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Abstract. We present a novel multi-modal fusion framework for non-
sequential person detection, localization and identification from multi-
ple views. Our goal is independent processing of randomly-accessed sec-
tions of video, either individual frames or small batches thereof. This
way, we aim to limit the error propagation that makes the existing ap-
proaches unsuitable for fully-autonomous tracking of multiple people in
long video sequences. Our framework uses one or more trained classifiers
to fuse multiple weak feature maps. We perform experimental valida-
tion on a challenging dataset, demonstrating how the framework can,
depending on the provided feature maps, be used either only to improve
generic person detection, or enable simultaneous detection and recogni-
tion of individuals. Finally, we show that tracking-by-identification using
the output of the proposed framework outperforms the state-of-the-art
identification-by-tracking approach in terms of preserved track identities.

1 Introduction

The need for unobtrusive recovery of individuals’ positions and trajectories, mea-
sured in the world coordinate system, can be found in different scenarios, with
most notable examples being closed-world surveillance applications, performance
analysis in sports and sports medicine. Therefore, person detection and track-
ing using multiple cameras with overlapping fields of view is already a hot re-
search topic. However, despite long tradition of multi-view multi-target tracking
in computer vision, we are not aware of any tracker that would allow completely
automatic, autonomous and unattended processing of very long video sequences
involving multiple people in realistic indoor environments.

The existing approaches can be roughly divided into two groups. The first
are so-called detection-by-tracking approaches, which are based on sequential
techniques, such as Kalman filter or particle filters (e.g. [1,2] and [3,4], respec-
tively). Such trackers are causal; they consider only information from previously-
processed frames, which is why they are still considered state-of-the-art in the
real-time tracking. However, relying on recursive tracking may result in irrecover-
able errors when a person fails to be detected in a frame or when two detections
made at different times are incorrectly linked. Errors tend to propagate and
multiply in the subsequent frames. Eventually, such unbounded error propaga-
tion causes a tracker to fail and manual re-initialization is required.
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Fig. 1. Our framework uses multiple multi-modal features encoded as feature
maps and fuses them using a trained classifier.

The other group, the tracking-by-detection approaches, employ robust frame-
by-frame detection [5,6], on top of which global optimization methods are ap-
plied for tracking (e.g. [7]), usually off-line and in batch manner. However,
when it comes to maintaining the identities of tracks, these approaches perform
identification-by-tracking ; they rely on identity propagation along the track, with
none or limited appearance-based validation. As such, they are prone to prop-
agated identity switches when people come close. Propagated identity switches
manifest themselves as localization error after people disperse and, even if in-
frequent, make fully-automatic tracking over long time periods unfeasible. After
a switch, the entire trajectory data is essentially invalid, and intervention of an
operator is required. In absence of means to detect a propagation of an identity
switch, the tracker needs to be constantly supervised.

We therefore aim to achieve non-sequential processing of individual frames
or groups of few frames at a time. In terms of processing, this would enable a
“random access” to the video sequence; based on previously-learned discrimi-
native features, individuals’ identities could be (re)established at any point, for
example after they come together and disperse. Due to independent processing,
the errors are not propagated to subsequent frames, and hence the error is al-
ways bounded. The obvious disadvantage of non-sequential identification is that
it is much harder to achieve; to distinguish between individuals, a large amount
of weak discriminative features might be required.

The main contribution of this paper is a novel multi-modal fusion frame-
work for simultaneous person detection, localization and identification. We use
multiple weak features encoded as feature maps, a generalization of the well-
known concept of an occupancy map, and fuse the feature maps using one or
more trained classifiers. In the paper, we also further the notion of tracking-
by-identification as an alternative to the state of the art, which predominantly
focuses on identification-by-tracking.

The remainder of the paper is structured as follows. In Section 2, an overview
of related work is given, followed by the introduction of our framework in Section
3 and details on feature maps in Section 4. Section 5 describes experimental
validation; results are presented and discussed in Section 6, while conclusions
are given in Section 7, along with the outline of ideas for future work.
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2 Related Work

The task of tracking multiple people using video cameras has a long tradition in
the field of computer vision; a general overview of the existing multi-target track-
ing literature can be found in [8]. We focus only on approaches that use multiple
cameras with overlapping fields of view, as such are usually required for tracking
in the world coordinate system. Specifically, we focus on tracking-by-detection
approaches that rely on robust frame-by-frame detection and are mainly based
on the concept of occupancy maps. An occupancy map is a plan-view representa-
tion of area of interest and allows for efficient aggregation of information coming
from different views, usually about the presence of individuals.

The Probabilistic Occupancy Map (POM) by Fleuret et al. [5] is a top-down
approach; the ground plane is discretized into a probability field in which each
cell holds its occupancy probability. A generative model that approximates sil-
houettes by simple rectangles is used to back-project those probabilities into
all views; the occupancy map is obtained by iterative optimization of the prob-
ability field, so that the difference between the back-projected and the input
binary images is minimized. Berclaz et al. [9] use the same framework, but in-
stead of foreground images, the output of a people detector is used. Alahi et
al. [10] also obtain occupancy map from foreground images in a top-down man-
ner, using sparsity-constrained inverse problem formulation. The work of Khan
and Shah [6], on the other hand, is an example of a bottom-up approach. The
authors warp the foreground regions from all views into a reference plane, pro-
ducing a 2-D grid of occupancy likelihoods, which they call a synergy map.
Multiple planes parallel to the reference plane are used and the resulting syn-
ergy maps are stacked into a 3-D volume representing sampled scene space. A
similar approach is also used by Delannay et al. [11].

The detections obtained by afore-mentioned approaches can be incorporated
into a tracking framework. In [6], graph cuts are used to link the frame-by-frame
detections, while in [5], tracking is done using dynamic programming and a local
color appearance model. In recent work by Berclaz et al. [7], multi-object tracking
on top of an occupancy map is formulated as a global optimization problem
that can be solved using K-shortest paths algorithm. Their approach completely
ignores the appearance and yet it has been shown to outperform state-of-the-
art methods. The computational complexity of such approach, however, poses a
limit on the amount of frames that can be processed; as reported by [12], the
implementation of [7] is, with some modifications, capable of processing 6000
frames, which amounts to 4–5 minutes of video.

While tracking on top of frame-by-frame detections (tracking-by-detection)
can mitigate the false positive and missing detections that occur in individual
frames, it is, from perspective of tracks’ identities, identification-by-tracking ; it
propagates identities along the track, and inherently cannot prevent propagation
of identity switches after people come close together. Therefore, Shitrit et al. [13]
extended the approach of [7] to preserve consistent identities based on sparse ap-
pearance information, namely global color similarity and numbers on the players’
jerseys. In this regard, our work is very closely related to [13]. However, whereas
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they first perform detection and consider appearance cues in the linking step to
ensure consistent identity along the track, we approach the problem from the
other side. We perform both detection and identification simultaneously; the ob-
tained detections with identities can then be linked together, resulting in robust
tracking-by-identification. We deem such an approach more general because it
abstracts the integration of additional cues for identifying individuals.

As our work is based on detection and recognition by fusion of multiple weak
features, we can find related work in that field as well, especially in single-view
object detection and recognition. The most prominent example is work of Breit-
enstein et al. [14], where authors propose the use of general pedestrian detector
within a sequential particle filter framework, and combine it with person-specific
classifiers that are trained during runtime to distinguish between the targets,
based on color and texture features. However, to the best of our knowledge, such
fusion is yet to be applied to multi-view, multi-person detection and recognition.

3 A Framework for Feature Map Fusion

A human observer is capable of noticing people even in difficult conditions, by
using multiple cues, such as motion, shape and deviation from the background.
They can also successfully distinguish between individuals by relying on discrim-
inative visual cues, such as color of clothing, hair color and style, complexion,
facial features, body height and width, and even gait and prior knowledge re-
garding the likelihood of an individual’s presence at a certain location. Most of
these features are weak, and only their combination allows us to reliably distin-
guish between individuals. Similarly, our framework uses multiple weak features,
encoded as feature maps, and fuses them together using a trained classifier, as
shown in Figure 1.

The feature maps are our proposed generalization of the well-known concept
of an occupancy map [5], where in each cell, instead of probability of occupancy,
the value of a feature is stored. The main advantage of using such maps is effi-
cient aggregation of information coming from multiple views and noise reduction
due to enforced multi-view constraints. Feature maps allow encoding of different
types of features that come from various sources, for example global visual cues
of a person’s presence, discriminative visual cues for distinguishing between in-
dividuals, prior knowledge or information from non-visual sensors (e.g. a radio
tracking system).

Note that construction of a feature map does not necessarily require an oc-
cupancy map algorithm. For example, if the map is based on prior knowledge,
it does not require multi-view constraints and can be constructed directly; same
goes for inclusion of information from non-visual sensors. Furthermore, some of
the maps are common to all people (e.g. background-subtraction-based detec-
tion map), while some (e.g. map of distances to a reference color histogram) are
person-specific, meaning that for each person, a separate map is generated.

Since it is expected that usefulness of individual feature maps depends on the
situation, the idea is to obtain as many feature maps as possible and fuse them
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Fig. 2. (a) rectangles for POM based on background subtraction and opti-
cal flow, (b) rectangles for POM based on head-and-shoulder (omega shape)
detection, (c) sampling region for construction of color histograms, (d) overall
precision-recall curves for all global detection cue maps as the σpom parameter
of the POM algorithm is varied. The σpom parameter controls the desired fitting
between the input binary images and back-projected synthetic images; there-
fore, it influences the compromise between resulting POM’s precision and recall.
The curves were obtained from training portion of dataset from Section 5.1. The
dots on curves denote the operating points we selected for fusion, while the black
cross in top-right corner denotes the result of Experiment 1.

using a classifier that has been trained on the annotated training portion of the
data. For classification, we stack all feature maps; for each cell, we concatenate
the corresponding features into a feature vector and use it as an input to the
classifier, in our case a Support Vector Machine (SVM). This way we obtain a
SVM score map, on which we perform non-maxima suppression to isolate the
person detection(s).

4 Feature Maps

In this section, we describe the feature maps we use to demonstrate the via-
bility of the proposed framework. We outline the reasoning behind using each
feature, its characteristics, advantages and disadvantages, and also present some
implementation details.

4.1 Global Detection Cue Maps

The global detection cue maps are primarily used to distinguish people from the
background. In our case, they are actually occupancy maps produced by publicly-
available implementation1 of the POM algorithm [5], based on different visual
cues: background subtraction, optical flow and head-and-shoulder detection.

1 http://cvlab.epfl.ch/software/pom/

http://cvlab.epfl.ch/software/pom/
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Table 1. Per-person recall in all global detection cue maps (in selected operating
points), obtained from the training portion of dataset from Section 5.1. For
each cue (background subtraction, optical flow, omega shape), three maps are
generated using POM algorithm, each assuming a different height of individuals.
The recall value depends on the assumed and the actual height of an individual;
consequently, the whole stack of global detection maps implicitly encodes some
discriminative information about individuals’ heights.

Person Height
Background subtr. Optical flow HOG-Omega

1.6 m 1.75 m 1.85 m 1.6 m 1.75 m 1.85 m 1.6 m 1.75 m 1.85 m

#1 1.58 m 0.846 0.713 0.594 0.923 0.797 0.748 0.566 0.559 0.301
#2 1.77 m 0.846 0.881 0.839 0.804 0.783 0.790 0.350 0.510 0.524
#3 1.85 m 0.895 0.930 0.874 0.944 0.958 0.930 0.378 0.755 0.846
#4 1.79 m 0.958 0.937 0.881 0.916 0.916 0.853 0.601 0.874 0.867
#5 1.84 m 0.923 0.944 0.895 0.916 0.937 0.916 0.538 0.853 0.888

We use a dense grid, with 0.50 × 0.50 m cells’ centers being placed 0.10 m
apart; the resulting overlap allows for more precise localization. For the fixed
height of rectangles that model persons’ appearance in the POM algorithm,
we use three different values (1.6 m, 1.75 m and 1.85 m; see Figure 2a), each
yielding a separate map. This way we attempt to account for different heights of
individuals; per-person recall values listed in Table 1, obtained from the training
portion of dataset described in Section 5.1, show that the global detection cue
maps implicitly encode some discriminative information about the heights of
individuals.

Figure 2d shows precision and recall curves for all nine resulting maps as the
σpom parameter of the POM algorithm is varied. When selecting an operating
point (the σpom value), we assume that for the fusion of multiple maps, it is
preferable to sacrifice some precision for increased recall on individual maps.

It should be noted that the POM algorithm implicitly performs non-maxima
suppression, hence its solutions tend to converge to isolated cells. While this is
favorable when using a single map, it means that in our case the corresponding
detections in different maps can be present in different (although more or less
adjacent) cells. To compensate for that, we blur the maps using Gaussian kernel
with σblur = 2.5 and size of 5 (cells).

Background-subtraction-based POM Feature maps, based on background
subtraction, are constructed using the output of algorithm [15], which also comes
with shadow detection and removal. However, this comes as a compromise be-
tween shadows passing as a part of the foreground and significant fragmentation
of the foreground blobs. Based on precision-recall curves (Figure 2d), we use the
maps obtained at σpom = 0.002. Note that this modality is commonly used in
detection step of state-of-the-art tracking-by-detection approaches.
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Optical-flow-based POM For the feature maps based on optical flow, we use
dense optical flow [16,17] to produce intensity images corresponding to magni-
tude of displacement, and use those as an input to the POM algorithm. As dense
flow is used, we expect the silhouettes to be less fragmented than in case of back-
ground subtraction; in addition, the used algorithm models both displacement
and illumination changes. On the other hand, it turned out to be somewhat
susceptible to moving shadows. Also, as optical flow is computed between con-
sequent frames, the detections are lost as soon as people stop moving. Based on
precision-recall curves (Figure 2d), we use the maps obtained at σpom = 0.002.

Omega-detection-based POM Another visual cue for person detection is
the shape of head and shoulders, the so called omega shape [18], which can
be detected from multiple viewing angles. For detection, we use Histograms of
Oriented Gradients (HOG) [19] descriptor and a SVM trained on the database
provided by [18]. From the detections we generate synthetic images, where detec-
tion bounding box is filled by the intensity value corresponding to the probability
score given by the SVM; these images are used as input to POM.

In POM, we restrict the rectangles to the heights at which a face is expected
to be found (1.10−1.60 m, 1.25−1.75 m and 1.35−1.85 m, respectively, as shown
in Figure 2b). As can be seen in Figure 2d, both precision and recall are lower
than when using background subtraction images or optical flow. The main reason
is that while background subtraction and optical flow can produce fragmented
silhouettes, HOG-based detector either detects a head or not, which becomes
apparent especially with occlusions. In addition, false positive detections tend
to occur on round objects and light reflections on both walls and floor. Based
on the precision and recall curves, we use the maps obtained at σpom = 0.01.

4.2 Map of Distances to Reference Color Histogram

An often-used discriminative visual cue is color; in our case, we focus on color
of the shirts that people wear. To obtain color histograms, we project the corre-
sponding regions (0.30×0.30 m cells with centers placed 0.10 m apart and height
from 0.9 to 1.4 m; see Figure 2c) into views. Using the pixels within projected
regions, we construct separate 32-bin histograms for each channel in each view.

From the annotated training data, we obtain average per-view histograms for
each person, which serve as a reference. We then construct per-person feature
maps by computing Hellinger distance between a person’s reference histogram
and the histograms of every cell on per-channel and per-view basis; the per-
channel distances from different views in which the given cell is visible are then
combined using the median operator, resulting in three feature maps. Addition-
ally, we compute the mean distance for all three channels in each view and
then combine them using median operator; this way, an additional feature map,
representing the average distance to the reference histogram, is obtained.

We use both an RGB-based and an HSV-based maps of distances to a refer-
ence color histogram, together amounting to eight feature maps per person.
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Fig. 3. (a) individuals’ trajectories, obtained from the training portion of the
dataset from Section 5.1, (b) individuals participating in the experiment.

4.3 Location Prior Map

In certain environments, one can also distinguish between (some) people based on
the prior knowledge on the likelihood of their presence at a certain location. One
example is an office or laboratory where each person has their assigned working
place, or certain sports, such as European handball or soccer, where players
adhere to positions dictated by their role and the previously-agreed tactics. For
example, in European handball, a left-wing player is practically never found in
the right wing; such information can help distinguish between multiple players,
even though they are visually similar.

We construct the per-person prior maps from the annotated training data
(Figure 3a). The annotated positions for a person are placed into a grid and
blurred using Gaussian kernel; the resulting map is then rescaled to have its
values in range between 0 and 1.

5 Experimental Setup

To the best of our knowledge, there are no publicly available multi-view datasets
that would be of sufficient length to verify our proposed approach. In the case of
the commonly-used APIDIS dataset [20], a single minute is publicly available.
We feel at least another minute from a different part of the sequence would be re-
quired for a fair testing. The ISSIA Soccer dataset [21] consists of two minutes of
video, but its ground truth is not sufficiently reliable for quantitative evaluation.
There are several video sequences offered by the authors of [5], however either
they do not come with ground truth, or they lack complete calibration informa-
tion, which is needed for projecting rectangles at different heights. Furthermore,
when ground truth is provided, it is coarse, both spatially and temporally.

Therefore, we present the experimental validation on a challenging dataset
that we captured in our laboratory. The dataset presents challenges found both
in surveillance scenarios (occlusions both between individuals and by inanimate
objects) and in the sports (visual similarity between individuals).
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Fig. 4. Views from each of the four cameras.

5.1 The Dataset

We used four cameras to capture a three-minute video sequence at 20 frames
per second. The sequence involves five people (Figure 3b) walking around a
7.1×7.0 m room (Figure 4). We manually annotated the ground truth positions
on ground plane in each frame. We use every 10th frame of the first minute for
training, while all frames from the remaining two minutes are used for testing.

Table 1 shows the variation in individuals’ heights. As can be seen in Figure
3b, three individuals wear black and two wear grey clothes, resulting in strong
visual similarity between them. Three of the individuals move around the whole
room, while the remaining two are confined to either northern or southern part
of the room; Figure 3a shows the trajectories obtained from the training portion
of the dataset, from which the prior maps are also generated.

5.2 Experiment 1: Improving Generic Person Detection

First, we investigate the benefit of fusing multiple global detection cue maps
within our framework only for the purpose of generic person detection and lo-
calization. We train a single SVM with nine features (all global detection cue
maps); the positive samples are all ground truth points in all training frames,
while negative samples are 100 randomly selected non-occupied cells in each
training frame. We evaluate the performance of the trained classifier in terms of
precision and recall, comparing them to performance of the individual maps.

5.3 Experiment 2: Simultaneous Detection and Identification

In second experiment, we perform simultaneous detection and identification
(i.e. detection of specific individual). We independently train and test five SVMs,
one for each person, and evaluate their performance. The positive samples are
the ground truth points for a particular person in all training frames, while for
negative samples cells occupied by other people are combined with 100 other
randomly-selected non-occupied cells. The experiment consists of three parts.
In the first part (Exp. 2A), only nine global detection cue maps are used. In
the second part (Exp. 2B), the maps of distances to reference color histograms
are added, and in the third part (Exp. 2C), the prior maps are also used. Such
gradual integration of weak discriminative feature maps provides some insight
into the extent of their contribution.
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5.4 Experiment 3: Tracking-by-Identification

Finally, in order to compare with state of the art, we use the output of our
framework to perform tracking-by-identification. In Exp. 3A, we obtain base-
line identification-by-tracking results using state-of-the-art KSP algorithm [7]
on anonymous detections; because KSP appears to be rather sensitive to large
amount of false positive and negative detections in the input data, we use anony-
mous detections obtained in Exp. 1 instead of raw occupancy maps. In Exp. 3B,
we perform tracking-by-identification by separately applying KSP on top of the
output of each SVM from Exp. 2C. In both cases, default parameters for KSP
are used and no access points are specified.

5.5 Performance Evaluation

For performance evaluation, we use Munkres algorithm to find optimal assign-
ment based on distances between obtained detections and ground truth points;
the unassigned detections are considered false positives, while unassigned ground
truth points are false negatives. We additionally prevent assignment when dis-
tance between a detection and ground truth is greater than 0.5 m to catch
gross localization errors. From the obtained statistics on false positive and false
negative detections, we compute precision, recall and F-score. When evaluating
identification, we also consider whether a detection’s and assigned ground truth
point’s identities match, and compute confusion matrix.

5.6 Classifier

The classifier we use is a CUDA implementation of a Radial Basis Function C-
SVM2, which we modified to return classification scores instead of labels. The
optimal values for the SVM parameters C and γ are determined by grid search
and five-fold cross-validation on the training data. We assume that the degree to
which the provided features are discriminative controls both the resulting preci-
sion and recall; in the absence of sufficiently discriminative information, we end
up training the SVM with conflicting samples. Therefore, the SVM parameters
that result in the highest F-score value are chosen for testing.

6 Results and Discussion

6.1 Experiment 1

With fusion of only global detection cue maps, the overall recall of 91.1% and
precision of 95.3% are achieved (black cross on Figure 2d). Comparing to the
performance of the individual global detection cue maps, we can see that their
fusion outperforms them all both in terms of recall and precision; at comparable
recall, the fusion achieves significantly higher precision and vice versa. Therefore
our framework can, using multiple cues for detection of a person (even though
obtained from the same images), improve generic person detection.

2 http://patternsonascreen.net/cuSVM.html

http://patternsonascreen.net/cuSVM.html
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Table 2. Results of all three parts of Experiment 2. Each SVM is evaluated
separately, resulting in a row in the table. In each frame, a SVM can give multiple
detections; a detection that is assigned to correct ground truth point contributes
to diagonal elements in confusion matrix, whereas detections assigned to ground
truth points of other identities contribute to non-diagonal elements. Detections
that are left unassigned are considered to be phantoms (see Section 5.5).

Confusion matrix [%] Precision Recall
F-score

#1 #2 #3 #4 #5 phantom [%] [%]

E
x
p
.

2
A

#1 42.39 18.30 10.87 15.94 9.06 3.44 42.39 56.80 0.49
#2 15.71 19.46 20.48 20.59 20.14 3.63 19.46 83.25 0.32
#3 4.95 17.52 24.82 24.82 27.25 0.65 24.82 74.27 0.37
#4 4.97 18.92 23.03 27.24 25.84 0.00 27.24 61.17 0.38
#5 3.88 17.77 24.86 25.61 27.69 0.19 27.69 71.12 0.40

E
x
p
.

2
B

#1 83.60 10.75 0.00 3.76 0.54 1.34 83.60 75.49 0.79
#2 23.36 31.52 3.12 26.59 11.88 3.52 31.52 75.97 0.45
#3 11.32 9.84 44.53 2.46 30.14 1.72 44.53 87.86 0.59
#4 6.58 26.30 1.23 50.00 14.66 1.23 50.00 88.59 0.64
#5 5.61 15.35 27.77 5.34 45.13 0.80 45.13 82.04 0.58

E
x
p
.

2
C

#1 80.05 9.46 0.51 5.37 0.51 4.09 80.05 75.97 0.78
#2 27.49 33.26 1.28 25.99 8.98 2.99 33.26 75.49 0.46
#3 4.88 4.66 62.31 0.00 25.94 2.22 62.31 68.20 0.65
#4 10.17 21.66 0.00 56.25 5.38 6.54 56.25 93.93 0.70
#5 7.02 15.79 23.98 7.02 45.76 0.44 45.76 75.97 0.57

6.2 Experiment 2

The results of all three parts of the second experiment (the confusion matrix,
precision, recall and F-score value) are shown in Table 2. Even using only global
detection cue maps (Exp. 2A), some discrimination between the individuals is
possible. If it was not, the expected values of precision would be at most 20%;
however, for all individuals except #2, the achieved precision exceeds that value.
The best precision is achieved for person #1; however, the recall value is rela-
tively low and corresponds to the recall values on the head-and-shoulder detec-
tion maps (Table 1) matching this person’s height, which indicates that those
maps are the main source of discriminative information.

Adding the maps of distances to reference color histograms (Exp. 2B) visibly
boosts both precision and recall for all five individuals, because the training
samples become more separable due to more discriminative information. If the
color-based features were completely reliable (and implicit height information
was disregarded), the expected precision values would be 33.3% for individuals
wearing black (#1, #2 and #4) and 50% for individuals in grey (#3 and #5). As
can be seen, the achieved precision for the individuals wearing black compares
favorably to the expected values, whereas for the grey-clad individuals, it is a
bit lower. We speculate that this is due to occlusions between people who wear
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clothes of different colors, which adversely affects the distances to the reference
histograms, especially in cases when a location is covered by only two views.
This means that the color feature as used is not robust enough and would benefit
either from more views or at least rudimentary occlusion reasoning coming from
the POM-based detection maps.

The addition of location prior maps (Exp. 2C) brings some further improve-
ment in precision for the individuals that have informative location priors (#3
and #4; see Figure 3a). For the rest, the addition of a non-informative fea-
ture does not significantly affect the results. As can be seen, due to their non-
overlapping prior maps, individuals #3 and #4 are not confused by their classi-
fiers anymore. But more importantly, the false positive detections are corrected
in cases where other people would be detected by the classifier #3, but they are
actually outside the location prior map for person #3.

The overall results of the experiment are very promising; while the obtained
classifiers are not yet able to completely distinguish between the individuals, one
must bear in mind that the results were obtained on frame-by-frame basis, with-
out any identity propagation whatsoever, and using only a very limited amount
of discriminative information. We expect that the results can be significantly
improved by integrating additional discriminative cues.

6.3 Experiment 3

Running the KSP algorithm on anonymous detections for baseline state-of-the-
art identification-by-tracking (Exp. 3A) results in five trajectories. We assign
each trajectory the identity of the person that trajectory is initialized on, and
then examine how well that identity is maintained along the trajectory. The
algorithm is quite prone to identity switches when people come close, which is
reflected in distinctively non-diagonal confusion matrix in Table 3.

In Exp. 3B, separately running KSP on the output of each SVM (tracking-
by-identification) results in one trajectory per SVM, together amounting to
five trajectories, whose identities are explicitly known. The identities might be
switched when people come together, but after they disperse, they are correctly
re-established, resulting in much more diagonal confusion matrix (Table 3). The
worst results are obtained for person #3, due to many missed detections of their
SVM (low recall in Table 2), which cause KSP tracker to drift.

The resulting mean localization error and global identity mismatch rate
gmme [13] for Exp. 3A and Exp. 3B are 3.17 m vs. 0.53 m, and 0.79 vs. 0.12, re-
spectively. Tracking-by-identification using the output of our framework achieves
much better results than state-of-the-art identification-by-tracking, due to abil-
ity to properly re-establish identities of individuals.

7 Conclusion

We presented a multi-modal fusion framework for simultaneous person detec-
tion, localization and identification from multiple cameras in non-sequential
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Table 3. Results of Experiment 3. In each frame, every trajectory produces
exactly one point, which is either assigned to correct ground truth point or not;
therefore, resulting precision and recall have the same value. Phantoms indicate
drifting of the trajectory, which is usually caused by missing detections.

Confusion matrix [%] Precision Recall
F-score

#1 #2 #3 #4 #5 phantom [%] [%]

E
x
p
.

3
A

#1 45.78 0.00 0.00 51.20 0.04 2.98 45.78 45.78 0.46
#2 6.37 6.37 84.20 0.00 0.00 3.05 6.37 6.37 0.06
#3 18.77 63.11 7.55 0.00 6.49 4.08 7.55 7.55 0.08
#4 5.72 0.84 0.00 19.53 72.49 1.41 19.53 19.53 0.20
#5 18.62 26.06 5.91 25.75 20.11 3.55 20.11 20.11 0.20

E
x
p
.

3
B

#1 96.07 0.11 0.19 0.50 0.50 2.63 96.07 96.07 0.96
#2 5.23 76.31 1.53 10.23 2.33 4.39 76.31 76.31 0.76
#3 2.06 0.53 66.27 0.00 16.67 14.46 66.27 66.27 0.66
#4 1.34 2.40 0.00 93.32 0.00 2.94 93.32 93.32 0.93
#5 0.84 1.14 0.04 0.11 95.04 2.82 95.04 95.04 0.95

manner. Our goal is independent processing of randomly-accessed sections of
video, with aim of limiting the unbounded error propagation found in state-of-
the-art detection-by-tracking and identification-by-tracking approaches. In our
framework, multiple weak features are encoded as feature maps and fused using
a trained classifier. Although at this point a limited number of features were
used within the proposed framework, we obtained promising results on the task
of simultaneous person detection and identification. As demonstrated, the ob-
tained identified detections can be used in tracking-by-identification, which, due
to ability to re-establish the identities of individuals, outperformed the state-of-
the-art identification-by-tracking approach in terms of average localization error
and global identity mismatch rate. Future work will focus on integrating ad-
ditional discriminative cues within our framework, which we expect to further
improve both stand-alone detection and identification, as well as tracking-by-
identification results.
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