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Rok Mandeljc, Janez Perš, Matej Kristan and Stanislav Kovačič
Faculty of Electrical Engineering
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Abstract—In this paper we investigate the possibilities for
fusion of non-visual sensor modalities into state-of-the-art vision-
based framework for person detection and localization, the
Probabilistic Occupancy Map (POM), with the aim of improving
the frame-by-frame localization results in a realistic (cluttered)
indoor environment. We point out the aspects that need to be
considered when fusing non-visual sensor information into POM
and provide a mathematical model for it. We demonstrate the
proposed fusion method on the example of multi-camera and
radio-based person localization setup. The performance of both
systems is evaluated, showing their strengths and weaknesses.
We show that localization results may be significantly improved
by fusing the information from the radio-based system into the
camera-based POM framework using the proposed model.

I. INTRODUCTION

In recent years, the problem of object detection, localization

and tracking has received lots of attention. This interest

coincides with the demand for such information, coming

from a wide spectrum of applications that have emerged in

diverse fields such as manufacturing, military, surveillance

and security, transport and logistics, medical care, childcare

and tracking in sports. Various localization solutions based

on different sensor modalities have been proposed [1], [2].

Two strong research areas are tracking by video cameras

and localization based on radio technologies. Lately, sensor

fusion has gained prominence as a paradigm for overcoming

limitations of the individual sensor modalities [1].

One of the popular methods for sensor information fusion

is an occupancy map. Often employed in the robotics commu-

nity [3], the occupancy map (occupancy grid) involves dividing

the area of interest into a grid and estimating the probabilities

of the cells’ occupancy, given the sensor data. This is done

under the independence assumption, which allows the problem

of estimating the posterior probability of the whole map to be

broken down into individual binary problems of estimating the

occupancy probability for each cell. Occupancy maps allow

efficient data aggregation, with each sensor contributing to the

occupancy likelihood of every cell.

In this paper, we investigate the possibilities for fusion of

non-visual sensor modalities into the Probabilistic Occupancy

Map [4] framework (POM), which we consider a state-of-the-

art vision-based framework for person detection and localiza-

tion. The aim of our investigation is to improve, by means

of fusion, the frame-by-frame localization performance, for

example in a realistic (cluttered) indoor environment. In such

an environment the people are occluded not only by other

people (the situation POM handles by design), but also by

objects such as office furniture (e.g. desk and chairs). This

causes difficulties in accurate and reliable position estimation.

These problems can be alleviated with fusion of an additional,

complementary sensor modality, which may have difficulties

of its own in a cluttered environment.

To the best of our knowledge, so far no attempt has been

done to extend the POM algorithm to fuse additional (non-

visual) sensory modalities within its framework.

Our main contribution is therefore the extension of the orig-

inal POM formulation to include arbitrary sensor modalities

(Section III). By showing how the original model for visual

sensors fits into it, we gain insight about the aspects that

need to be taken into consideration when integrating arbitrary

sensor modalities into POM. The second contribution is our

application, described in Section IV, where we evaluate the

performance of two localization systems in a cluttered envi-

ronment; the first system consists of four calibrated cameras

and uses the POM algorithm, while the second system is

radio-based. We point out strengths and weaknesses of both

systems by evaluating the 2-D position error and the number

of false positive and false negative detections. Finally, taking

advantage of both systems’ strengths, we fuse the information

from the radio-based system into POM in order to improve its

frame-by-frame localization results.

II. RELATED WORK

Object detection and tracking using video cameras has

a long tradition, and many different approaches have been

proposed [5]. Much of the recent research has been done in the

context of surveillance and tracking of players in sports [6].

In order to cope with occlusions and complex scenes, multi-

camera based approaches, which fuse information from mul-

tiple views, have been proposed [7], [8], [9].

The occupancy map was introduced in the field of computer

vision with works of Beymer [10] and Yang et al. [11], both

in the context of estimating the number of people in a room.

In the work of Franco and Boyer [3], an occupancy map is

employed as a framework for multi-view silhouette cue fusion.
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These are all bottom-up approaches; they project the points

of the foreground likelihood (stereo disparities or background

subtracted regions) of each view into the ground plane and then

infer the occupancy likelihood from the amount of projected

points in each cell. The recent works of Delannay et al. [12]

and Muñoz et al. [13] also fall into this category.

The Probability Occupancy Map framework (POM) by

Fleuret et al. [4], on the other hand, employs a top-down

approach; the probability of occupancy at each cell in the

grid is estimated based on the back-projection of a generative

model into each of the calibrated views and the probability

field is iteratively optimized from initial values until the back-

projections match the input foreground mask. POM is con-

cerned only with person detection and localization, on frame-

by-frame basis and without imposing temporal continuity;

it can, however, be incorporated into a tracking framework,

as shown in [4]. In [14], the POM framework is used in

conjunction with people detectors. Due to its iterative nature

and the use of back-projection, the POM framework implicitly

handles the occlusions between people, and is considered state-

of-the-art.

Another top-down approach utilizing the occupancy map is

the work of Alahi et al. [15], where the occupancy map is es-

timated from the background subtraction results via generative

model and imposed sparsity constraint.

Very recently, Lee et al. [16] demonstrated, using their

own framework, the benefits of combining both the results of

background subtraction and the output of a human detector.

Fusion of visual information with other sensor modalities

is also an active research topic. There have been various

attempts at the person localization via fusion of the computer

vision and radio techniques, such as RFID [17] or WiFi signal

strength [17], [18], [19]. Town [20] describes a sentient office,

in which the visual information from calibrated cameras is

combined with the location events from an ultrasonic tracking

system.

A very prominent area of multi-modal sensor fusion is

fusion of audio-visual information [21]; for this task, Bayesian

networks with particle-filtering-based inference are commonly

used. These approaches involve temporal filtering, and there-

fore their results are not directly comparable to the results of

the POM algorithm, which is concerned only with frame-by-

frame detection and localization.

III. PROBABILISTIC OCCUPANCY MAP

Probabilistic occupancy map (POM) [4] is a framework for

multi-camera people detection and localization. It iteratively

estimates the marginal probabilities of individuals’ presence

at every cell in the occupancy map of the area of interest on

frame-by-frame basis.

The algorithm employs a simple appearance model, under

which the silhouettes of the individuals in each of the cal-

ibrated views are approximated by a family of rectangles.

These are used in each iteration step to generate, based on

the currently estimated probability field, per-view synthetic

images, which are compared to the input binary images that

were obtained by background subtraction. The probability field

is iteratively optimized, so that the generated synthetic images

match the input binary images, until convergence to a fixed

point is reached.

POM operates on frame-by-frame basis, without imposing

temporal continuity and is, due to the back-projections and

iterative nature, able to effectively handle occlusions at each

frame independently.

In order to investigate the fusion of additional non-visual

sensors into POM, we generalize the original formulation and

show how the original model for visual cameras fits into it.

Doing so we gain insight about the properties of the algorithm

that need to be taken into consideration when integrating

additional sensor modalities.

A. General formulation

Given G cells on the ground plane, we denote by X a

vector of binary random variables (X1, . . . , XG) standing for

the occupancy of each cell (Xk = 1 if cell k is occupied

and Xk = 0 if it is vacant). The goal of POM is to estimate

the probabilities of occupancy for each cell, P (Xk = 1 | B),
given the information from C sensors B = (B1, . . . , BC). The

occupancy probabilities are approximated by the marginals

of a product law Q, which minimizes the Kullback-Liebler

divergence from the “true” posterior P (X | B).
The expression for the marginal probability qk = Q(Xk =

1), is derived in [4] via minimization of Kullback-Leibler

divergence. Here, we write the expression in a more general

form,

qk =
1

1 + eλk+
∑

c
Rc(k,X)

, (1)

where λk is the log-ratio of the prior probability, and Rc(k,X)
is a term that encapsulates all the information from the sensor

c about the occupancy of the cell k,

Rc(k,X) = EQ{log P (Bc | X) | Xk = 0}−
− EQ{log P (Bc | X) | Xk = 1}, (2)

where EQ denotes the expectation under the approximation

X ∼ Q. In the original formulation, Bc stands for the binary

image obtained by background subtraction in camera c; in the

above formulation, sensor c can be of an arbitrary modality.

B. Visual sensors

For visual sensors (cameras), [4] presents a generative

model that relates the values of Xk to the images produced

by background subtraction. The authors define a normalized

pseudo-distance between the background subtraction image Bc

and a synthetic image Ac, which is generated at each iteration

step from the currently estimated values of X. The conditional

distribution is modeled as P (Bc | X) = 1
Z e−Ψ(Bc,Ac), where

Ψ denotes the pseudo-distance.

In order to make the problem solvable, the approximation

EQ{Ψ(Bc, Ac) | Xk = ξ} ≈ Ψ(Bc, EQ(Ac | Xk = ξ)),
with ξ = {0, 1}, is made under the assumptions that are



TABLE I
SINGLE CAMERA Rc RATIO VALUES FOR AN OCCUPIED AND A VACANT

CELL DURING POM’S CONVERGENCE.

Iteration 1 2 5 12 16
Occupied 1.3e+04 1.07 1.76 12.75 26.18
Vacant 1.47 0.84 0.75 0.51 0.23

Iteration 20 30 40 50 62 (final)
Occupied 84.30 1.7e+03 3.2e+03 3.5e+03 3.5e+03
Vacant 0.03 1.2e-05 8.4e-07 5.7e-07 5.5e-07

detailed in [4]. The term (2) for the background-subtraction-

based sensor can therefore be written as

Rc(k,X) = log
e−Ψ(Bc,EQ{Ac|Xk=0})

e−Ψ(Bc,EQ{Ac|Xk=1}) =

= − logRc(k,X). (3)

The conditional synthetic images EQ(Ac | Xk = ξ) corre-

spond to the average synthetic image EQ{Ac} with qk forced

to 0 and 1, respectively; the first case represents the hypothesis

that the cell k is vacant, and the second that the cell k is

occupied. If the hypothesis that the cell k is occupied improves

the fit of the synthetic image to the input image for camera c,

the ratio Rc has a large value, and consequently the term Rc

is negative. As can be seen from (1), a negative Rc leads to

a larger qk. Similarly, if the hypothesis that the cell is vacant

improves the fit, the ratio Rc goes towards zero, Rc is positive

and therefore qk decreases.

An important aspect of this model is that the synthetic im-

ages at a given iteration step are generated from the currently

estimated occupancy probabilities. Therefore they are, along

with corresponding Rc and Rc, their functions, and change

with each iteration step. This, on one hand, allows POM to

implicitly handle the occlusions; on the other hand, it poses

a difficulty for integration of sensors with different models.

Table I shows the Rc values for one of the cameras during

POM’s convergence, both for an occupied and a vacant cell.

At this point we should also note that this model is not

limited only to binary images obtained from visual cameras

by background subtraction. It can also be applied to other

kind of information obtained from visual cameras (e.g. people

detectors [22], [23]), or even to cameras with other sensing

modalities (e.g. infrared cameras). The only requirement is

that the information can be interpreted as binary images where

the blobs correspond to the individuals’ silhouettes. More

importantly, since the same model is used, such information

can be seamlessly fused within the POM framework.

C. Model for non-visual sensor modalities

Because non-visual sensor modalities require a different

model than the visual sensors (different types of cameras),

their fusion within the POM framework can prove difficult.

One of the obstacles are the expectations EQ in (2); their

evaluation may be intractable, thus requiring the appropriate

approximations to be made.

Even so, difficulties may arise due to POM’s iterative

nature. If the value range of non-visual modality’s Rs
1 term

is not comparable to the value range of the cameras’ Rc

terms (see Table I), one or the other modality consistently

prevails. Furthermore, the values of the Rc terms change at

each iteration step; if Rs is also modeled as a function of

the currently estimated probabilities, it needs to change at a

comparable rate. In practice, this is hard to achieve.
Therefore we model the conditional probabilities in the non-

visual sensor’s Rs term as being independent of the currently

estimated probabilities and investigate the model’s properties.

With such a model, the expectations EQ cancel out; term (2)

becomes

Rs(k) = log
P (Bs | Xk = 0)
P (Bs | Xk = 1)

= − logRs(k), (4)

and can be interpreted as a log-ratio of conditional probabili-

ties of sensor making the observation at hand, given that the

cell k is occupied or vacant, respectively.
Since the value of Rs is constant for given k throughout

all the iterations, it influences the POM’s convergence when

its values are of greater or comparable order of magnitude to

the values of cameras’ Rc terms (see Table I). In practice,

the value of the Rs term should be small (comparable to

Rc values in the initial iteration steps), and influence the

convergence only in the initial iteration steps. If the Rs is

significantly larger than Rc terms, it causes a peak in the

estimated probability for the given cell. This results in the

saturation of the cameras’ synthetic images, which causes the

algorithm’s convergence to end in its early steps.
Therefore in such a fusion scheme, the non-visual sensor

has an auxiliary role; the majority of information required for

the algorithm’s convergence is provided by cameras, while

the auxiliary sensor information increases the robustness. In

cases when the ambiguity of the visual information causes the

algorithm to favor the convergence to an incorrect solution,

yet there is also visual evidence for the correct solution,

the additional information is used to change this tendency at

the initial iteration steps, causing the algorithm to converge

to the correct solution. At the later iteration steps, as the

magnitude of the Rc terms increases, the constant Rs term

becomes irrelevant; however at this point the algorithm is

already converging towards the correct solution.
On the other hand, even if auxiliary sensor’s information

is at times unreliable, it does not disrupt the algorithm’s

convergence towards the correct solution, as long as the

visual information prevails in the early iteration steps. If both

cameras and the auxiliary sensor fail to provide sufficient

information for convergence to the correct solution, the al-

gorithm will fail; however, such cases can be reliably handled

only by imposing temporal continuity.

IV. APPLICATION EXAMPLE

In this section, we demonstrate the proposed fusion of

a non-visual sensor modality into POM on the example of

1In the remainder of the paper we use subscript s to denote the non-visual
sensor and subscript c to denote one of the visual sensors. Therefore, Rs is
an equivalent of the Rc term (2), but for the non-visual sensor.



person localization in a cluttered environment. We employ two

of the most prominent localization technologies — localization

using visual cameras (and POM) and a radio based localiza-

tion system. We evaluate their strengths and weaknesses and

demonstrate the benefits of their fusion.

Localization in a cluttered environment poses a challenge

both for camera-based and radio-based approaches. On one

hand, objects such as the office furniture occlude portions of

subjects’ bodies, causing difficulties in accurate and reliable

camera-based position estimation. On the other hand, the

radio-based localization is error-prone due to the presence

of radio-reflective (metallic) objects, which cause multipath-

related problems in the radio-based range estimation.

A. Ubisense Ultra-Wideband radio localization system

For radio-based localization, we use the Ubisense Real-

Time Localization System [24], which is based on the Ultra-

Wideband (UWB) radio technology [25].

The system comprises a network of time-synchronized

sensors (receivers) and tags (emitters) placed on the objects

to be tracked. The tag’s position is determined using the

Time Difference of Arrival (TDoA) and the Angle of Arrival

(AoA) measurements, which are combined using a least-

squares algorithm [2]. The advertised accuracy of the system

is 15 cm, with 99% of errors being within 30 cm; however,

our preliminary experiments indicate a lower performance in a

cluttered environment due to obstacles and signal reflections.

The system provides the tags’ position information, along with

the estimations of a tag position’s standard error.

As we do not have access to the raw (TDoA and AoA)

measurements from the Ubisense sensors, we treat the whole

system as a single sensor. We use the following model for

fusion of the Ubisense position information into POM:

Rs(k) = α · max
t

{Gt(xk, yk)} + β, (5)

where Gt is a Gaussian centered on the coordinates of tag

t detection (xt, yt) and evaluated at the center of the cell

k, (xk, yk). σt is the standard error of a tag’s position as

estimated by the Ubisense system:

Gt(xk, yk) =
1

2πσ2
t

e
− (xk−xt)

2+(yk−yt)
2

2σ2
t (6)

Factors α and β are used to scale the Gaussian so that Rs

values are of the same order of magnitude as the values of

cameras’ Rc ratios in the initial steps of POM’s convergence.

The values of both factors were determined experimentally

(α = 12, β = 0.5).

B. Experimental setup

The experiment was performed in a 7.1×6.9 m room, with

four Axis 207W IP cameras and four Ubisense sensors placed

in the corners at the height of about 2 m. The cameras’

coverage of the room is shown in Figure 1; as can be seen,

most of the locations are covered by two cameras.

Three lines were marked on the floor for the individuals

to walk on (red lines in Figure 1) and a six-minute sequence
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Fig. 1. The experimental setup and cameras’ coverage of room (after lens
distortion correction). Red lines mark the paths that the three individuals
walked on during the experiment.

involving three individuals simultaneously walking around the

room was captured.

C. Visual cameras and background subtraction

The video from cameras (640×480 at 25 FPS) was first

undistorted using the lens distortion correction [26]. The bi-

nary images were obtained by adaptive background subtraction

algorithm [27], implemented in the OpenCV library. The

default parameters were used.

D. POM algorithm configuration

For the POM, the room was discretized into a 20×20 cm
grid and the rectangles corresponding to the person height

of 1.8 m were computed using the camera calibration data.

A typical person is wider than 20 cm and therefore fits into

multiple cells; however, multiple adjacent detections could be

merged during the post processing.

The reference POM algorithm [28] was modified to integrate

the Ubisense position data using the proposed method. All the

parameters for the POM were left at the default values, with

the exception of the maximum number of iterations having

been increased to 200.

During the evaluation, we consider a cell to be occupied

when the posterior probability of presence as estimated by the

POM is greater than 0.5.

E. Performance metric

The ground truth data was obtained by manual annotation

of every 25th frame. Since the movement of individuals is

relatively slow, the ground truth positions in the intermediate

frames were obtained by interpolation. This way, we obtained

17503 ground truth positions in 8751 frames.

For the evaluation of a system’s localization performance we

calculate the distances between the estimated and the ground

truth 2-D positions. From the error cumulative density function

(CDF), we read the error boundaries that cover 95% and 99%

of all errors and use this value as a system’s performance

metric. In addition, we also consider the number of false

positive and false negative detections, which were determined

as follows.



With the background subtraction-based POM algorithm, the

identity of a person occupying a cell is unknown. Therefore,

we assume that each detection belongs to the closest ground

truth point and vice versa. A distance of 1 m was chosen to

determine whether a detection is an inlier or not. If the distance

from a given detection to the closest ground truth point is

greater than the threshold, the detection has no corresponding

ground truth point; it is a phantom (a false positive).

Similarly, if the distance from a ground truth point to the

closest detection is greater than the threshold, the ground point

has no corresponding detection and is considered a missing
detection (a false negative). When both a phantom and a

missing detection occur in a frame, we assume they correspond

to each other and consider them separately as an inaccurate
detection.

In the case of Ubisense, the identity is explicitly given; a tag

can be detected only if it is present in a room, and therefore

no phantom detections can occur. A missing detection occurs

when the signal from a tag cannot reach the receivers and

an inaccurate detection occurs when the signal arrives to the

receivers via reflections due to the direct signal path being

blocked; for a consistent comparison with the results of POM,

we consider a detection to be inaccurate if its distance to the

corresponding ground truth point is greater than 1 m.

F. Results and discussion

As can be seen from the summarized results in Table II

and the plots in Figure 2a, the error CDF curve for camera-

based POM reaches the 95% error boundary sooner than the

Ubisense’s CDF, whereas at the 99% error boundary, the

situation is reversed. This can be explained by the gross errors

in the POM detections — the phantoms and the inaccurate

detections. If those outliers are discarded, the camera-based

POM’s error CDF reaches both error boundaries sooner than

the Ubisense’s (Figure 2b).

Therefore, we conclude that while the Ubisense system has

a lower position accuracy than the localization with camera-

based POM, it is more reliable in terms of the gross errors.

Conversely, camera-based POM offers higher accuracy, but at

the price of the reduced reliability.

By fusing the Ubisense position data into the POM, a

significant portion of the phantom and inaccurate detections

are resolved, which results in a much steeper CDF curve in

Figure 2a. The error CDF curve for the inliers only (Figure

2b) shows only a marginal improvement. On one hand, this is

an indication that the prevalent benefit of the fusion is indeed

the resolution of the POM’s gross errors. On the other hand, it

also indicates that the proposed fusion scheme does not impair

the correct detections, even in cases when Ubisense’s position

estimation is inaccurate.

Table III summarizes the number of the phantom, miss-

ing and inaccurate detections. Again, it can be seen that a

significant portion of the phantom and inaccurate detections

from camera-based POM are resolved by the proposed fusion

method (63% and 85%, respectively). The number of the

missing detections is also slightly lowered (by 32%). However,

TABLE II
ERROR STATISTICS FOR THE UBISENSE RADIO TRACKING SYSTEM,

CAMERA-BASED POM AND THEIR FUSION.

Ubisense radio Camera-based Fused
tracking POM

mean [m] 0.32 0.22 0.19
std [m] 0.34 0.25 0.18

error boundaries
95% [m] 0.73 0.48 0.40
99% [m] 1.07 1.71 0.61

error boundaries (inliers only)
95% [m] 0.68 0.42 0.39
99% [m] 0.87 0.64 0.54

TABLE III
PHANTOMS, MISSING AND INACCURATE DETECTIONS FOR THE UBISENSE

RADIO TRACKING SYSTEM, CAMERA-BASED POM AND THEIR FUSION.

Ubisense radio Camera-based Fused
tracking POM

phantom / 248 91
missing 171 1636 1114
inaccurate 248 340 49

the missing detections mostly occur in cases of absence of

the visual information in one of the cameras (occlusions or

poor background subtraction results) and cannot be corrected

even with the additional information from the Ubisense. Nor

should it, because otherwise the fusion would introduce new

phantoms when Ubisense’s position estimation is inaccurate.

V. CONCLUSION

We presented an approach for fusion of non-visual sen-

sor modalities into the POM framework, with the aim of

improving the localization performance in a realistic indoor

environment. We extended the original formulation of the

POM algorithm to include arbitrary sensor modalities and

proposed a mathematical model for fusion of their information.

As the original model for background-subtraction-based input

images depends on the currently estimated probability values,

its value changes with each iteration. Therefore, if the model

for additional sensor also depends on the currently estimated

probability values, we must ensure that its values change at

the same rate as those of the model for the visual sensors,

otherwise one model or the other consistently prevails.

To avoid this issue we propose a model that is independent

of the currently estimated probabilities, and show that it can

influence the POM’s convergence only in its early iteration

steps. Such an auxiliary sensor can be used to improve the

robustness of the system when the information from visual

sensors is ambiguous and would cause the algorithm to con-

verge to an incorrect solution.

The proposed approach has been experimentally verified on

a problem of person localization in a cluttered environment

using a radio tracker and camera-based POM. We demon-

strated the strengths and weaknesses of both systems when

used separately, and showed that by fusing them together,

improved localization results are obtained, both in terms of
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2-D error and in terms of false positive and false negative

detections.
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