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Abstract. The latest V3.0 version of the popular
Open Computer Vision (OpenCV) framework has just
been released in the middle of 2015. The aim of this
paper is to compare the feature trackers implemented
in the framework. OpenCV contains both feature de-
tector, descriptor and matcher algorithms, all possi-
ble combinations of those are tried. For the compar-
ison, a structured-light scanner with a turntable was
used in order to generate very accurate ground truth
(GT) tracking data. The tested algorithm on track-
ing data of four rotating objects are compared. The
results is quantitatively evaluated as the matched co-
ordinates can be compared to the GT values.

1. INTRODUCTION

Developing a realistic 3D approach for feature
tracker evaluation is very challenging since realisti-
cally moving 3D objects can simultaneously rotate
and translate, moreover, occlusion can also appear in
the images. It is not easy to implement a system that
can generate ground truth (GT) data for real-world
3D objects. The Middlebury database1 is consid-
ered as the state-of-the-art GT feature point gener-
ator. The database itself consists of several datasets
that had been continuously developed since 2002. In
the first period, they generated corresponding feature
points of real-world objects [23]. The first Middle-
bury dataset can be used for the comparison of fea-
ture matchers. Later on, this stereo database was ex-
tended with novel datasets using structured-light [24]
or conditional random fields [18]. Even subpixel ac-
curacy can be achieved in this way as it is discussed
in [22].

However, the stereo setup is too strict limitation
for us, our goal is to obtain tracking data via multiple
frames.

1http://vision.middlebury.edu/

The description of the optical flow datasets of
Middlebury database was published in [3]. It was
developed in order to make the optical flow methods
comparable. The latest version contains four kinds
of video sequences:

1. Fluorescent images: Nonrigid motion is taken
by both color and UV-camera. Dense ground
truth flow is obtained using hidden fluorescent
texture painted on the scene. The scenes are
moved slowly, at each point capturing separate
test images in visible light, and ground truth im-
ages with trackable texture in UV light.

2. Synthesized database: Realistic images are gen-
erated by an image syntheses method. The
tracked data can be computed by this system
as every parameters of the cameras and the 3D
scene are known.

3. Imagery for Frame Interpolation. GT data is
computed by interpolating the frames. There-
fore the data is computed by a prediction from
the measured frames.

4. Stereo Images of Rigid Scenes. Structured light
scanning is applied first to obtain stereo re-
construction. (Scharstein and Szeliski 2003).
The optical flow is computed from ground truth
stereo data.

The main limitation of the Middlebury optical
flow database is that the objects move approximately
linearly, there is no rotating object in the datasets.
This is a very strict limitation as tracking is a chal-
lenging task mainly when the same texture is seen
from different viewpoint.

It is interesting that the Middlebury multi-view
database [25] contains ground truth 3D reconstruc-
tion of two objects, however, the ground truth track-
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ing data were not generated for these sequences. An-
other limitation of the dataset is that only two low-
textured objects are used.

It is obvious that tracking data can also be gen-
erated by a depth camera [26] such as Microsoft
Kinect, but its accuracy is very limited. There are
other interesting GT generators for planar objects
such as the work proposed in [8], however, we would
like to obtain the tracked feature points of real spatial
objects.

Due to these limitations, we decided to build a spe-
cial hardware in order to generate ground truth data.
Our approach is based on a turntable, a camera, and
a projector. They are not too costly, but the whole
setup is very accurate as it is shown in our accepted
paper [19].

2. Datasets

We have generated four GT datasets as it is pub-
lished in our mentioned paper [19]. The feature
points are always selected by the tested feature gen-
erator method in all frames and then these feature
locations are matched between the frames. Then
the matched point are filtered: the fundamental ma-
trix [9] is robustly computed using 8-point method
with RANSAC for every image pair and the outliers
are removed from the results. The method imple-
mented in the OpenCV framework is used for this
robustification.

Examples for the moving GT feature points of the
generated sets are visualized in Figures 1– 4. Point
locations are visualized by light blue dots.

The feature matchers are tested in four data se-
quences:

• Dinosaur. A typical computer vision study
deals with the reconstruction of a dinosaurs as
it is shown in several scientific papers, e.g [6].
It has a simple diffuse surface that is easy to re-
construct in 3D, hence the feature matching is
possible. For this reason, a dino is inserted to
our testing dataset.

• Flacon. The plastic holder is another smooth
and diffuse surface. A well-textured label is
fixed on the surface.

• Plush Dog. The tracking of the feature point
of a soft toy is a challenging task as it does not
have a flat surface. A plush dog is included into
the testing database that is a real challenge for
feature trackers.

• Poster. The last sequence of our dataset is a
rotating poster in a page of a motorcycle mag-
azine. It is a relatively easy object for feature
matchers since it is a well-textured plane. The
pure efficiency of the trackers can be checked
in this example due to two reasons: (i) there is
no occlusion, and (ii) the GT feature tracking is
equivalent to the determination of plane-plane
homographies.

Figure 5. Reconstructed 3D model of testing objects. Top:
Plush Dog. Center: Dinosaur. Bottom: Flacon.

2.1. GT Data Generation

Firstly, the possibilities is overviewed that
OpenCV can give about feature tracking. These are
the currently supported feature detectors in OpenCV
AGAST [13], AKAZE [17], BRISK [10], FAST [20],
GFTT [28] (Good Features To Track – also known
as Shi-Tomasi corners), KAZE [2], MSER [14],
ORB [21].

However, if you compile the contrib(nonfree)
repository with the OpenCV, you can also get the



Figure 1. GT moving feature points of sequence ’Flacon’.

Figure 2. GT moving feature points of sequence ’Poster’.

following detectors: SIFT [12], STAR [1], and
SURF [4].

We use our scanner to take 20 images about a
rotating object. After each image taken, a struc-
tured light sequence is projected in order to make
the reconstruction available for every position. (re-
constructing only the points in the first image is not
enough.)

Then we start searching for features in these im-
ages using all feature detectors. After the detection
is completed, it is required to extract descriptors. De-
scriptors are needed for matching the feature points
in different frames. The following descriptors are
used (each can be found in OpenCV): AKAZE [17],
BRISK [10], KAZE [2], ORB [21]. If one compiles
the contrib repository, he/she can also get SIFT [12],
SURF [4], BRIEF [5], FREAK [16], LATCH [11],
DAISY [27] descriptors 2.

Another important issue is the parameterization of
the feature trackers. It is obvious that the most ac-
curate strategy is to find the best system parameters
for the methods, nevertheless the optimal parameters
can differ for each testing video. On the other hand,
we think that the authors of the tested methods can
set the parameters more accurately than us as they
are interested in good performance. For this reason,
the default parameter setting is used for each method,
and we plan to make the dataset available for every-
one and then the authors themselves can parameter-
ize their methods.

After the detection and the extraction are done,

2The BRIEF descriptor is not invariant to rotation, however,
we hold it in the set of testing algorithms as it surprisingly served
good results.

the matching is started. Every image pair is taken
into consideration, and match each feature point in
the first image with one in the second image. This
means that every feature point in the first image will
have a pair in the second one. However, there can be
some feature locations in the second image, which
has more corresponding feature points in the first
one, but it is also possible that there is no matching
point.

The matching itself is done by calculating the
minimum distances between the descriptor vectors.
This distance is defined by the feature tracking
method used. The following matchers are available
in OpenCV:

• L2 – BruteForce: a brute force minimization al-
gorithm that computes each possible matches.
The error is the L2 norm of the difference be-
tween feature descriptors.

• L1 – BruteForce: It is the same as L2 – Brute-
Force, but L1 norm is used instead of L2 one.

• Hamming – BruteForce: For binary fea-
ture descriptor (BRISK, BRIEF, FREAK,
LETCH,ORB,AKAZE), the Hamming distance
is used.

• Hamming2 – BruteForce: A variant of the ham-
ming distance is used. The difference between
Hamming and Hamming2 is that the former
considers every bit as element of the vector,
while Hamming2 use integer number, each bit
pair forms a number from interval 0 . . . 3 3.

3OpenCV’s documentation is not very informative about



Figure 3. GT moving feature points of sequence ’Dinosaur’.

Figure 4. GT moving feature points of sequence ’Plush Dog’.

• Flann-Based: FLANN (Fast Library for Ap-
proximate Nearest Neighbors) is a set of al-
gorithms optimized for fast nearest neighbor
search in large datasets and for high dimen-
sional features [15].

It is needed to point out that one can pair each fea-
ture detector with each feature descriptor but each
feature matchers is not applicable for every descrip-
tor. An exception is thrown by OpenCV if the se-
lected algorithms cannot work together. But we try
to evaluate every possible selection.

The comparison of the feature tracker predictions
with the ground truth data is as follows: The feature
points are reconstructed first in 3D using the images
and the structured light. Then, because it is known
that the turntable was rotated by 3 degrees per im-
ages, the projections of the points are calculated for
all the remaining images. These projections were
compared to the matched point locations of the fea-
ture trackers and the L2 norm is used to calculate the
distances.

3. Evaluation Methodology

The easiest and usual way for comparing the
tracked feature points is to compute the summa
and/or average and/or median of the 2D tracking er-
rors in each image. This error is defined as the Eu-
clidean distance of the tracked and GT locations.
This methodology is visualized in Fig. 6.

Hamming2 distance. They suggest the usage of that for ORB
features. However, it can be applied for other possible descrip-
tors, all possible combinations are tried during our tests.

Figure 6. Error measurement based on simple Euclidean
distances.

However, this comparison is not good enough be-
cause if a method fails to match correctly the feature
points in an image pair, then the feature point moves
to an incorrect location in the next image. Therefore,
the tracker follows the incorrect location in the re-
maining frames and the new matching positions in
those images will also be incorrect.

To avoid this effect, a new GT point is generated
at the location of the matched point even if it is an
incorrect matching. The GT location of that point
can be determined in the remaining frames since that
point can be reconstructed in 3D as well using the
structured light scanning, and the novel positions of
the new GT point can be determined using the cali-
bration data of the test sequence.

Then the novel matching results are compared to



all the previously determined GT points. The ob-
tained error values are visualized in Fig. 7.

The error of a feature point for the i-th frame is the
weighted average of all the errors calculated for that
feature. For example, there is only one error value
for the second frame as the matching error can only
be compared to the GT location of the feature de-
tected in the first image. For the third frame, there
are two GT locations since GT error generated on
both the first (original position) and second (position
from first matching) image. For the i-th image, i− 1
error values are obtained. the error is calculated as
the weighted average of those. It can be formalized
as

Errorpi =
i−1∑
n=1

||pi − p′i,n||2
i− n

(1)

where Errorpi is the error for the i-th frame, pi
the location of the tested feature detector, while p′i,n
is the GT location of the feature points reconstructed
from the n-th frame. The weights of the distances is
1/(i − n) that means that older GT points has less
weights. Remark that the Euclidean (L2) norm is
chosen in order to measure the pixel distances.

If a feature point is only detected in one image
and was not being followed in the next one (or was
filtered out in the fundamental-matrix-based filtering
step), then that point is discarded.

Figure 7. Applied error measurement.

After the pixel errors are valuated for each point
in all possible images, the minimum, maximum,
summa, average, and median error values of every
feature points are calculated per image. The num-
ber of tracked feature points in the processed image

is also counted. Furthermore, the average length of
the feature tracks is calculated which shows that in
how many images an average feature point is tracked
through.

4. Comparison of the methods

The purpose of this section is to show the main is-
sues occurred during the testing of the feature match-
ers. Unfortunately, we cannot show to the Reader all
the charts due to the lack of space.
General remark. The charts in this section show
different combinations of detectors, descriptors, and
matchers. The method ’xxx:yyy:zzz’ denotes in the
charts that the current method uses the detector ’xxx’,
descriptor ’yyy’, and matcher algorithm ’zzz’.

4.1. Feature Generation and Filtering using the
Fundamental Matrix

The number of the detected feature points is exam-
ined first. It is an important property of the matcher
algorithms since many good points are required for a
typical computer vision application. For example, at
least hundreds of points are required to compute 3D
reconstruction of the observed scene. The matched
and filtered values are calculated as the average of
the numbers of generated features for all the frames
as features can be independently generated in each
image of the test sequences. Tables 1– 4 show the
number of the generated features (left) and that of
the filtered ones.

There are a few interesting behaviors within the
data:

• The best images for feature tracking are ob-
tained when the poster is rotated. The feature
generators give significantly the most points in
this case. It is a more challenging task to find
goof feature points for the rotating dog and di-
nosaur. It is because the area of these objects in
the images are smaller than that of the other two
ones (flacon and poster).

• It is clearly seen that number of SURF feature
points are the highest in all test cases after out-
lier removal. This fact suggests that they will be
the more accurate features.

• The MSER method gives the most number of
feature points, however, more than 90% of those
are filtered. Unfortunately, the OpenCV3 li-
brary does not contain sophisticate matchers for



Table 1. Average of generated feature points and inliers of
Sequence ’Plush Dog’.

Detector #Features #Inliers

BRISK 21.7 16.9

FAST 19.65 9.48

GFTT 1000 38.16

KAZE 68.6 40.76

MSER 5321.1 10.56

ORB 42.25 34.12

SIFT 67.7 42.8

STAR 7.15 5.97

SURF 514.05 326.02

AGAST 22.45 11.83

AKAZE 144 101.68

Table 2. Average of generated feature points and inliers of
Sequence ’Poster’.

Detector #Features #Inliers

BRISK 233.55 188.79

FAST 224.75 139.22

GFTT 956.65 618.75

KAZE 573.45 469.18

MSER 4863.6 40.29

ORB 259.5 230.76

SIFT 413.35 343.08

STAR 41.25 35.22

SURF 1876.95 1577.73

AGAST 275.75 200.25

AKAZE 815 761.4

MSER such as [7], therefore its accuracy is rel-
atively low.

• Remark that the GFTT algorithm usually gives
1000 points as the maximum number was set to
thousand for this method. It is a parameter of
OpenCV that may be changed, but we did not
modify this value.

4.2. Matching accuracy

Two comparisons were carried out for the feature
tracker methods. In the first test, every possible com-
bination of the feature detectors and descriptors is ex-

Table 3. Average of generated feature points and inliers of
Sequence ’Flacon’.

Detector #Features #Inliers

BRISK 219.7 160.99

FAST 387.05 275.4

GFTT 1000 593.4

KAZE 484.1 387.93

MSER 3664.1 31.72

ORB 337.65 287.49

SIFT 348.15 260.91

STAR 69.1 54.86

SURF 952.95 726.83

AGAST 410.15 303.45

AKAZE 655 553.11

Table 4. Average of generated feature points and inliers of
Sequence ’Dinosaur’.

Detector #Features #Inliers

BRISK 21.55 14.8

FAST 51.05 27.01

GFTT 1000 92

KAZE 58.55 33.92

MSER 5144.4 17.86

ORB 67.1 45.87

SIFT 52.8 34.96

STAR 3.45 3.45

SURF 276.95 132.61

AGAST 55 29.86

AKAZE 89.1 59.2

amined, while the detectors are only combined with
their own descriptor in the second test.

It is important to note that not only the errors of
feature trackers should be compared, we must also
pay attention to the number of features in the images
and the length of the feature tracks. A method with
less detected features usually obtains better results
(lower error rate) than other methods with higher
number of features. The mostly used chart is the
AVG-MED, where the average and the median of the
errors are shown.
Testing of all possible algorithms.



As it is seen in Fig 8 (sequence ’Plush Dog’), the
SURF method dominates the chart. With the usage
of SURF, DAISY, BRIEF, and BRISK descriptors
more than 300 feature points remained and the me-
dian values of the errors are below 2.5 pixels, while
the average is around 5 pixels. Moreover, the points
are tracked through 4 images in average which yields
pretty impressive statistics for the SURF detector.

Figure 8. Average and median errors of top 10 methods
for sequence ’Plush Dog’.

The next test object was the ’Poster’. The results
are visualized in Fig 4.2. It is interesting to note that
if the trackers are sorted by the number of the outliers
and plot the top 10 methods, only the AKAZE detec-
tor remains where more than 90 percent of the fea-
ture points was considered as inlier. Besides the high
number of points, average pixel error is between 3
and 5 pixels depending on the descriptor and matcher
type.

Figure 9. Average and median errors of top 10 methods
for sequence ’Poster’.

In the test where the ’Flacon’ object was used, we
got similar results as in the case of ’Poster’. Both of

the objects is rich in features, but the ’Flacon’ is a
spatial object. However, if we look at Fig. 10 where
the methods with the lowest 10 median value were
plotted, one can see that KAZE and SIFT had more
feature points and can track these over more pictures
than MSER or SURF after the fundamental filtering.
Even though they had the lowest median values, the
average errors of these methods were rather high.

However, if one takes a look at the methods with
the lowest average error, then he/she can observe that
AKAZE, KAZE and SURF present in the top 10.
These methods can track more points then the pre-
vious ones and the median errors are just around 2.0
pixels.

Figure 10. Top 10 method with the lowest median for se-
quence ’Flacon’. Chart are sorted by median (top) and
average (bottom) values.

For the sequence ’Dinosaur’ (Figure 11), the test
object is very dark which makes feature detection
hard. The number of available points is slightly more
than 100. In this case, the overall winner of the meth-
ods is the SURF with both the lowest average and
median errors. However, GFTT also present in the
last chart too.

In the upper comparisons only the detectors were
mentioned against each other. As one can see in



the charts, most of the methods used either DAISY,
BRIEF, BRISK or SURF descriptors. From the per-
spective of matchers, it does not really matter which
type of the matcher is used for the same detector
descriptor type. However, if the descriptor gives a
binary vector, then obviously the hamming distance
outperforms the L2 or L1. But there are just slightly
differences between the L1-L2 and H1-H2 distances.

Figure 11. Top 10 methods (with lowest average error) on
sequence ’Dinosaur’.

Testing of algorithms with same detector and de-
scriptor. In this comparison, only the detectors that
have an own descriptor are tested. Always the best
matchers is selected for which the error is minimal
for the observed detector/descriptor.

As it can be seen in the log-scale charts in Fig. 12,
the median error is almost the same for the AKAZE,
KAZE, ORB and SURF trackers, but SURF is con-
sidered with the lowest average value. The tests ’Fla-
con’ and ’Poster’ result the lower pixel errors. On
the other hand the rotation of the ’Dinosaur’ was the
hardest to track, it resulted much higher errors for all
trackers comparing to the other tests.

5. Conclusions, Limitations, and Future
Work

We quantitatively compared the well-known fea-
ture detectors, descriptors, and matchers imple-
mented in OpenCV3 in this study. The GT datasets
was generated by a structured-light scanner. The four
testing objects were rotated by the turntable of our
equipment. It seems to be clear that the most accu-
rate feature for matching methods is the SURF [4]
one proposed by Bay et al. It outperforms the other
algorithms in all test cases. The other very accurate
algorithms are KAZE [2]/AKAZE [17], they are the
runner-up in our competition.

Figure 12. Overall average (top) and median (bottom) er-
ror values for all trackers and test sequences. The detec-
tors and descriptors were the same.

The most important conclusion for us is that such a
comparison is a very hard task: for example, there are
infinite number of possible error metrics; the quality
is hardly influenced by the number of features, and so
on. The main limitation here is that we can only test
the methods in images of rotating objects. We are not
sure that the same performance would be obtained if
translating objects are observed. A possible solution
to the extension of this paper is to compare the same
methods on the Middlebury database and unify the
obtained results for rotation and translation.

We hope that this paper is just the very first step of
our research. We plan to generate more testing data,
and more algorithms will also be involved into the
tests. The GT dataset will be online, and an open-
source testing system is also planned to be available
soon 4.
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