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Abstract

We propose a holistic approach to the problem of re-identification in an

environment of distributed smart cameras. We model the re-identification

process in a distributed camera network as a distributed multi-class classifier,

composed of spatially distributed binary classifiers. We treat the problem of

re-identification as an open-world problem, and address novelty detection and

forgetting. As there are many tradeoffs in design and operation of such a

system, we propose a set of evaluation measures to be used in addition to the

recognition performance. The proposed concept is illustrated and evaluated

on a new many-camera surveillance dataset and SAIVT-SoftBio dataset.
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1. Introduction

The increasing demand for security leads to a growing need for surveil-

lance in many environments [1]. This includes installations of vast closed

circuit TV (CCTV) systems; at the time of writing, London Underground

has more than 12 000, and a typical casino in Las Vegas has more than

2000 surveillance cameras. Since visual sensors generate large amount of

data, scalability becomes important, which gives rise to solutions based on

distributed architectures – distributed camera networks. Computer-vision-

based methods in camera networks are useful for different tasks, such as

object detection and tracking, recognition of problematic or unlawful behav-

ior, and re-identification of objects of interest. In this paper, we focus on

the problem of re-identification [2, 3, 4, 5, 6], which is the process of finding

correspondences between images of an object, acquired at different moments

in possibly different camera views.

1.1. Challenges in distributed re-identification

Visual sensor networks (VSNs) may provide relatively large amount of

computing and storage resources, but these are typically , both spatially and

topologically distant, and the computational capability of an individual node

may be low to reduce per-node cost or preserve energy [7]. Consequently,

random access to a distant resource may be prohibitively expensive in terms

of required network bandwidth, especially in wireless multi-hop networks.

While this may be trivially alleviated by replicating all data and processing

across all nodes, this defeats the purpose of a distributed architecture and

does not solve the polynomially-increasing communication burden. In a truly

distributed system, both re-identification and learning are expensive opera-
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tions ; the input data appears randomly at multiple nodes, thus requiring

constant exchange with all other nodes, which may or may not have relevant

information about object’s identity.

1.2. Our contribution

We present a holistic approach towards object re-identification in dis-

tributed camera networks, which specifically addresses the issues of dis-

tributed environments. Specifically, we claim the following contributions:

• Formalization of object re-identification problem in a distributed envi-

ronment.

• Treatment of re-identification as an open-world problem, with novelty

detection and forgetting.

• A set of performance measures that specifically address issues in open-

world distributed surveillance.

• Reproducible experiments on a many-camera surveillance dataset (“Dana36”,

[8]), 8-camera SAIVT-SoftBio dataset [9] and publicly available exper-

imental source code1. The code reproduces all results and graphs from

this paper. Researchers are encouraged to use it for rapid evaluation

of their descriptors or datasets, evaluation of parameter influence and

learning and forgetting strategies.

The remainder of this paper is organized as follows. After the overview

of related work in Section 2, we explain the concept of re-identification in

1The full source code can be downloaded from: http://vision.fe.uni-lj.si/

research/reid/

3

http://vision.fe.uni-lj.si/research/reid/
http://vision.fe.uni-lj.si/research/reid/


large, distributed camera networks in Section 3. The core of the proposed

re-identification mechanism and the experimental methods we used are pre-

sented in Section 4, followed by experiments and results in Section 5. Sec-

tion 6 concludes the paper.

2. Related work

The task of identifying an object based on its previous appearance in

some other part of the camera network is called re-identification. In this re-

spect, we can think about re-identification as form of large-scale tracking [10],

which is comprised of several distinct challenges. Therefore, we address these

separately.

Representation. The most frequently studied problem in re-identification

is representation of object’s appearance. We do not aim to improve the state-

of-the-art in this respect, however, since object description is necessary part

of any re-identification system, we present the work done so far for the sake

of completeness.

Several approaches model whole body appearance, and have recently been

compared by Doretto et al. [10]. Overall appearance is commonly modelled

by color or brightness histograms, as for example in [11, 12, 13]. Spatial

information can be added by representing appearances in joint color spatial

spaces [14]. One of the popular approaches is a mixture of color features and

texture features [2, 15, 16]. Other representations include spatio-temporal

appearance modelling, such as [17] or spatial and appearance context mod-

elling, such as [18]. Authors in [14] train a multi-class classifier for recog-

nizing people using low-level feature, i.e., color and height histogram. In

some approaches, as for example in [19], primitive features such as color,
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height and body aspect ratio are used in combination with simple threshold-

based classification. There is a group of approaches that strives to normalize

object appearance across multiple cameras, to improve the performance of

appearance descriptors [20, 21].

Several approaches use training data to learn a holistic representation

based on different low-level features, for example in [22] based on the bag-of-

features representations, or in [23] based on Haar-like features and dominant

color descriptors. Parts-based approaches are used as well. Part identification

and correspondence can be carried out in several ways. One is to use interest

point operators such as SURF [24] as in [25] or in [26] and SIFT [27], for

example in [28].

Several authors identify body parts by other means. Bak et al. [29] pro-

pose an approach for person re-identification using spatial covariance re-

gions [30] of human body parts, which are detected by using Histogram of

Oriented Gradients (HOG, [31]). An approach proposed by Faranzena et

al. [32] is based on a pondered extraction of local features that encoded dif-

ferent information: chromatic information, structural information through

uniformly colored regions, and the nature of recurrent informative (in an en-

tropy sense) patches. Recently, authors in [4] proposed a novel multiple-shot

approach, which builds a specific human signature model based on Mean

Riemannian Covariance (MRC) patches extracted from tracks of a particu-

lar individual. Authors in [33] evaluate different features, trying to find the

most suitable ones for person re-identification. They conclude that despite

recent advances, person re-identification using local features remains chal-

lenging, which might be due to existing descriptors describing mainly shape

and texture.
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There seems to be a consensus in scientific community that a person re-

identification is a difficult problem and despite the best efforts from computer

vision researchers, some claim that it remains largely unsolved [34]. Recently,

topic models started to appear as a representation of choice in surveillance

and re-identification tasks. Such models are usually based on the Latent

Dirichlet Allocation (LDA, [35]), see for example [22]. When used for hu-

man appearance representation, LDA does not provide topics with obvious,

humanly-understandable meaning. Therefore, Liu et al. [16] devised a semi-

supervised method for topic generation that yields topics which can be easily

interpreted.

Distributed surveillance systems. Further challenges arise from the

need for distributed representation, which is especially important to guarantee

efficient computation in large-scale networks.

As shown by recent work [26, 22, 23, 28, 36, 37], the community is increas-

ingly aware of constraints in distributed systems. The multi-stage approach

proposed by Jüngling et al. [28] provides local extraction of features on cam-

era nodes, thus allowing the lower stages of re-identification to be performed

by transmitting extracted features rather than images. Nevertheless, the ap-

proach builds its efficiency mainly on compact feature representation that is

suitable for transmission and storage in distributed system, and does not pro-

vide a specific solution for efficient feature distribution in a large distributed

camera system. In the system envisioned by Presti et al. [22], each node in-

dividually and autonomously processes the data acquired by its own camera.

Communication among nodes enables knowledge sharing and is performed

whenever an object leaves a camera’s field of view. During the initialization

phase, each node detects people and trains a LDA [35] model. These appear-
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ance models are propagated across the network and used both to describe

incoming objects and to establish correspondences, but it is unclear how the

underlying topic model is propagated. Authors claim that the knowledge

of the camera network topology is not needed, but they only demonstrate

results on data obtained from two cameras – a test case in which efficient

feature distribution is obviously not an issue.

The issue of efficient feature propagation in large camera networks has

been specifically addressed in our previous work [38]. We have shown that

by using hierarchical encoding of features, it is possible to substantially de-

crease the amount of data transmitted across the network. However, such

reduction is limited to matching, which is known in surveillance terminology

as matching to the gallery set [15].

Novelty detection. An important concept in surveillance and person

re-identification is the novelty detection [39]. Despite being a classic task in

computer vision that had been previously addressed, e.g., [40, 41], novelty

detection in surveillance received only limited attention, and was to the best

of our knowledge used mainly in tasks such as detection of anomalies [42, 43,

44], detection of new classes of objects [45] or detection of unusual pedestrian

behavior [46].

Evaluation and datasets. A large amount of work on pedestrian

detection, tracking and activity analysis has been done in the framework

of the successive PETS workshops. However, to the best of our knowl-

edge, there are only few datasets that are specifically designed for identifica-

tion and re-identification of pedestrians: the VIPeR dataset [2], the GRID

dataset [47], the Person Reidentification dataset [3], 3DPeS [48] dataset,

SAIVT-SoftBio [9] dataset, CUHKO02 [49] dataset, and our recent Dana36
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dataset [8]. The first three provide only small number of images from one

or two cameras, while 3DPeS contains video sequences for 200 people in a

8-camera multi-view setting, but provides bounding boxes for only about 1

200 frames (a subset named 3DPeS ReId Snap). SAIVT-SoftBio consists of

image sequences of 150 people, with average 400 frames per person observed

with 8 cameras, but the observed persons pass a particular camera view only

once. CUHK02 contains images of 1 816 persons, but their identity is ob-

served pairwise regarding the camera views, not on a global scale. The last

one, Dana36 dataset, provides 23 683 images from 36 different camera views.

CAVIAR dataset2 and iLids dataset3 are not primarily intended for eval-

uation of re-identification but may be used for this purpose as well. Due

to lack of well-annotated, many-camera datasets, it is not surprising that

most of the previously-mentioned work [22, 3, 10, 28, 16] has been done

on datasets that include up to five cameras. This is a relatively small num-

ber, which does not exhibit problems that are specific to large-scale camera

systems.

Our aim is to address those problems, which in our opinion have so far

received insufficient attention. They include re-identification across topo-

logically distant nodes, novelty detection, and objective evaluation in truly

distributed surveillance scenarios. Our work is in several aspects most closely

related to [36, 28, 22], and in some aspects, extends the work of [38]. Contrary

to most of the related work, a) we focus on systems with many cameras (e.g.,

36 in our dataset), b) we assume communication constraints, c) we assume

2http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
3http://www.homeoffice.gov.uk/science-research/hosdb/i-lids/
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that the people re-identification in realistic setting has an open world nature,

with unknown number of true identities, and d) we assume that pre-training

of a such system is either infeasible or impractical.

3. Re-identification in large, distributed camera networks

Object re-identification in camera network essentially requires obtaining

object correspondences between any pair of possibly distant camera nodes.

In this respect, it would be advantageous to have a single central process-

ing server node that aggregates information from all cameras. The main

characteristic of such fully-centralized architecture is the ability of the pro-

cessing node to locally access any piece of stored information. This is the

setting that is implicitly assumed, but usually not explicitly stated in most

of the research on surveillance re-identification. Therefore, fully-centralized

architecture is spatially constrained, and state-of-the-art classification and

recognition algorithms do not scale well with the growing network size due

to non-zero communication cost. Additionally, methods that assume closed-

world nature of the re-identification, cause the system to be severely tempo-

rally constrained. This is true for essentially any discriminative method that

requires training-testing approach and is evaluated by cross-validation.

A realistic, distributed camera network cannot rely on these constraints.

A distributed system in a realistic setting is forced to perform re-identification

from just a few visual samples, perhaps even from a single previously-obtained

image or tracklet, and has to decide on-the-fly whether a sample represents

novel identity or not. Even if the best known learning and classification

algorithms are run locally or on a group of locally-clustered nodes, they can-

not readily use negative samples from distant nodes without intensive and
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prohibitively expensive communication across the network.

Under such circumstances, obtaining even a basic feature correspondence

between two distant nodes becomes a non-trivial task, whose complexity and

the associated communication cost increase polynomially with the network

size. To keep even this basic problem manageable, one can use optimized

algorithms for routing of queries across the network, such as hierarchical

scheme for feature distribution (HFD) and basic object matching [38] or

algorithm for grouping cameras into neighbourhoods [36]. If the capacity of

the network allows, simple flooding can be used as well. In the rest of the

paper we assume that the functionality of obtaining simple correspondence

between the two distant nodes is available in the analyzed network.

4. Methods

In the proposed distributed method for object re-identification, we as-

sume that image features have already been extracted from an image into

a feature vector. Without any loss of a generality, features could be ex-

tracted from a set of images, or a video sequence, but in the rest of the

paper, we use the term ”image”, which should be interpreted in a broad

sense. We use a color histogram descriptor with some minor modifications,

as described in Section 4.4. The descriptor is basic enough to allow quick

and efficient demonstration of our framework and the effects that appear in

camera network in a realistic setting. However, for practical applications,

more sophisticated descriptors could be used, such as [20, 36].
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4.1. The algorithm for distributed re-identification

We formulate the re-identification problem as follows: given a new image

of a previously-seen person, the re-identification system has to be able to

determine that person’s identity. This is achieved by comparing the new

image to an image set that contains examples for each known person. Such

examples are called gallery images [2, 15] and the process is called gallery

matching.

From a perspective of an external observer, the whole camera network

behaves like a multi-class classifier. However, internally, this multi-class

classifier consists of a number of binary classifiers that are distributed across

a network, as illustrated by Figures 1 and 2.

4.1.1. Classification rule

Assuming that feature vectors xi have been already extracted from the

corresponding images, we define a set of gallery feature vectors, which rep-

resent unique identities of objects that are known to our system as

Xgallery = {xi|i = 1, . . . , L}, (1)

where L is the number of known identities. The situation is shown in Figure 1.

When the system observes a new feature vector x, it performs classification

by comparing x to each sample from Xgallery. In terms of object classification,

we are dealing with the set Ω of L binary classifiers, Ω = {ωi|i = 1, . . . , L},

each providing a binary decision yi ∈ {−1, 1} whether x belongs to the class i

or not. The binary decision of classifier ωi is based on the value of its gallery

vector xi:
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Figure 1: (a) Gallery matching – newly acquired image is compared to a set of gallery

images with known identities to obtain identity of a person or object; (b) Centralized

structure: one central classifier has access to all learning data. (c) A step towards dis-

tributed classification: each class, represented by a single gallery image is handled by a

separate, single class classifier.
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ωi : (x,xi) 7→ yi. (2)

In the simplest case, the classifier ωi calculates the distance di = d(xi,x)

and applies the threshold T :

yi =

 +1 d(xi,x) ≤ T

−1 otherwise.
(3)

In a distributed system, objects are seen by different nodes on different

occasions. Therefore, gallery images are scattered across the network and

the cost of transmitting them to the single location is high. Effectively, this

means that the classifiers ωi are distributed across the network, as shown in

Figure 2. Since we formulate the classification task as gallery matching using

L classifiers and a global threshold T , such structure can exist in a distributed

form, as for example in [38]. In a distributed setting, the communication

between the nodes is costly, and therefore the distributed classifiers ωi cannot

efficiently compete for a best match. Consequently, the system may produce

multiple positive answers, without the individual classifiers ωi being aware of

that. However, from the system perspective, the recipient of this information

can aggregate the positive results from individual classifiers – transmission

of distances that are below the threshold T across the network incurs only

marginally higher communication costs than simply reporting the occurrence

of the match. The recipient may then select the best match by comparing

the multiple received distances, as follows:

y = argmin
i
{d(xi,x)}|d(xi,x) ∈ ∆T (4)
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Figure 2: In a distributed system, gallery images and the corresponding classifiers are

scattered across the network. Each classification still requires traversal of data across

many network nodes (shown as circles), but since the classifiers are independent, the

complexity of the problem is manageable. As illustrated, each node may contain several

classifiers. Multiple classifiers may represent single true identity (for example, ω1, ω11

and ω2, ωL+2) – a phenomenon called identity fragmentation, caused by false negative

responses from ω1 and ω2.
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where y is the final object label and ∆T is the set of distances below the

threshold T , as received from all the individual classifiers ωi that reported

the match. This formulation is similar to the operation of the one-versus-all

multi-class classifier, but the distributed nature precludes centralized learning

due to the communication cost.

4.1.2. Online learning and novelty detection

A typical surveillance environment is highly dynamic, and any pre-training

is thus of a limited value. This aspect does not appear if cross-validation on

a closed dataset is used – such approach implicitly assumes that a system

can be successfully pre-trained and that the obtained knowledge never ex-

pires. Conversely, we assume that a re-identification system does not have

any prior knowledge about objects – initially its gallery is empty. Therefore,

online learning is a critical component of such a system. If the learning is

unsupervised – a desirable property for fully automated operation – then the

novelty detection is needed as well. We implement novelty detection as a

complement of classification rule (3):

ynovelty =

 +1 d(xi,x) > T | ∀i = 1, . . . , L

−1 otherwise,
(5)

where ynovelty = +1 signals that x is sufficiently distant from all of the

gallery vectors in Xgallery that it can be regarded as describing a novel object.

Effectively, at this point, a new classifier ωL+1 is created from the novel

feature vector x at the camera node that observed the object.

Such implementation of novelty detection has its own drawbacks – if the

amount of false positives according to rule (5) is greater than zero (a realistic
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assumption), such scheme may result in a continuously increasing gallery and

a continuously increasing number of the corresponding classifiers ωi across

the network. Depending on the circumstances, this number may be far larger

than the true number of unique object identities (L�NID). This leads to

identity fragmentation – since we are forced to assume that each classifier ωi

represents a unique object, a single object observed by the system may end

up being recognized as several different entities.

The number of unique objects encountered in realistic surveillance envi-

ronments is essentially unbounded. Consequently, the amount of knowledge

accumulated during the operation of the system may be overwhelming. On

the other hand, knowledge may become obsolete after a certain period of

time after the last observation. People may change their clothing or appear-

ance, or they may simply leave the observed area. Therefore, some kind of

systematic forgetting needs to be implemented.

4.1.3. Forgetting

Conceptually, forgetting addresses the general problem of limited resource

management. In our case, the resources are limited by the maximum number

of classifiers ωi and the storage capacity required to store the associated

gallery feature vectors xi. Situations of similar nature have been already

dealt with in computer science, e.g., cache management and page replacement

algorithms.

When managing the number of classifiers ωi, one should be aware of the

following two basic factors:

• Aging. Probability that the data will be needed decreases with the

time that has passed from the last observation of an object.
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• Limited resources. In unfavorable conditions, some data must be

discarded due to the lack of resources.

Accordingly, we define two parameters for our forgetting scheme. During the

the run, each classifier ωi is associated with its time-to-live counter τi. The

parameter τmax determines the maximum value of τi, at which classifier ωi

and its gallery feature vector xi expire. Whenever the classifier ωi provides

a positive answer, the counter τi is reset to its initial value. This way, we

prevent accumulation of outdated information, but retain the information

that was recently used. On the other hand, each node can contain only the

limited number of classifiers. Therefore, node j is associated with the counter

of stored classifiers, λj. Hence, the second parameter is the maximum number

λmax of classifiers ωi per node, which constrains the memory and processing

resources used by our method, and reduces identity fragmentation.

Depending on those parameters and input data, the system operates be-

tween the two operating points: limited lifespan, where classifiers ωi are

discarded mainly due to their age and limited capacity, where classifiers ωi

are discarded mainly due to the appearance of freshly-learned ones.

4.2. Mapping onto HFD

The hierarchical feature-distribution scheme (HFD, [38, 50]) solves very

narrow, yet fundamental problem in distributed camera networks: how to

efficiently obtain correspondence between the acquired feature vector with

unknown identity on one side, and the number of distant and topologically

distributed feature vectors with known identities on the other. Using HFD,

each node in the network has the ability to query the whole network for the

objects that are similar to the observed object.
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The classification rule (3) can be implemented either in a centralized or

in a distributed system. It directly corresponds to classification approach as

defined by HFD and therefore needs no additional modifications.

The classification rule for novelty detection (5) uses simply an inverted

logic of the classification rule (3). Therefore, it maps onto HFD without

modifications.

Given the classification rule (3), HFD can be viewed as an efficiently man-

aged structure of many simple binary classifiers, distributed among the nodes.

Those classifiers forward the query packets based on their own classification

results, until the query reaches the node with authoritative classification an-

swer (the actual classifier ωi). A series of “routing classifiers” correspond to

a single ωi. Therefore, routing classifiers can share attributes (such as τi)

with ωi and follow its fate – dying when ωi is removed from the classifier set

due to forgetting.

4.3. The dataset

Recently, we published a dataset “Dana36”4 [8]. It is intended for evalu-

ation of object matching and recognition methods in surveillance scenarios.

The dataset consists of 23 683 images depicting 15 persons and 9 vehicles.

The dataset was acquired from 36 stationary camera views using a variety

of surveillance cameras. 27 cameras observed the persons and vehicles in

an outdoor environment, while the remaining 9 observed the same persons

indoors. Due to the large number of camera views, the dataset is especially

suitable for research on large-scale distributed camera networks in surveil-

4http://vision.fe.uni-lj.si/research/dana36/
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lance scenarios. Instances of different objects are shown in Figure 3. In this

work, we use color-histogram-based descriptor. The re-identification problem

on the whole dataset is a difficult one due to large variations between cam-

eras (resolution, location, vantage point, indoor, outdoor and mixed lighting)

and similarity between many of the objects and persons. In this situation,

it makes sense to either merge visually similar classes, or to retain only the

classes that exhibit obvious visual difference. We chose the latter option,

selecting 13 most visually-distinctive ones: persons labelled 1, 3, 5, 8, 9, 11,

12, 15 and cars labelled 16, 17, 18, 22 and 24 (referred to as 13-object subset

Dana3613 and consisting of NDana36,13 =13 483 images).

Dana3613 dataset was complemented with the use of SAIVT-SoftBio [9]

dataset, which provides image sequences of 152 persons, but only 8 cam-

era views. However, for each observation, it provides the image sequence

and corresponding bounding boxes. Since it provides the information about

the temporal sequence of observations, it allowed us to simulate the exact,

realistic sequence of events.

4.4. Object descriptor and distance measure

In our experiments, we use a segmented color histogram: a cropped im-

age of an object is divided into 25 overlapping rectangular segments, and a

set of 25 color histograms Hk(k = 1, ..., 25) is computed. We use a three-

dimensional RGB histograms with 4×4×4 bins, resulting in 1600-dimensional

feature vector (64 × 25). To compare two sets of image features xi and xj,

we compute the distance d(xi,xj) as the average distance across all image

segments:
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Figure 3: Objects from the “Dana36” dataset [8], two images per person and two images

per car are shown.

d(xi,xj) =
1

25

25∑
k=1

dk(xi,xj) (6)

The distance dk(xi,xj) between two segment histograms Hi,k and Hj,k is the

Hellinger distance. The range of the distance measure d(xi,xj) is between

zero (complete similarity) and one (complete dissimilarity). The exact imple-

mentation of the descriptor is available as part of our source code download 5.

The descriptor has been adapted to work on image sequences as well; in that

case, histograms are obtained by counting the pixel values inside bounding

boxes across multiple images from the sequence.

5http://vision.fe.uni-lj.si/research/reid/
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Using the Dana36 and SAIVT-SoftBio, the descriptor performs suffi-

ciently well to illustrate our approach, and in combination with the threshold

T it allows simple adjustment of the operating point of the classifier (the ra-

tio of false and true positives of the binary classifiers ωi). Therefore, we

can easily observe our proposed approach at different operating points of the

classifier set Ω.

4.5. Evaluation measures

To evaluate the proposed method for re-identification in distributed cam-

era networks, we define a set of measures that are relevant to distributed

re-identification.

4.5.1. Recognition performance

Since we deal with multi-class classification, we first evaluate multiclass

recognition performance as seen from the recipient of the multiple distances

scores (4). For this purpose, we obtain the confusion matrix, and calculate

the multi-class accuracy (Accmulticlass) as the ratio of results on the main

diagonal of the confusion matrix vs. the number of all results.

However, Accmulticlass does not present the whole picture. In evaluation

of the each new sample, all classifiers from the current classifier set Ω are

consulted; this could be done in an optimized way, as shown for example

in [38], or with simple flooding of the unknown sample across the network.

In either case, a querying node receives none, one or more responses from the

other network nodes, and the number of replies affects the network traffic.

This aspect is mostly irrelevant in centralized implementation, however, in

distributed setting, it is not. Therefore, we keep track of overall statistics

from the binary classifiers, by observing the numbers of false positives (FP)
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and true positives (TP), false negatives (FN ), true negatives (TN ) and total

number of tested samples (M) across all classes (micro-averaging [51]). We

declare a result of a classification of the vector x using the classifier ωi as a

true positive if the true identity of x corresponds to the identity represented

by ωi. Similarly, we count the number of FP , TN and FN . In our case,

M denotes a number of individual tests done on all classifiers Ω, {ωi; i =

1, . . . , L}. Finally, we calculate standard classification measures [52] – due to

the effect they have on the network traffic, we primarily observe false positive

rate (FPR) and true positive rate (recall or TPR).

The classification rates alone do not show the whole picture regarding the

performance of the network. Therefore we keep track of the few additional

values. U is the number of unknowns, or the objects that yield no positive

answer from any classifier ωi. We also observe the number of learned clas-

sifiers (corresponding to the number of gallery images – L) and the number

of the unique object identities observed by the system (NID). Finally, we

keep tally of the unique object identities that are represented by the existing

gallery or classifier set (NID(Ω)).

From these counts we define three additional measures: identity fragmen-

tation (FID), unknown rate (UR) and classifier coverage (C ):

FID =
L− NID(Ω)

NID

(7)

UR =
U

M
(8)

C =
NID(Ω)

NID

(9)

Identity fragmentation occurs due to the presence of false negatives: if
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all classifiers ωi give negative result on a previously-seen object, this triggers

unnecessary learning of this object’s identity. If the same objects are learned

more than once, the correct response of such system may result in several

distinct labels. Naturally, an ideal system would have FID = 0, along with

high recognition rates.

Second measure that is related to the same phenomenon is the unknown

rate, UR. When all of the classifiers ωi give negative result for an input

sample, the system has to conclude that the object is unknown (and proceeds

with learning). Therefore, in the absence of forgetting, the unknown rate is

related to increase in the total number of learned classifiers, L – a greater

unknown rate UR causes faster learning. At the beginning, an ideal system

would have unknown rate UR = 1. If such ideal system was faced with the

problem of closed nature (a finite number of object identities in input data)

UR would then approach zero. In theory, unknown rate UR increases if we

force the system to start forgetting accumulated knowledge.

The third measure is associated with the opposite phenomenon, which oc-

curs due to non-zero FPR – occasionally, a system will observe a new object,

but fail to recognize it as such, falsely assigning it to one of already known

identities. If such behavior is consistent for a particular object, its identity

will never be learned and the system will always produce erroneous response

when encountering that object. In that case, such system will have classifier

coverage C < 1. On the other hand, an ideal system would consistently have

C = 1.
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4.5.2. An illustrative example

The re-identification problem, as addressed in this paper, has a dynamic

and open-world nature. To further illustrate the need for the proposed mea-

sures, we provide a step-by-step example, which address three hypothetic,

yet realistic scenarios. Note that in these scenarios we assume a specific

made up sequence of classifier decisions, to illustrate as many aspects of the

proposed measures as possible.

The first scenario is a general one, depicted in detail in Figure 4, with

its final outcome shown in Figure 5 (a). The surveillance system starts its

observation with an empty set of classifiers Ω = ∅ (not shown in Figure 4).

The values of M and L increase with the number of test samples and the

number of classifiers, respectively, so we do not explicitly track their progress.

The sequence is started by a sample with identity (true class value) of 1.

Since the classifier set Ω is empty, this sample is considered to be unknown,

therefore the number of unknown samples U increases. The classifier ω1 is

created, and the number of identities represented by the classifier set, NID(Ω)

is incremented to 1. In terms of classification, this sample does not influence

TP ,FP ,TN or FN . The outcome of this step is shown in Figure 4 (a).

Suppose that the next sample has the true class value of 5, but is incor-

rectly classified as 1. Therefore, FP is incremented (Figure 4 (b)). The next

sample has the true class value of 2, and after a negative classification result

by the only classifier ω1, it is declared as unknown. Therefore, a new classifier

ω2 is created, and NID(Ω) is incremented to 2. U and TN are incremented

as well, since the sample was unknown, and the ω1 yielded the correct result

(Figure 4 (c)).

The next sample has true class value of 5 and is (incorrectly) positively
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Figure 4: Step-by-step illustration of the first scenario. The situation after the last step is

depicted in the Figure 5 (a). Steps of the example are denoted (a) through (i). Each of the

boxes at each step represents the state of a single classifier ωi. Gray circles represent newly

arrived samples at the each step. Circles with thicker border represent gallery samples,

which created each new classifier ωi. White circles with thin border represent samples

from the previous steps, which have been already classified. The numbers in circles denote

the true identity of the samples. Note that “true” identity that the classifier represents

is not determined by its index, but with the identity of its gallery sample. Recognition

results at each step are denoted with the set of four symbols, that correspond to FP , FN ,

TP and TN . The statistics on the right hand side are cumulative. The high number of

TN illustrates the fact that each classifier is forced to provide a decision about all the

newly arrived samples. 25



recognized by ω2 (FP is incremented) and (correctly) recognized as negative

by ω1 (TN is incremented). The situation is depicted in Figure 4 (d). The

next sample has true class value of 3 (depicted in Figure 4 (e)) and is correctly

declared as unknown and yields the new classifier ω3 (U , NID(Ω) and TN

are incremented accordingly). The next sample has the true class value of 3

and is correctly rejected by ω1 and ω2 (TN is incremented accordingly), but

incorrectly rejected by ω3, therefore a new classifier ω4 is created. In this case,

FN and U are incremented, but NID(Ω) is not – even with the classifier ω4,

the system represents only three unique classes, effectively, ω4 is redundant

and contributes to identity fragmentation. This case is shown in Figure 4

(f). A new sample, with true class value of 3 is correctly rejected by ω1

and ω2 (TN is incremented), incorrectly rejected by ω3 (FP is incremented)

and correctly recognized (positively classified) by ω4 and therefore, TP is

incremented (Figure 4 (g)). The next three samples have true identity of 4,

the first one creates a new classifier ω5 and the two that follow are correctly

classified by ω5 and rejected by other classifiers. TN , U , NID(Ω), and TP

are incremented accordingly. The situation is shown in Figure 4 (h).

The next two samples have true class value of 2. The first one is in-

correctly rejected by ω2 and correctly rejected by other classifiers, creating

ω6, incrementing U , TN and FN , but not NID(Ω) and resulting in situation

shown in Figure 4 (i). The next one is (correctly) recognized by ω6 and

rejected by classifiers ω1, ω3, ω4, ω5, but (incorrectly) rejected by ω2 – the

outcome is shown in Figure 5 (a). In this case, TP , TN and FN are incre-

mented. Note that the final value of L = 6 (we have 6 classifiers), NID(Ω) =

4 (these classifiers model four unique classes), and NID = 5 (we have shown

the system samples from five unique classes). The outcome along with the
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final values of the evaluation measures are shown in Figure 5 (a).

Figure 5 (b) and Figure 5 (c) show results of degenerate scenarios. In

scenario (b) all samples are below the threshold, and therefore, after the first

sample creates ω1, all the others are accepted as being in the same class,

either correctly or incorrectly. Note that in this case, the poor performance

is shown through a low value of classifier coverage, C – the system does not

model the majority of the classes, resulting in low recognition performance

(high FPR). In the scenario (c), four samples with a common identity are

shown to the system, and are recognized by none of the classifiers created

along the way. This results in a high number of false negatives (FN ), but

more importantly, it also results in a very high identity fragmentation FID .

4.6. Experimental methodology

We performed experiments in the following manner. First, a matrix of

pairwise feature distances d(xi,xj), i, j ∈ 1, . . . , N for each of the datasets

was computed using a segmented color histogram descriptor from Section 4.4.

In the case of Dana36, features were pre-calculated from single images,

cropped by the bounding box, and in the case of SAIVT-SoftBio, features

were pre-calculated from image sequences, which were cropped according to

the provided bounding boxes.

Binary classification threshold T , common to all future classifiers ωi, is

chosen. The system is initialized with an empty set of classifiers Ω = ∅. Then

a sample-by-sample test run is performed, as shown in Algorithm 1.

Note that all statistics are gathered in each step, therefore measures,

such as FPR, TPR and others, become functions of step t, FPR = FPR(t),

TPR = TPR(t), etc. In the case of Dana36, our test run contains a random
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Figure 5: Final outcomes of the three example scenarios, which illustrate the behaviour of

the proposed performance measures. (a) general scenario, (b) and (c) degenerate scenarios.
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component (sampling of feature vectors x). Therefore we repeat the test

multiple times, and calculate mean and standard deviation for all of the

observed measures. Standard deviation is in this context a measure of system

stability – large standard deviation would indicate that system performance

heavily depends on the actual sequence of input samples. In the case of

SAIVT-SoftBio, the sequence of observations, as provided by the dataset

itself, was used, and the test was performed without repetition.

4.7. Extension to online updating – multiple gallery samples per classifier

So far, we always assumed that there is exactly one gallery feature vector

xi per classifier ωi. However, this concept can be extended with the possibility

that each classifier contains multiple gallery vectors xik that model variations

in the class it represents (k = 1, . . . , Ki, Ki is the number of vectors in the

classifier ωi). There are many possibilities of implementing such functionality,

however, to stay within the constraints of the distributed camera network,

the behaviour of the classifier ωi towards the network must remain exactly

the same.

Classification. Internally, classifier ωi calculates multiple (that is, Ki)

distances dik = d(xik,x) to the observed vector x, one for each of the stored

vectors xik, and di is assigned the smallest of the distances dik. Then, clas-

sification rule (3) is applied to the obtained di and the decision whether x is

positive or negative is made.

Online updating. If a result of classification is positive, the distance di

is checked against two learning thresholds, Tinner and Touter. If it lies between

them, Tinner < di < Touter, then the newly recognized sample x is added to

the classifier ωi’s gallery and Ki is incremented by one. Tinner prevents the
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Algorithm 1 : Evaluation (full run)

Input: A set of all available samples X

Input: Maximum lifespan of a classifier (τmax)

Input: Maximum node capacity λmax

Output: Evaluation measures

1: Initialize empty set of classifiers Ω = ∅.

2: Initialize M ← 0;L← 0;λj ← 0;U ← 0;NID ← 0;NID(Ω)← 0.

3: Initialize FP ← 0;FN ← 0;TP ← 0;TN ← 0.

4: for each step do

5: M ←M + 1

6: Randomly draw x ∈ X without repetition (Dana3613) or select next

x (SAIVT-SoftBio).

7: Node number j is determined by drawn x.

8: if x represents truly novel (previously unseen) identity then

9: NID ← NID + 1

10: end if

11: matched← 0

12: multclass dist←∞; multclass id← ∅

13: for all ωi, i ∈ {1, . . . , L} do

14: Obtain distance d(x,xi).

15: Obtain decision yi according to the classification rule (3).

16: if yi > 0 then

17: matched← 1

18: Refresh: τi ← τmax

30



19:

20: if sample x has same identity as classifier ωi then

21: TP ← TP + 1

22: else

23: FP ← FP + 1

24: end if

25: if d(x,xi) < multclass dist then

26: multclass id← identity of classifier wi.

27: multclass dist← d(x,xi).

28: end if

29: else

30: if sample x has same identity as classifier ωi then

31: FN ← FN + 1

32: else

33: TN ← TN + 1

34: end if

35: end if

36: end for // Multi-class evaluation

37: if multiclass id 6= ∅ then

38: Increment appropriate field in confusion matrix, based on

multiclass id and real identity of sample x.

39: end if

// Create new classifier, if necessary

40: if matched 6= 1 then

41: Create a new classifier ωL+1(x). Initialize τL+1 ← τmax.
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42:

43: Increase counter of classifiers for node j: λj ← λj + 1

44: U ← U + 1;L← L+ 1

45: if sample x is truly unknown to the system then

46: NID(Ω)← NID(Ω) + 1

47: end if

48: end if // Aging and time-to-live-based pruning

49: for all ωi, i ∈ {1, . . . , L} do

50: τi ← τi − 1

51: if τi < 0 then

52: Remove the classifier ωi from the set Ω.

53: if ωi uniquely represented an identity then

54: NID(Ω)← NID(Ω)− 1

55: end if

56: end if

57: end for

// Limited-capacity-based pruning

58: if λj > λmax then

59: Remove ωi from Ω, where i = argmin τk
k

60: if ωi uniquely represented an identity then

61: NID(Ω)← NID(Ω)− 1

62: end if

63: end if

64: end for
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learning of the samples that are very close to existing samples in the ωi’s

gallery and would waste resources; on the other hand, Touter determines the

maximum allowed degree of adaptation of the classifier in a single step.

Forgetting. Instead per-classifier, the forgetting is re-formulated to op-

erate on per-vector basis – when all of the classifier’s gallery feature vectors

are forgotten, the classifier itself is removed from the classifier set.

Since the behaviour of each single classifier towards the network remains

the same, all evaluation measures remain valid even for a case with multiple

gallery samples.

5. Experiments and results

Experiments have been designed to examine the following:

• The behavior of the proposed approach during the test run. In partic-

ular, we are interested in the dynamics of the evaluation measures.

• The stability of the proposed method, expressed as standard deviation

of evaluation measures among the multiple test runs.

• The effects of parameter variation – we varied T , τmax and Touter, one

at a time, with all other parameters fixed.

Unless specified otherwise, the experiments were performed with the

following settings: based on our preliminary research, we set the thresh-

old T to T13 = 0.5. At this threshold, false positive rate on Dana36 was

estimated to be below 20 %. Online updating of samples was disabled

(Tinner = Touter = 1), except in the last experiment, when the influence

of Touter was examined.
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Each run consisted of 2000 steps on Dana36 and 7886 steps on SAIVT-

SoftBio. Our implicit assumption is that new images or image sequences

arrive in constant time intervals, therefore, in the rest of the paper, we equate

the step number with time. To estimate standard deviation of observed

measures, each test on Dana36 consisted of 10 runs – in this case, each

sample is drawn uniformly without replacement. When comparing multiple

tests (e.g., to determine the influence of parameters), a sequence of pseudo-

random numbers is restarted between the tests, to provide consistent results.

5.1. Performance without forgetting

In this case, τmax and λmax are set to infinity, which means that no clas-

sifiers expired during the test run. This simulates the system that retains all

the acquired information.

The results for both subsets are shown in Figure 6 and summarized in

Table 1.

As seen in Figure 6, at the beginning of the run, there is intensive learning,

indicated by high values of unknown rate UR, and steeper slope for number

of classifiers L. Later, the increase in L is more gradual. The number of

unique identities represented by classifier set Ω, NID(Ω) rises, but with the

parameters selected, it does not reach the true number of identities in the

observed data, NID . This also results in the final classifier coverage C being

below one. For both datasets, after the initial instability, TPR slowly falls

until the end of experiment. The multi-class accuracy measure Accmulticlass

for SAIVT-SoftBio may seem low at first glance, but one should remember

6This is the actual number of samples in the SAIVT Soft-Bio dataset.
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Figure 6: Performance (number of identities and recognition performance) as the function

of time (t), for the proposed approach without forgetting, for the two datasets. Dotted

lines show standard deviation for Dana3613.

that recognizing identities of 152 persons is a very difficult problem – a

random classifier would yield Accmulticlass of only 1/152 = 0.0066.

5.2. Performance with forgetting

In the next two experiments, we examined the performance of a system

with forgetting. Two extreme operating points were selected. In the first

one, we enforced the limited lifespan, with τmax = 100 steps for Dana36
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and τmax = 10 for SAIVT-SoftBio. In the second part of the experiment,

we enforced limited capacity, with λmax = 2 classifiers per node for both

datasets.

5.2.1. Limited lifespan

Results for this case are shown in Figure 7 and in Table 1. In comparison

to the approach without forgetting, the graphs show that the limited-lifespan-

based forgetting scheme introduces some instability into the number of clas-

sifiers L on Dana36 dataset. At the beginning, the system learns quickly

and levels off as the classifiers start to expire. Due to quick learning at the

beginning, several classifiers expire approximately at the same time. This

effect is visible as lower rise and then drop-off in L. The other effect of such

forgetting scheme is well visible in results for SAIVT-SoftBio – much smaller

number of classifiers L, and correspondingly smaller classifier coverage (C ),

but also significant drop in identity fragmentation (FID). This shows an im-

portant tradeoff of such forgetting scheme – identity fragmentation can be

decreased, but at the cost of lower coverage and possibly less stable L. Fi-

nally, multi-class accuracy Accmulticlass for SAIVT-SoftBio actually rises and

displays slightly upwards trend due to benefits of forgetting on such realistic

scenario. The system quickly forgets people which are not seen at any later

moment, thus improving its odds at classifying people that actually appear.

5.2.2. Limited capacity

Results for limited capacity are shown in Figure 8. Compared to limited

lifespan, it can be seen that in this operating point there is no instability in

L for Dana36, but increase in multi-class accuracy Accmulticlass for SAIVT-

SoftBio is still visible. The final results are shown in Table 1.
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Figure 7: Number of identities and recognition performance as a function of time (t), for

the proposed approach with forgetting, based on the limited lifespan, for the two datasets.

Dotted lines show standard deviation for Dana3613.

5.3. Parameter influence

Previous experiments were performed with fixed parameter values, cho-

sen to illustrate the dynamics of the proposed system during its operation.

Nevertheless, parameters have significant influence on the performance and

stability. We explored the influence of classification threshold T , which con-

trols the operating point of classifier set Ω, the influence of maximum time-
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Figure 8: Performance (number of identities and recognition performance) as the function

of time (t), for the proposed approach with forgetting, based on the limited capacity, for

the two datasets. Dotted lines show standard deviation for Dana3613.

to-live parameter τmax when limited lifespan is enforced, and the influence of

learning threshold Touter, which controls the degree of updating. We varied

only single parameter and fixed the rest to values from the beginning of the

Section 5. When examining the influence of T and Touter, forgetting was dis-

abled (τmax =∞, λmax =∞). Results for T and τmax are shown in Figures 9

and 10, respectively.
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Table 1: Mean values and standard deviations of evaluation measures at the end of each

run (t = 2000 for Dana36 and t = 788 for SAIVT-SB). LL denotes limited lifespan, and

LC denotes limited capacity. TPR is the true positive rate, Accmulticlass is the multi-class

accuracy, C is classifier coverage and FID is identity fragmentation. Note that a random

classifier would yield Accmulticlass of only 1/152 = 0.0066 on SAIVT-SoftBio, therefore,

Accmulticlass of 0.13 represents significant improvement.

Cases Datasets
Evaluation measures

TPR Precision Accmulticlass C FID

No forgetting
Dana3613 0.22 ± 0.02 0.39 ± 0.03 0.56 ± 0.03 0.98 ± 0.03 5.87 ± 0.52

SAIVT-SoftBio 0.23 0.01 0.02 0.30 0.11

Forgetting – LL
Dana3613 0.36 ± 0.02 0.37 ± 0.03 0.54 ± 0.03 0.95 ± 0.06 2.05 ± 0.24

SAIVT-SoftBio 0.34 0.11 0.13 0.03 0.01

Forgetting – LC
Dana3613 0.29 ± 0.01 0.38 ± 0.03 0.53 ± 0.02 0.97 ± 0.04 2.86 ± 0.18

SAIVT-SoftBio 0.28 0.05 0.06 0.09 0.01
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Figure 9: Influence of the classification threshold T on the system performance for both

datasets. Identity fragmentation FID is drawn in different scales.

It can be seen that T and τmax influence the behavior of the system

in similar ways, despite the significant differences in nature of the data

(Dana36 is image-based and samples were drawn randomly, SAIVT-SoftBio
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Figure 10: Influence of the forgetting parameter τmax on the system performance for both

datasets. Identity fragmentation FID is drawn in different scales.

is image-sequence-based with predetermined sequence of events). Increas-

ing the threshold T increases the number of true and false positives, while

the classifier coverage C drops, along with identity fragmentation FID . This

further confirms that there is tradeoff between higher C and lower FID . Simi-

larly, lower τmax reduces identity fragmentation, but also lowers the classifier

coverage C. It is also obvious that both T and τmax influence the multi-

class accuracy Accmulticlass – in the case of SAIVT-SoftBio dataset, intensive

forgetting (low τmax) actually increases Accmulticlass.

In the last batch of experiments, shown in Figure 11, we examined the

influence of online updating threshold Touter. Based on our preliminary ex-

periments, the value of Tinner was set to a value of 0.05, and the value of

Touter was varied between 0.05 and 0.5 (the latter is the chosen value of the

classification threshold T ), resulting in more (high Touter) or less (low Touter)
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aggressive updating.
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Figure 11: Influence of the learning threshold Touter on the system performance for both

datasets. The point Touter = Tinner = 0.05 is equivalent to online updating disabled.

Identity fragmentation FID is drawn in different scales.

It can be seen that in this case, the accuracy Accmulticlass does not improve

with online updating – it even decreases with Dana3613. However, sufficiently

aggressive updating does reduce identity fragmentation FID , which is a tan-

gible benefit. With online updating, individual classifiers are able to model

variations in data, therefore fewer new classifiers are created.

All presented results clearly demonstrate that in a distributed re-identification

system that works on the realistic, open-world problem, there are many inter-

dependencies among various aspects of the system performance – the recog-

nition performance alone does not tell the whole story.
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6. Conclusion

In this paper, we addressed re-identification problem in large, distributed

camera networks – a topic that has been under-represented in the research

so far. We formalized object re-identification problem in a distributed en-

vironment, and analyzed it as an open-world problem. We documented the

obstacles that are inherent to truly distributed surveillance systems. These

preclude the direct use of state-of-the-art algorithms, and demand that func-

tionality of the system is built using only the limited resources available in

a distributed environment. Assuming only this basic functionality, we built

a scheme for distributed re-identification, which provides on-line learning,

forgetting and novelty detection – critical components for addressing open

world problems. Performance analysis in such distributed system requires

more than just observing classification performance. Therefore, we proposed

a set of measures geared towards distributed surveillance. We demonstrated

that in such a system, we deal with multiple tradeoffs – even in the case

of the simplest classification algorithm with a single parameter, the operat-

ing point of the classifier set influences several aspects of the system, not

just classification rates. This interdependence may radically alter the overall

performance of the re-identification system.

It should be noted that the presented method for constructing distributed

re-identification system is generic. Even though we limited ourselves to color

histograms, the method could be applied to more sophisticated cases where

complex features are extracted from images or image sequences, or even from

locally-connected multi-view camera systems, which can still represent single

node in a large, distributed camera network.
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