is to resort

to one dimensional statistics, e.g. H(A−B) or H(A + B) [4], which also reduce the number of

intensity bins.

Locality can also be improved by using prior information given in a form of joint distribution

pprior of correctly registered images. Such a solution was used in the log likelihood similarity

measure proposed by Leventon and Grimson [19]. Similarity can also be calculated from a

weighted sum of prior probability pprior that is given in advance, and probability pimage, which

is estimated from the images:

p = λpimage + (1 − λ)pprior. (9)

This enables additional decreasing of region size [21]. As correct prior probability is rarely

known, Maintz et al. proposed to use a global distribution instead of prior one [23]. Their local

measure is based on global conditional probability. Joint probability estimated from smaller

image regions instead of the whole images is sometimes used in place of prior information [20].
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In this paper we present a new class of multi-modal similarity measures, which are con-

structed from information of the whole images and can be applied pointwise. Due to their

capability of measuring correspondence for individual image points we call them point similar-

ity measures. In the next section we show our approach to derive multi-modal point similarity

measures based on joint intensity distribution. Section 3 is devoted to high dimensional multi-

modal non-rigid registration. This registration method is then used for comparison of the

proposed point similarity measures in Section 4. We conclude the paper with discussion and

conclusions in Section 5.

2. POINT SIMILARITY MEASURES

In this section we develop local similarity measures, which are capable of measuring image

correspondences on the basis of individual voxels. Such measures are used for estimating simi-

larity S(v) for image point v according to its properties, e.g. intensity pair i = [iA, iB ] present at

this point, where iA is intensity of point in target image A, and iB is intensity of corresponding

point in source image B. Due to this feature we call such measures point similarity measures.

Likewise, function S(i), which shows how point similarity varies as a function of intensity pair

i is called point similarity function.

The basic requirement for a given point similarity measure S to be appropriate for non-

rigid registration is that improvements of point similarities S(v) contribute to the improvement

of global similarity SG between the whole images. Let U denote a local transformation that

makes such improvement. This transformation deforms image B to image B′ and therefore

also changes correspondences of individual image voxels such that intensity pair i(v) at point v

changes to i′(v):

U : i(v) −→ i′(v), B −→ B′. (10)

These local changes must be detected by point similarity measure, such that

S (i′ (v)) = S′ (v) . (11)

Assuming that larger similarity means better correspondence, the increase of point similarities

S(v) must increase some global similarity SG(A,B):

∑
n

S′(vn) >
∑

n

S(vn) =⇒ SG(A,B′) > SG(A,B), (12)

where the summations run over all image voxels. According to this requirement, every local

similarity measure corresponds to some global similarity measure.
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If the transformation U changes the image correspondence at only one image voxel vm and

point similarities of all other image voxels remain unchanged, S(vn) = S′(vn), n �= m, then

eq.(12) can be rewritten:

∑
n;n�=m

S(vn) + S′(vm) >
∑

n;n�=m

S(vn) + S(vm) =⇒ SG(A,B′) > SG(A,B), (13)

and therefore

S′(vm) > S(vm) =⇒ SG(A,B′) > SG(A,B). (14)

Hence, the improvement of image correspondence at a single image point vm improves the

global image correspondence as well. This relation can be used for deriving point similarity

measures from global similarity measures. Let us imagine we can change image correspondence

at a single point vm, e.g change image intensities i of that point. Then the change of point

similarity S(vm) must correspond to the change of global similarity SG(A,B). One way to

define point similarity measure is therefore the following:

S′(vm) = S (i′ (vm)) = C1 · SG(A,B′) + C0; (15)

where constants C1 and C0 can be chosen arbitrarily, whereas the sign of C1 should be such

that larger point similarity means better correspondence1. Two point measures that differ only

in constants C1 and C0, e.g. S′
1(vm) = 2 · SG(A,B′) and S′

2(vm) = SG(A,B′) − SG(A,B), are

equivalent and they both reach the optimum at the same local transformation. Thus, point

similarity function S(i) can always be estimated from global similarity SG by changing image

correspondence at single image point.

There is another way to derive point similarity measures. When global similarity measure

can be calculated as a sum of local contributions S(v), defined for each individual image voxel

v:

SG(A,B) =
∑

v

S(v), (16)

then S(v) can be treated as point similarity at that voxel v. For example, mono-modal measure

MAD(A,B) is defined as a sum over all image voxels. The corresponding similarity function

S(i) = −|iA− iB | is shown in Fig. 1. The similarity of a point pair can be always obtained from

corresponding intensity pair i = [iA, iB ], directly from given similarity function S(i). Similarity

S(v) for point v can be estimated from corresponding intensities i(v) = [iA(v), iB(v)], such that

S(v) = S(i(v)). Similarity function S(i) = −|iA−iB | does not depend on the actual images and

1C1 is negative if lower value of SG means better correspondence.
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on the level of their correspondence. This holds only for measures that presume certain image

intensity dependence, e.g. iA = iB . In other cases point similarity measure and its similarity

function adapt to actual image properties. For example, they may depend on actual image

intensity distributions, as shown in section 2.1.

FIG. 1 Example of a point similarity function that corresponds to a MAD similarity measure.

Darker color means higher similarity. Similarity of a point v can always be obtained from

corresponding intensity pair i(v) = [iA(v), iB(v)].

2.1. Entropy based point similarity measure

In this section we derive point similarity measures from global entropy based similarity

measures.

Let us first derive a point similarity measure from negative joint entropy −H(A,B), which

is the most informative part of mutual information and can be independently used as a global

multi-modal similarity measure [9]. Negative sign is used such that higher similarity means

better image correspondence.

Let us rewrite (8) in the following form,

−H(A,B) =
∑
i

p(i) log p(i) =
∑
i

Ni

N
log p(i) =

1
N

∑
v

log p(i(v)), (17)

where Ni is the number of occurrences of intensity pair i, N is the total number of intensity pairs

in the image, which equals the number of overlapping image voxels, and i(v) is the intensity pair

located at voxel v. Note that the final summation is taken over the spatial image coordinates

instead of intensities. Thus, global similarity −H(A,B) can be treated as an average of local

properties, defined for each voxel v.

−H(A,B) =
1
N

∑
v

SH(v), (18)
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SH(v) = log p(i(v)), (19)

and therefore, SH(v) is a local contribution of this voxel to global joint entropy.

When transformation U changes image B to B′, local contribution of voxel v to global joint

entropy changes as well:

S′
H(v) = log p′(i′(v)). (20)

Thus, voxel contributions do not depend only on transformation of that voxel, which changes

intensity i(v) to i′(v), but also on transformation of the whole image, which changes joint

distribution p to p′.

When performing high-dimensional non-rigid registration iteratively, in each iteration global

transformation is calculated from estimated changes of all local similarities. Therefore, global

transformation U and new global joint distribution p′ are not known until similarities are

estimated. So, let us express p′(i′(v)) using Taylor expansion:

S′
H(v) = log

(
p (i′(v)) +

∂p(i′(v))
∂U

U +
1
2

∂2p(i′(v))
∂U2

U2 + ...

)
(21)

The terms above the zero order represent changes of joint distribution due to global transfor-

mation U and can be ignored when U is small. This is generally true for transformations that

appear at a single registration iteration. Voxel contribution to global joint entropy, which can

now be used as a voxel similarity measure is

S′
H(v) = log p (i′(v)) , (22)

and corresponding point similarity function is

SH(i) = log p(i). (23)

Notice that point similarity SH(v) is actually estimated using the whole images, which defines

probabilities p(i) used to obtain point similarity function SH(i). Point similarities SH(v) then

represent information of intensity pair i located at voxel v.

Because of using p(i) instead of unknown p′(i) point similarity function is suited only for

small transformations U. To comply with large transformations, similarity function SH(i)

should be recomputed frequently, e.g. in each iteration of non-rigid registration.

Mutual information MI differs from joint entropy in marginal entropies H(A) and H(B),

which serve as normalization factors, to make MI less dependent on image overlap and other

undesirable joint distribution changes. Point similarity measure can be derived from MI using
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the same approach as shown for entropy H(A,B). The obtained point similarity function

SMI(i) has the following form:

SMI(i) = log
p(i)

p(iA) · p(iB)
. (24)

Point similarity measures can also be derived from other global similarity measures. Point

similarity measure derived from energy similarity measure SG =
∑

i p
2(i) [5],using the same

approach again, differs from the entropy based measure only in the log function. Its similarity

function SP (i) equals the estimated joint probability:

SP (i) = p(i). (25)

Point similarity measures can also be defined by using conditional probabilities [23, 11]:

SPC(i) = p(iA|iB). (26)

SHC(i) = log p(iA|iB). (27)

All these point similarity measures are based on global joint intensity distribution, which indi-

cates relation between intensities of both images.

2.2. Relation between point similarity measures and joint distribution

As shown earlier multi-modal point similarity measures depend on joint distribution. Joint

intensity distribution is a quantitative representation of the intensity relationship at a certain

image alignment, and changes during the registration [34]. Only the joint distribution of cor-

rectly matched images correspond to a real intensity relationship. However, a real intensity

relationship is not known until the images are correctly registered. To better understand multi-

modal point similarity measures, let us illustrate how the degree of image misalignment reflects

in joint intensity distribution.

Imagine we have two simple images A and B representing the same object, see Fig. 2. Let

each image consist of only two intensity values, i1A and i2A for image A, and i1B and i2B for

image B, where i1A corresponds to i1B and i2A corresponds to i2B . When images are correctly

registered, the joint distribution consists of only two extrema, at intensity pairs [i1A, i1B ] and

[i2A, i2B ], because the intensity regions perfectly overlap. Let us call these intensity pairs true

intensity pairs, as they correspond to correctly matched image regions. When images do not

overlap exactly, additional ’false’ intensity pairs appear, in our case [i1A, i2B ] and/or [i2A, i1B ].

Probabilities of these true and false intensity pairs depend on the size of overlapping regions.
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(a) (b)

(c) (d)

FIG. 2 Joint distribution (c) of registered images (a) and joint distribution (d) of misregistered

images (b).

Real images are subjected to noise and intensity distortion, and so each region overlap is

represented by numerous intensity pairs that form an intensity class. Therefore, true and false

intensity pairs become true and false intensity classes. Furthermore, real images consist also

of some intensities that do not belong to any of the mentioned intensity classes. In case of 3D

anatomical medical images most of them appear on transitions between different tissues and

belong to partial volume voxels. In joint distribution they are positioned inside a rectangle

defined by corresponding intensity classes, see examples in Fig. 3.

The similarity function should model intensity dependence of correctly registered images

and should have large values only for intensity pairs that belong to true classes, while similarity

values for false classes should be minimal. Furthermore, intensity pairs from true classes should

all produce comparable similarity. Unfortunately similarity functions differ from such ideal

form. A higher level of image misalignment reflects in higher estimated probabilities for false

classes, while probabilities for true classes decrease. Described similarity functions do not
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CSF
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(a) (b)

FIG. 3 Examples of joint distributions for MRI T1 and PD medical images of head: registered

images (a) and not registered images (b). Dashed lines correspond to mean intensity values of

tissue types: cerebrospinal fluid (CSF), gray matter (GM), white matter (WM), surrounding

tissues (S), and background (BG). Partial volume voxels are positioned inside rectangles defined

by these lines.

discriminate between true and false classes and are directly related to estimated probabilities.

Thus, if the level of misalignment is too high, similarities for false classes become larger than

similarities for true classes, and non-rigid registration in such case does not converge to the

correct image match. Moreover, similarities of intensity pairs also depend on the amount of

tissues that form these intensities. This may result in differences in their registration speed and

registration correctness. To solve these problems we develop a point similarity measure, which

combines registration with segmentation.

2.3. Segmentation based point similarity measure

Image registration does not directly register biological tissues, it registers their image rep-

resentation. Each tissue type is represented by a class of intensity pairs, which are treated

independently. If their close relations within the same tissue type are taken into account, an

improvement in the registration can be expected. Furthermore, such grouping of intensity

pairs can take advantage of knowledge about behaviour of intensity distributions, described in

the previous section. Note that during registration process we do not know the correct joint

distribution, i.e. joint distribution of registered images.

By modeling the intensity classes, a point similarity function can be estimated as a proba-

bility of an intensity pair belonging to one of the true classes. Such an estimation improves two

similarity function properties. Firstly, it equalizes similarities among correctly matched tissues.
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Namely, probability that an intensity pair belongs to a certain true class is not related to the

amount of corresponding tissue. Secondly, such a similarity measure reduces similarities for

incorrectly matched regions, as knowledge of intensity distribution can be used to distinguish

between true and false classes, see Section 2.2 and Figs. 2 and 3.

This is the basic idea of segmentation based point similarity measure, which models joint

intensity distribution as a sum of intensity classes obtained by segmentation. We define the

segmentation based point similarity function as

SS(i) = p(CT |i) =
∑
m

p(Cm|i)p(CT |Cm), (28)

where Cm denotes intensity class, which represents certain tissue type pair, and CT is a set of

all true intensity classes. Remember that true classes are classes which correspond to the same

tissue in both images. The first factor of (28) therefore represents probability of m-th class for

a given intensity pair i. The second factor is a probability that certain class Cm is a true class

and therefore belongs to CT .

The first step towards segmentation based similarity measure is modeling of joint distribu-

tion, which consists of several classes, each of them representing a different tissue type pair.

Joint distribution p(i) is thus a weighted sum of all class distributions p(i|Cm).

p(i) =
∑
m

p(i, Cm) =
∑
m

p(i|Cm)p(Cm). (29)

The probabilities can be obtained by segmenting the images into the tissue types and then

estimating the distribution of each tissue type pair by computing its joint distribution. This

approach requires segmentation of images, which is also not an easy task. Various image

segmentation methods can be used, for review see [7, 28]. Note that image segmentation is

in close relation with modeling intensity distribution. Not only that joint distribution can be

modeled by using segmentation, the segmentation is also often based on modeling intensity

distribution.

We propose another approach, which models joint distribution directly and is equivalent to

simultaneous segmentation of both images. Because images are not yet registered the number

of intensity classes is not known in advance and precise modeling is difficult, as most standard

approaches cannot be directly used. Our approach automatically detects how many intensity

classes exist and is computationally efficient, as it models only required single-tissue intensities,

excluding mixtures that appear in partial volume voxels. Assuming Gaussian intensity distri-

bution within each tissue type, each class Cm can be modeled by a 2D Gaussian function with
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mean value µm and covariance matrix Σm. Low intensities, e.g. background, which are approx-

imately Rayleigh distributed can be modeled by a Gaussian model sufficiently well, because the

significant difference appears only at lowest intensities, where probability of other tissues is low.

Let us assume that classes are far enough from each other to achieve dominance of class Cm in

its neighborhood Om, such that contributions of all other classes can be neglected. Classes that

are merging can be modeled together as a single class and separated in later registration steps,

when their overlap decreases. Number of classes M , their mean values µm and joint intensity

distribution maxima am can be estimated by an exhaustive search for maxima in joint intensity

distribution. When maximum is found, its position is used as a class mean value µ, while the

value itself is used as an amplitude of probability p(i, Cm). Probabilities of intensity pairs in

Om can be approximated by

p(i)|i∈Om
≈ p(i, Cm) = am exp

(
−1

2
(i − µm)T Σ−1

m (i − µm)
)

; m = 1 . . . M. (30)

By taking a logarithm of (30) we get

2 ln
(

am

p(i)

)
= (i − µm)T Σ−1

m (i − µm) ; i ∈ Om (31)

Σ−1
m =


 u11 u12

u12 u22


 (32)

2 ln
(

am

p(i)

)
= u11(iA−µmA)2+2u12(iA−µmA)(iB−µmB)+u22(iB−µmB)2 ; i ∈ Om, (33)

which can be solved for Σ−1
m using least squares method for all intensity pairs i in the neigh-

borhood Om. The covariance matrices Σm can then be used to estimate the class a priori

probabilities p(Cm).

p(Cm) =
∫

p(i, Cm)di =

=
∫

am exp
(
−1

2
(i − µm)T Σ−1

m (i − µm)
)

di

= am2π|Σm| ; m = 1..M (34)

Theoretically the sum of all a priori probabilities p(Cm), m = 1...M , should be 1. In

reality this is seldom the case even if all class parameters are estimated absolutely correct,

due to the fact that some intensity pairs with low joint probabilities do not belong to any

of the estimated classes. The majority of such intensity pairs represents partial volume (PV)

voxels. The correct position of PV voxels in joint distribution is hard to predict, as they can

be positioned anywhere in the rectangle defined by the true classes, see Fig. 3. Currently we
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are not dealing with partial volume voxels explicitly. We simply model them with additional

class C0 with uniform distribution:

p(i, C0) = ε. (35)

The selection of ε is not critical and we set it to 1/N where N is a total number of overlapping

voxels.

A posterior probability p(Cm|i) of class Cm, which shows the chance that certain intensity

pair i belongs to particular class Cm, is according to Bayes rule

p(Cm|i) =
p(i, Cm)

M∑
l=0

p(i, Cl)
. (36)

This concludes the modeling of joint intensity distribution. Note that other modeling or

segmentation approaches can be used as well. The described method is used because of its

low computational cost at sufficient accuracy. The obtained model depends on correctness of

match and improves during the registration. Thus, image registration and image segmenta-

tion/modeling are actually performed simultaneously.

When joint distribution model is obtained, probabilities p(CT |Cm) that certain class Cm is

a true class must be estimated in order to determine point similarity function (28). The set

CT includes all the true classes. We cannot know exactly which classes are true classes, but

using knowledge of joint distributions, it is possible to estimate this probability for each of the

classes. Let us assume that each tissue type has a unique intensity representation with mean

value µ. Therefore, among all maxima positioned at the same intensity of image A (or image

B) only one can belong to the set of true classes CT . Let a set of classes CµA consist of all

classes with the same mean value µA (we allow a difference of one standard deviation). Then

it is expected that classes Cm ∈ CµA with higher probabilities p(Cm) are more likely to be

true classes. Therefore, we can estimate probability pA(CT |Cm) of class Cm being a true class

according to image A as follows:

pA(CT |Cm) =
p(Cm)∑

Cl∈CµA

p(Cl)
; Cm ∈ CµA. (37)

Such a probability estimation of a certain class being a true class is not sufficiently consistent.

For example, when one of the tissues dominates, all classes with µB that correspond to that

tissue could have the highest probability pA(CT |Cm), although it is expected that only one of

them is a true class. This problem can be resolved by using probability pB(CT |Cm) of class
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Cm being a true class according to image B. Estimation of this probability is equivalent to the

estimation of pA(CT |Cm):

pB(CT |Cm) =
p(Cm)∑

Cl∈CµB

p(Cl)
; Cm ∈ CµB , (38)

where a set CµB comprises all the classes with the same µB . Class Cm can be assumed to be a

true class only if it is a true class according to image A as well as to image B. The estimates

pA(CT |Cm) and pB(CT |Cm) are based on different observations so they can be considered in-

dependent. Therefore, the final estimate of probability that class Cm is a true class can be

obtained as a product of both probabilities:

p(CT |Cm) = pA(CT |Cm) · pB(CT |Cm). (39)

If two or more tissue types have the same intensity representation µA or µB our presumption

is incorrect. Let us suppose there are ω tissue types with the same µA or µB and therefore,

there should also be ω corresponding true classes. Our estimated probabilities pA(CT |Cm) or

pB(CS |Cm) of these classes are reduced, in general ω times. Nevertheless, ratios between prob-

abilities p(CT |Cm) of these true classes and their competitive false classes remain in proportion

and so the registration should still tend to correctly minimize the false classes, although it

may require more registration iterations. Of course, tissues with the same µA or µB cannot be

distinguished.

Once the required probabilities are estimated (i.e. p(Cm|i) and p(CT |Cm)), segmentation

based point similarity function SS(i) can be computed using (28).

Note that segmentation based point similarity measure SS requires that the image data form

intensity classes, which can be modeled by Gaussian functions. This is a reasonable assumption

and not need to be exactly true in practice. Due to such modeling of joint distribution measure

SS does not model partial volume voxels. Matching of partial volume voxels is difficult as their

intensity relations are not known. Linear intensity relation is often suggested, but due to multi-

modality this may not be the case. Measure SS does not assume any relation between partial

volume voxel intensities. It only matches pure tissues and when a correct spatial deformation

model is used, partial volume voxels are expected to match correctly as well.

2.4. Multi-modal point similarity measures without segmentation

In some cases image intensity distribution does not form intensity classes. Intensities of

medical images form classes in case of 3D anatomical imaging techniques, but in other cases
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classes may not be formed. Furthermore, even if classes exist they may be hard to model

when images include large intensity variations of tissue types, e.g. intensity inhomogeneity.

Functional techniques do not form intensity classes at all. Matching of such images using

previously described segmentation based measure SS is not expected to give good results.

However, in any case, some intensity pairs represent correct match and some other intensity

pairs represent incorrect match. Every intensity of source image tends to match some intensities

of target image, and vice versa. Therefore, each intensity pair can be treated as its own intensity

class Ci with probability p(Ci) = p(i), mean value µ = i and p(Ci|i) = δ(i), where δ(i) is a

Dirac’s delta function. If these classes are used the same way as in segmentation based similarity

measure, a new point similarity measure SU is obtained. It can be estimated as follows:

pA(CT |i) =
p(i)

p(iA)
= p(iB |iA), pB(CT |i) =

p(i)
p(iB)

= p(iA|iB), (40)

SU (i) = p(CT |i) = pA(CT |i) · pB(CT |i) = p(iB |iA) · p(iA|iB) =
p(i)2

p(iA) · p(iB)
. (41)

Here, CT is a set of all intensities that represent correct match, while pA(CT |i) and pB(CT |i)
are probabilities that intensity pair i represents correct match according to images A and B,

respectively, which are actually conditional probabilities. Probability pB(CT |i) is equivalent to

point similarity SPC(i), see (26). The difference between measures SU and SPC is therefore

in conditional probability p(iB |iA), which is expected to improve registration of non dominant

tissues. Although grouping intensities into classes is not used, measure SU still incorporates

some knowledge about joint distributions, adopted from segmentation based approach.

It cannot be expected that a certain intensity in one image corresponds to only one intensity

in the other image, in the same way as it can happen for mean intensity values of tissue types

(µA and µB) in case of a segmentation based measure. Each intensity in one image corresponds

to several intensities in the other image. Estimated probabilities p(CT |i) depend on the amount

of noise, which can differ according to tissue type. To reduce the differences between similarities

of correctly registered intensity pairs, a logarithmic function can be applied in the same way as

in case of entropy based point similarity measure SH(i), to depend on uncertainty rather than

probability,

SUH(i) = log p(CT |i) = log (p (iB |iA) p (iA|iB)) = log
p(i)2

p(iA) · p(iB)
. (42)

The obtained measure SUH is related to previously described measures SH and SMI , such that

SUH(i) = log p(i) + log
p(i)

p(iA) · p(iB)
= SH(i) + SMI(i). (43)
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2.5. Selection of point similarity measures

So far we have described different methods to estimate point similarity functions. An im-

portant question is which measure to use for solving a given registration problem. It is well

known that some similarity measures, specifically mutual information measures, are so general

that they can be used for almost any kind of images. However, better results may be obtained

by using appropriately more constrained measures. Estimation of a parameter that is known in

advance is not reasonable, as the result may be biased due to an imperfect estimation. More-

over, estimation of additional parameters requires additional information, or the uncertainty of

results increases. Obviously, the best results can be expected when the model fits well to the

real situation.

Selection of a similarity measure should follow the same principle. Specifically, a similarity

measure should be chosen according to the characteristics of the images. We have already

classified similarity measures into mono-modal and multi-modal. However, additional classifi-

cations are possible [30]. Mono-modal similarity measures could be further classified according

to model assumptions into iB = iA, iB = k · iA or iB = k · iA + n. Similarly, multi-modal

similarity measures can be classified into measures with functional intensity dependencies and

those with statistical intensity dependencies. Furthermore, multi-modal similarity measures

could be classified according to the model assumptions into those that model intensity classes,

and those where no intensity classes are modeled.

Let us give some examples. Firstly, non-rigid registration of images taken in a single time

series can often presume mono-modal intensity dependency iB = iA, and thus it is expected that

best results can be obtained when using similarity measures MAD, MSD or their derivatives.

Secondly, for registration of 3D anatomical images, in the case that intensity classes can be

modeled, good results are expected by using SS(i) (28). Thirdly, when intensity classes cannot

be modeled, measures SU (i) (41) or SUH(i) (42) are preferred. Finally, images that include

functional information may use SU (i) or SUH(i) measures as well.

3. REGISTRATION BASED ON POINT SIMILARITY MEASURES

Point similarity measures enable estimation of similarity for any image point pair. As such

they enable extreme locality and precision of non-rigid registration. These measures do not

consider any relation between image points so they do not restrict image deformation in any

sense, which is solely in the domain of deformation model. Consequently, image registration
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can be divided into two functionally independent stages. The first one is estimation of external

forces, which are based on point similarity measures. External forces (or external energy gradi-

ents) drive the registration process and are obtained from current, i.e. already obtained image

alignment. The second stage is spatial deformation model, which converts external forces into

actual image deformation, by considering some geometric constraints, e.g. elasticity.

A basic scheme of our registration method is shown in Fig. 4. It consists of two stages,

which are iterated. The first stage is estimation of external forces F that drive the registration

of image B to A. The second stage is spatial deformation model that defines the relationship

between F and the deformation of B, described by a displacement field U. Upon convergence

of the method, the deformed version of B (now in register with A) is obtained by applying the

displacements U, as shown in Fig. 5.

FIG. 4 Non-rigid registration scheme. The overall registration consists of two parts: estima-

tion of external forces F and spatial deformation model that imposes dependencies on voxel

displacements U.

FIG. 5 Deformation of the source image B into the resulting image B′ by applying displace-

ments U.

Force estimation approaches in general differ in two aspects: the similarity measure used

to compare images in order to detect local discrepancies, and the method used to derive forces

from the similarities. We have implemented two force estimation methods. The first one is a

widely used force estimation, which we call forward force estimation, defined as a gradient of

local similarity with respect to the reference image:

F(x) = FF (x) =
∂

∂ε

∣∣∣∣
ε=0

S (iA (x + U(x) + ε) , iB (x)) . (44)
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Here, x = [x1, x2, x3]T denotes spatial coordinates of original undeformed images, U(x) is

current point displacement obtained by registration, and ε is a displacement of a point from an

already obtained configuration. Forward forces tend to move source image voxels towards their

better match in the target image.

The second method, which we call consistent force estimation, is related to consistent image

registration [6, 36]. In this case the external forces consist not only of forward forces FF but also

of reverse forces FR, which tend to improve matching of points in the target image according

to the source image:

FR(x) =
∂

∂ε

∣∣∣∣
ε=0

S (iA (x + U(x)) , iB (x + ε)) . (45)

The consistent external forces are then defined as:

F = FF − FR. (46)

In our implementation the estimation of similarity gradients in (44) and (45) follows [1]. The

design of second registration stage, i.e. spatial deformation model, follows the concept of Bro-

Nielsen and Gramkow [2]. The idea is that a linear model can be separated into two parts:

UF = kEF, (47)

U(x) =
∫

UF (x − r)G(r)dr = (UF ⊗ G)(x) = ((kEU) ⊗ G)(x). (48)

The first part (47) is Hooke’s law, which says that the point moves proportionally to the applied

force F for displacement UF . The second part (48) is a spatial convolution filter and models

interdependence of points. The kernel for elastic media is described in [2], but for simplicity

we use Gaussian filtering. Note that F appears because of an imperfect match and thus the

displacements UF are only corrections of already obtained configuration, while U stands for

overall displacements, measured from the initial (undeformed) image configuration.

By the principle of linearity final displacements can be calculated by summing up partial

displacements,

U(t) = U(t−1) + U(t)
F ⊗ G, (49)

where t denotes iteration number. This is the concept of incremental deformations [1] used

to accommodate large nonlinear deformations, but because external forces F(x) are highly

nonlinear function of displacements U(x) [12], the resulting deformation does not necessarily

follow the selected (linear) spatial deformation model. This can be compensated by introducing
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point dependence on the accumulated displacements:

U(t) = (U(t−1) + U(t)
F ) ⊗ G. (50)

In this way the displacements are filtered throughout the iteration process, such that old forces

contribute less than later ones. The undesirable side effect of this filtering is that as the

external forces go to zero, the image gradually returns back to its undeformed configuration.

Thus, additional external forces are needed to sustain the deformed condition. Therefore, we

simply combine the two spatial deformation models (Fig. 6):

U(t) = (U(t−1) + U(t)
F ⊗ G1) ⊗ G2 (51)

The first filter (G1) enables large deformations and precise registration while the second one

(G2) serves to improve the linearity of the results. The coefficient kE controls registration

speed and changes during the registration to allow fast convergence as well as high precision.

Initially it is set to such a value that maximal force F(x) causes displacement UF (x) of one

voxel, and decreases during the registration. This approach normalizes the forces so that their

scaling does not affect registration results.

FIG. 6 Spatial deformation model.

The registration uses a multi-resolution approach, which starts at lower image resolutions

that remove image differences with large spatial extent, and continues with higher resolutions

that remove more and more detailed image discrepancies. To maintain the same intensity

resolution in all levels of multi-resolution approach, we use Parzen window estimation [26]

for obtaining the intensity distributions. The registration stops after a predefined number of

iterations.

4. RESULTS

A reasonable approach to compare global similarity measures is to observe similarities ac-

cording to the applied image transformation, e.g. displacement of whole image, and evaluate

some properties of such similarity function, e.g. number of local extrema, smoothness, position
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of global extremum, capture range, etc [29]. However, comparison of point similarity measures

turns out to be more problematic, as any transformation of such an extremely small image

region makes a drastic change in region overlap.

Similarly to the comparison of global measures, point similarity measures could be compared

by comparing their similarity functions. The criteria could include: number of maxima that do

not represent a correct match, differences among similarities estimated for incorrectly matched

tissues, differences among similarities estimated for correctly matched tissues, etc. However,

comparison of these properties does not directly tell us which point similarity measure is more

appropriate.

It appears that the only meaningful way to compare point similarity measures is to compare

registration results obtained by using these measures. In the rest of the section we focus only

on the multi-modal measures. We have compared them using our non-rigid registration system,

described in Section 3. To show performance of point similarity measures under different

registration configurations, we have compared them using both force estimation methods. We

have used four resolution levels, each consisting of 10 registration iterations and used a Gaussian

filters with σ = 3 for G1 and G2.

We have used simulated and real images to compare multi-modal point similarity measures.

First we have used MRI T1 and PD Brainweb simulated images [18] with 1 × 1 × 1 mm voxel

size. The tests were performed using images of whole head and images of brain only, both of

them in three different image qualities: normal images, 9% noisy images and 40% intensity

inhomogeneous images. In total 6 simulated image pairs were used. The same experiment was

performed using real MRI images. For that purpose we used MRI T1 image as target with voxel

size 0.86×0.86×0.99 mm, while the MRI PD source image had 0.98×0.98×1.1 mm voxel size.

The images were previously corrected for intensity inhomogeneity using an approach based on

information minimization [22]. This comparison of similarity measures is more demanding as

the quality of real images is worse than the quality of simulated images. Namely, target image

(MRI-T1) had poor intensity resolution, while source image (MRI-PD) included large image

artifacts (intensity inhomogeneity and wrap arround artifacts).

Our comparison of multi-modal point similarity measures is based on recovering a synthetic

deformation, see Fig. 7. The evaluation procedure makes use of two images, A and B, that are

already in register, e.g., acquired at the same time but using different acquisition modalities

or protocols. Image B is deformed using some known transformation U0 to obtain image B′,

which is then registered to image A. Ideally, the obtained transformation UR should equal the
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known inverse transformation U−1
0 . The quality of the registration can thus be measured by the

RMS (root-mean-squared) residual difference eRMS between displacements U−1
0 (x) and UR(x):

eRMS =

√
1

NΩ

∑
x∈Ω

(
U−1

0 (x) − UR(x)
)2

, x = [x1, x2, x3]T . (52)

Non-object voxels are excluded from the evaluation through the specification of the object do-

main Ω (in practice, a binary mask defined over the image), where NΩ denotes the number

of voxels in Ω. We used a synthetic deformation generated as a sum of Gaussian functions.

FIG. 7 Evaluation scheme for non-rigid registration, based on synthetically deformed images.

Specifically, six functions with standard deviation ranging between 15 and 60 mm were used,

resulting in initial displacement error erms = 6.90 mm for simulated Brainweb images, and

erms = 14.15 mm for real images. The difference between real and simulated images arose

due to different position and orientation of head. We cannot argue that Gaussian deformation

can be used to model actual deformations in clinical multi-modal applications. However, due

to functional independence of force estimation stage and deformation model used, the results

obtained that way are appropriate for comparing force estimation methods and their funda-

mental part - similarity measures. While the spatial deformation model may favor some type

of deformation, ordering of different external force estimation approaches is still preserved.

The system was implemented in Borland C++ Builder and runs under MS Windows plat-

forms. Registration of each image pair takes about 20 minutes on a 500 MHz Pentium III

workstation with 1GB of RAM. The results of registering simulated images are tabulated in

Table 1. For all compared similarity measures sensitivity to noise is low while sensitivity to

intensity inhomogeneity (shading) is relatively high. The most sensitive to intensity inhomo-
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TABLE 1
Comparison results of multi-modal point similarity measures using simulated Brainweb

images. All results are in millimeters and represent residual errors after registration of whole
head images or brain images.

Images of whole head, forward force estimation:
measure normal 9% noise 40% shading

eRMS emax eRMS emax eRMS emax

SP 5.35 14.21 5.08 14.51 6.15 15.32
SH 0.89 5.39 0.99 5.77 22.70 44,09
SMI 1.09 6.83 1.23 7.29 3.00 10.01
SPC 10.20 22.04 15.69 26.21 22.63 43.64
SHC 0.86 5.35 1.03 6.14 23.02 44.56
SS 0.68 2.44 0.73 3.09 3.72 10.71
SU 2.78 10.42 3.17 11.41 5.97 15.01

SUH 0.83 4.90 1.09 6.36 2.68 9.18

Images of whole head, consistent force estimation:
measure normal 9% noise 40% shading

eRMS emax eRMS emax eRMS emax

SP 3.67 12.32 3.48 12.18 4.65 13.54
SH 0.80 4.50 0.87 4.93 7.47 24.13
SMI 0.83 5.04 0.99 6.05 2.39 8.09
SPC 1.05 6.87 1.47 8.35 3.11 10.07
SHC 0.71 4.23 0.91 5.43 15.69 37.85
SS 0.51 1.91 0.55 2.08 4.02 11.12
SU 2.00 9.22 2.00 9.31 4.55 13.21

SUH 0.72 4.08 0.79 4.59 2.59 9.25

Images of brain, forward force estimation:
measure normal 9% noise 40% shading

eRMS emax eRMS emax eRMS emax

SP 5.20 13.24 5.72 14.78 7.03 16.59
SH 0.73 3.99 0.99 5.88 2.14 8.95
SMI 1.65 9.17 1.79 9.32 2.42 10.18
SPC 0.72 3.48 0.95 3.50 3.01 9.98
SHC 1.29 7.69 1.54 8.50 2.24 9.61
SS 0.55 2.19 0.77 2.58 3.96 11.82
SU 1.57 4.25 1.98 4.49 8.04 17.22

SUH 0.56 2.56 0.68 3.23 1.54 5.96

Images of brain, consistent force estimation:
measure normal 9% noise 40% shading

eRMS emax eRMS emax eRMS emax

SP 3.35 12.18 3.36 12.21 3.42 12.29
SH 0.50 2.50 0.65 3.36 2.09 9.45
SMI 0.95 6.07 1.11 6.89 1.92 9.48
SPC 0.98 6.14 1.10 6.39 2.28 9.35
SHC 0.65 3.40 0.79 4.33 1.91 8.94
SS 0.48 1.98 0.59 2.19 3.22 10.14
SU 0.63 2.49 0.84 2.77 7.72 18.65

SUH 0.43 2.10 0.49 2.23 1.77 7.98
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TABLE 2
Comparison results of multi-modal point similarity measures using simulated deformation and
real MRI-PD/T1 images of human head for forward force estimation (F = FF ) and consistent

force estimation (F = FF − FR). All results are in millimeters.

measure F = FF F = FF − FR

eRMS emax eRMS emax

SP 10.17 22.95 7.11 21.17
SH 2.67 13.80 2.07 10.91
SMI 2.17 12.23 2.11 10.99
SPC 11.41 25.68 2.36 11.54
SHC 2.67 13.79 2.08 9.87
SS 1.56 6.56 1.66 7.33
SU 8.04 20.21 5.44 18.80

SUH 2.32 12.50 1.83 10.22

geneity was registration of whole head images with forward force estimation, where registration

was successful only when using measures SMI , SS and SUH . Note that the level of intensity

inhomogeneity was higher than is expected for real data. The problem appears due to inten-

sities of tissues surrounding brain, which are similar to intensities of some brain tissue in the

source image, and some other tissue in the target image. In such a situation registration can

deteriorate, especially when it is based on measures SPC , SU and SP , and in more extreme cases

also measures SH and SHC . Shading has smaller influence on eRMS for images of brain, as they

do not include surrounding tissues, and consequently, class overlap at intensity shading is lower

than in the case of images of whole head, where surrounding tissues form additional intensity

classes. In general, when images are not subject to intensity inhomogeneity, the best results

are mostly obtained by using measure SS , in other cases the best results are mostly obtained

by measure SUH . When images include only intensity classes that are easy to distinguish, e.g.

in case of registering brain images, almost every measure gives good results and differences be-

tween them are less apparent. The results also show that consistent force estimation in general

gives better results than forward force estimation.

Results obtained for registering real images, which are tabulated in Table 2, are not as

good as results obtained for the simulated images. There are two possible reasons. First,

quality of real images is worse that quality of simulated images, and second, worse results

may be caused by higher initial misalignment. However, comparison of results obtained from

real images suggest similar conclusions as we made for simulated images. Segmentation based

measure SS performed best, measures SMI and SUH were also good, especially for consistent
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force estimation. On the other hand measures SP , SU and eventually SPC are shown to be less

appropriate for such registration tasks.

The quality of point similarity measures can be observed also by comparing their similarity

functions. There are two issues: firstly the ratio between similarity for correct and incorrect

match, and secondly the ratio between similarity for different correctly matched intensity pairs.

Examples of point similarity functions are shown in Fig. 8. All similarity functions are esti-

mated from the same unregistered images, so that joint intensity distribution (which equals SP )

consists of true intensity classes, which represent correctly matched tissues, as well as false in-

tensity classes, which represent incorrect match. Ideally, similarity should be high and equal for

all intensity pairs that represent correct matching (true classes) and low for all other intensity

pairs (including false classes).

Examples of point similarity functions show that measures SP , SPC and SU highly depend

on the amount of different tissue types. In our case background dominates over the tissues

and thus registration of tissue intensities is much slower than registration of background, which

results in worse registration results. A log function, which is used for measures SH , SMI , SHC

and SUH , makes similarities for different correctly registered tissues less different. However,

similarities for incorrectly registered parts become more similar to those for correct match as

well. This becomes problematic especially in case of measure SHC . Similarity functions for

SH , SMI and SUH are related (43). SH is directly related to joint intensity distribution p

and produces high similarity for intensity pairs with high probability p(i), e.g. for true classes.

On the other hand measure SMI provides good discrimination between true and false classes,

while similarity is higher for less dominant true classes and relatively low for dominant ones,

e.g. for background. This is disadvantageous when high tissue misalignment exists, which

is common for initial registration steps. Measure SUH improves that property, and provides

high similarities for all true classes, while discrimination between true and false classes is still

good. Similarity function for measure SS differs from other measures, as it models the joint

distribution as a sum of intensity classes, while other intensity pairs, e.g. partial volume voxels,

are not modeled. In comparison to the other point similarity measures it better distinguishes

between true and false classes.

When images do not form intensity classes or intensity classes cannot be accurately modeled,

measure SS cannot be expected to give good results. Other measures are still applicable.

Measure SUH seems to be the most appropriate for use in such situations, as in general it gave

best results on MRI images. For illustrative purposes only, we show registration of PET-CT
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FIG. 8 Examples of similarity functions of multi-modal point similarity measures for registering

MRI-T1 and MRI-PD images of head. Darker color means higher similarity. Ideally, similarity

should be high and equal for all intensity pairs that represent correct matching (true classes)

and low for all other intensity pairs (including false classes). Evidently SS is better than other

similarity measures.
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thoracic images, see Fig. 9. Joint intensity distribution of registered images shown in Fig. 10

confirms that no intensity classes are formed.

(a) (b)

(c) (d)

FIG. 9 PET-CT registration of thoracic images: CT image (a), PET transmission image (b),

rigidly registered (c) and non-rigidly registered (d) PET transmission image overlayed with

contours obtained using Canny edge detector on CT image. Note the improvement of match

obtained by non-rigid registration, which is most visible in the lung section.

When joint intensity distribution forms the classes, registration based on point similarity

measure SS gives segmented images as a by-product. Segmentation and registration are actually

performed simultaneously. If each intensity pair in the images is classified to its most probable

intensity class, the image gets divided into multiple regions, where each region belongs to one of

the intensity classes. In general images consist of true and false intensity classes. Both of them

are present when images are not correctly registered, see Fig. 11 (left). Registration reduces

the amount of tissues belonging to the false classes and when images are correctly registered

only the true classes remain, see Fig. 11 (right). Each true class then represents a certain tissue

type. The quality of segmentation gradually increases during the registration. Performing

registration and segmentation simultaneously may improve registration (as it is evident from
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FIG. 10 Joint intensity distribution of registered CT/PET-transmission images.

the results), as well as segmentation results.

FIG. 11 Result of the segmentation for misregistered (left) and registered images (right). Each

class is represented by different gray value.

5. DISCUSSION AND CONCLUSIONS

In this paper we described a new class of similarity measures for estimating local image

correspondences. They work on individual voxels, but consider information derived from the

whole images. Several point similarity measures were compared using one synthetic image set

with different noise and shading, and one real MRI data set. The comparison was based on

recovering synthetic deformation. All compared measures are based on joint intensity distri-

bution. When intensity distribution can be modeled by intensity classes, which is related to

segmentation of the images, the best registration was achieved by the so called segmentation
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based point similarity measure SS . When intensity distribution could not be modeled, the

point similarity measure SUH is recommended. This was demonstrated by registering a PET

transmission image to a CT image.

There are some more issues that should be considered. Although point similarity measures

are applied locally, the relation between image intensities is modeled globally. That allows more

reliable estimation of complex multi-modal intensity relationships. However, local estimation

can be also advantageous. Local properties are less sensitive to variations of intensity relation

across the images, which explains why in some cases even some mono-modal measures can be

used to compare multi-modal data [39]. Still, due to better estimation of intensity correspon-

dence, global estimation is usually more reliable and misregistration is less likely to occur. The

results in this paper show that point similarity measures are sensitive to a high variation of

intensity relations across the image, as are all global measures, including mutual information

measures. Fortunately, such image variations can be removed, e.g. by using inhomogeneity

correction.

Estimation of point similarities can be improved significantly by using prior information.

When joint probability of correctly matched images is known, a similarity function can be

estimated from a weighted sum of the current estimate and the prior joint intensity distribution.

Some precaution is required in selection of image processing algorithms used in the regis-

tration process. Convolution filtering, interpolation, resampling and similar processes change

image intensity distribution. They make intensity distributions more scattered, which dete-

riorates estimation of the similarity function. Furthermore, such methods presuppose linear

intensity relation, which is not necessarily correct in the case of multi-modal data. Linear

interpolation of intensities is therefore undesirable as well. Hence, we use linear interpola-

tion of similarity instead of intensity, and partial volume interpolation for estimation of joint

distribution.

Finally, note that point similarity meaures can be derived from almost any (global) measure.

Nevertheless, good global similarity measures do not necessarily form good point similarity

measures.
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[21] B. Likar and F. Pernuš. A hierarchical approach to elastic registration based on mutual

information. Image and Vision Computing, 19:33–44, 2001.
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