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Touching without vision: terrain perception in sensory deprived environments
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Abstract. In this paper we demonstrate a combined
hardware and software solution that enhances sensor
suite and perception capabilities of a mobile robot
intended for real Urban Search & Rescue missions.
A common fail-case, when exploring unknown envi-
ronment of a disaster site, is the outage or deteriora-
tion of exteroceptive sensory measurements that the
robot heavily relies on—especially for localization
and navigation purposes. Deprivation of visual and
laser modalities caused by dense smoke motivated
us to develop a novel solution comprised of force
sensor arrays embedded into tracks of our platform.
Furthermore, we also exploit a robotic arm for ac-
tive perception in cases when the prediction based on
force sensors is too uncertain. Beside the integration
of hardware, we also propose a framework exploiting
Gaussian processes followed by Gibb’s sampling to
process raw sensor measurements and provide prob-
abilistic interpretation of the underlying terrain pro-
file. In the final, the profile is perceived by propri-
oceptive means only and successfully substitutes for
the lack of exteroceptive measurements in the close
vicinity of the robot, when traversing unknown and
unseen obstacles. We evaluated our solution on real
world terrains.

1. Introduction

Advances in robotic technology allow mobile
robots to be deployed in gradually more and more
challenging environments. However, real-world con-
ditions often complicate or even prohibit adoption of
classical approaches to localization, mapping, nav-
igation, or teleoperation. When rescuers operate
a UGV during joint experiments in the TRADR
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Figure 1. From left: UGV robot approaches smoke area;
Example of visual information that the operator sees
inside a cloud of smoke: a crop out from the omni-
directional camera (middle) and output of the laser range-
finder (rainbow-colored point cloud in the right half of the
image). Laser beams are randomly reflected by smoke
particles. The resulting 3D point cloud is just noise close
to the robot.

project1, which develops novel software and tech-
nology for human-robot teams in disaster response
efforts [1], we have to deal with such problems.

One of the crucial fail-cases is the presence of
dense smoke that blocks camera view and spoils laser
measurements, creating false obstacles in front of the
robot (Fig. 1). Without exteroceptive measurements,
classical approaches to robot SLAM cannot be used.
Localization can only be in the dead-reckoning sense
and the operator of the robot has to rely solely on
the maps created up to the point of the sensor out-
age. In an industrial environment consisting of many
hazardous areas, driving blind can lead to damage or
loss of the robot.

Therefore, we propose a combined hardware and
software solution to predict the profile of terrain un-
derneath and in front of the tracked robot. The al-
gorithm exploits a prototype of a force sensor array
installed inside a track of the robot, a robotic arm
attached to the robot, proprioceptive measurements
from joints and an inertial measurement unit (IMU),
and information learned from a dataset of traversed
terrains. The prototype of the force sensor (Fig. 2, 3)
is suitable for tracked robots and is installed between
rubber track and its support, allowing it to serve as

1http://www.tradr-project.eu
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a tactile sensor. The arm is used to measure height of
terrain outside the reach of the force sensor as contact
between the arm end-effector and the terrain. The
height of terrain that cannot be measured directly is
estimated by sampling from a joint probability dis-
tribution of terrain heights, conditioned by propri-
oceptive measurements (geometric configuration of
the robot, torques in joints and attitude of the robot)
and learned from a training dataset consisting of real-
world examples of traversed terrains.

The estimates of terrain profile are used as a par-
tial substitute for missing laser range-finder data that
would reveal obstacles or serve as an input for adap-
tive traversability algorithm.

Our contribution is twofold: we designed a new
force sensor suitable for tracked robots as well as an
algorithm that uses proprioceptive and tactile mea-
surements to estimate terrain shape in conditions that
prohibit usage of cameras and laser range-finders.
We extended this solution with robotic arm to deal
with special cases when the predictions have too high
uncertainty.

The rest of the paper is structured as follows: Sec-
tion II concludes briefly the related work, Section III
describes the hardware solution and Section IV the
actual software. In Section V we present both qual-
itative and quantitative experimental evaluation and
we conclude our achievements in Section VI.

2. Related work

The problem of terrain characterization primarily
using proprioceptive sensors, but also by sonar/infra-
red range-finders and by a microphone is discussed in
[2]. The authors exploit neural networks trained for
each sensor and demonstrate that they are able to rec-
ognize different categories: gravel, grass, sand, pave-
ment and dirt surface. More recent results come from
legged robotics, in [3], Pitman-Yor process mixture
of Gaussians is used to learn terrain types both in
supervised and unsupervised manner based on force
and torque features sensed in legs. In our work, we
focus more on the actual terrain profile prediction,
necessary for successful traversal.

Lack of sufficient visual information related to
danger of collision with obstacles is addressed in
[4]: decision whether it is safe to navigate through
vegetation is based on wide-band radar measure-
ments since it is impossible to detect solid obstacle
behind vegetation from laser range-finder or visual
data. Artificial whiskers offer an alternative solu-

tion; they mimic facial whiskers of animals and us-
ing them as a tactile sensor is a promising way to
explore areas, which are prohibitive to standard ex-
teroceptive sensors. Work of [5] presents a way to
use array of actively actuated whiskers to discrimi-
nate various surface textures. In [6], similar sensor
is used for a SLAM task. Two sensing modalities—
the whisker sensor array and the wheel odometry are
used to build a 2D occupancy map. Robot localiza-
tion is then performed using particle filter with par-
ticles representing one second long ”whisk periods”.
During these periods, the sensor actively builds lo-
cal model of the obstacle it touches. Unfortunately,
design of our platform does not allow using such
whiskers due to rotating laser range-finder.

Relation between shape of terrain that we are in-
terested in and configuration of the flippers is investi-
gated in [7]. The authors exploit the knowledge about
robot configuration and torques in joints to define
a set of rules for climbing and descending obstacles
not observed by exteroceptive sensors. We investi-
gated this problem in [8] by introducing the adaptive
traversability algorithm based on machine learning.
We collected features from both proprioceptive and
exteroceptive sensors to learn a policy that ensures
safe traversal over obstacles by adjusting robot mor-
phology. An idea of adding pressure sensors mimick-
ing properties of human skin to feet of bipedal robots
is presented in [9, 10]. These sensors can be used
for measuring force distribution between the robotic
foot and ground, or for terrain type classification. In
tracked robots, caterpillar tracks can be further used
to explore terrain, authors of [11] propose a novel
distributed sensor that detects deflection of the track
in contact points with terrain. Their sensor is espe-
cially suitable for chained tracks with rubber shoes.
The prototype we present is more suitable for thin
rubber tracks.

On contrary to the approaches exploiting only
simple contact sensors, we extend our sensory suite
with a robotic arm for further active perception for
cases if necessary. Related to the active perception,
relevant ideas and techniques come from the field of
haptics. The work of [12] proposes to create mod-
els of objects in order to be able to grasp them. The
idea is to complement visual measurements by tac-
tile ones by strategically touching the object in ar-
eas with high shape uncertainty. For this purpose
they use Gaussian processes (GP, [13]) to express the
shape of the object. We take a similar approach: we



choose parts of terrain to be explored by the robotic
arm based on uncertainty of the estimate resulting
from the sampling process (Sec. 4.3). Probabilistic
approach to express uncertainty in touched points is
also described in [14], where only tactile sensors of
a robotic hand are used to reconstruct the shape of
an unknown object. Active tactile terrain exploration
can also lead to terrain type classification, as works
of [15, 16] demonstrate.

3. Sensors

3.1. Sensors of the TRADR UGV

The TRADR UGV platform is equipped with both
proprioceptive and exteroceptive sensors. Inertial
measurement unit Xsens MTi-G (IMU) provides ba-
sic attitude measurements; all joints have angle en-
coders installed to reveal current configuration of the
robot like flipper angles, and velocity of the caterpil-
lar tracks. Electric currents to all motors are mea-
sured and translated into torque values. Visual in-
formation about the environment is acquired by an
omni-directional Point Grey Ladybug 3 camera ac-
companied by a rotating SICK LMS-151 laser range
finder that provides depth information. The laser
range-finder is used to collect data that are processed
to serve as ground truth for the terrain reconstruction
purposes.

3.2. Prototype of force sensor

To obtain well-defined contact points with the
ground, we decided to take advantage of the flippers
that can reach in front of the robot and are designed to
operate on dirty surfaces or sharp edges. The original
mechatronics of the robot allows to measure torque
in flipper servos and thus detect physical contact be-
tween flippers and the environment. To be able to
locate the contact point on the flipper exactly, we de-
signed a thin force sensor between the rubber track
and its plastic support (see Fig. 2, 3). Since it is a first
prototype, we use it only in one flipper and consider
only symmetrical obstacles or steps. The sensor con-
struction is a sandwich of two thin stripes of steel
with FSR 402 sensing elements between them which
allows the rubber track to slide over it while mea-
suring forces applied onto the track. There are six
force sensing elements; the protecting sheet of steel
distributes the force among them, the sensor is thus
sensitive along its whole length.

The FSR 402 sensing elements are passive sen-
sors that exhibit decrease in resistance with increas-

Figure 2. Prototype of the flipper force sensor: array of six
sensing elements (FSR 402) is covered by a stripe of steel,
forming a thin sensor that fits between the rubber track
and the plastic track support. The stripe of steel protects
the sensors from the moving rubber track and distributes
measured force amongst them.
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............
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Figure 3. The sensor mounted to the plastic track support
(top). The sensing elements are passive sensors that ex-
hibit decrease in resistance with applied force. For each
sensing element, we use a reference resistor to form a volt-
age divider; we obtain voltage inversely proportional to
the resistance of the FSR 402 elements (bottom).

ing force; the force sensitivity range is 0.1 − 10N.
To measure the resistance, we connect them in series
with a fixed reference resistor forming a voltage di-
vider. We apply 5 V to this divider and measure volt-
age on the reference resistor. We use an analog-to-
digital converter expansion board for the Raspberry
Pi computer to read the six voltages. We calibrate
the voltage values for initial bias caused by the sand-
wich construction.

Figure 4 shows three examples of the sensor read-
ings. The first case consists of a flipper touching flat
floor. Although one would expect to see more or less
equal distribution of the contact force along the flip-
per track, the torque generated by the flipper actually
lifts the robot slightly and thus, most of the force con-
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Figure 4. Examples of the force sensor readings. The plots
on the left side show raw readings of each sensing ele-
ment, only corrected for bias. The photos on the right side
document the moments of the readings acquisition. See
section 3 for discussion over the three example cases.

centrates at its tip (element n. 6). Compare this case
with the third one (bottom), where the pose of the
robot prohibits the lifting effect, and we therefore see
the expected result. The second case (middle) shows
an example of a touch in one isolated point.

3.3. Robotic arm

The UGV is equipped with a Kinova Jaco robotic
arm1, see Fig. 1 left. It is a 6-DOF manipulator (with
one extra DOF in each finger) capable of lifting 1.5
kg. For our approach, it is used for tactile exploration
of surroundings up to cca. 50 cm around the robot.
For the terrain sensing, robotic arm holds a tool with
a wooden stick—this setup protects its fingers from
being broken when pushing against ground. It also

1http://www.kinovarobotics.com/service-
robotics/products/robot-arms

allows the robot to measure the height of terrain in
a chosen point by gradually lowering the arm until
upsurge of actuator currents indicates contact with
ground (there are currently no touch sensors) [17].
Accuracy of the measurement is 3 cm (standard de-
viation). However, the process of unfolding the arm,
planning and execution of the desired motion and fi-
nally folding back to home position can easily take
45 s. Therefore, it is practical to use the arm for this
purpose only in situations when the gain from the
additional information overweights the cost of time
spent to get it. In Section 4.4, we describe criterion
for decision to use the arm.

4. Terrain shape reconstruction

When robot is teleoperated operator’s awareness is
based on camera images and the 3D laser map. In the
presence of smoke, both of these modalities are use-
less, see output of the operator console in the pres-
ence of smoke shown in Figure 1. We propose active
tactile exploration mode (ATEM), in which flippers
and robotic arm autonomously explores the terrain
shape in close vicinity of the robot. Estimated ter-
rain shape and expected reconstruction accuracy are
eventually displayed to the operator.

If ATEM is requested by the operator, robot first
adjusts flippers to press against the terrain and cap-
ture proprioceptive measurements. Then the initial
probabilistic reconstruction of the underlying terrain
shape is estimated from the captured data. If the re-
construction is ambiguous, the robotic arm explores
the terrain height in the most inaccurate place. Even-
tually, the probabilistic reconstruction is repeated.
As a result, reconstructed terrain shape with esti-
mated variances is provided. The ATEM procedure
is summarized in Algorithm 1. The rest of this sec-
tion provides detailed description of particular steps.

4.1. Flipper exploration mode

As soon as the ATEM is requested, the robot halts
driving and adjusts angles of front flippers towards
ground until they reach an obstacle or the ground.
They keep pressing against it by defined torque while
vector of proprioceptive measurements s is captured.
We measure: i) pitch of the robot (estimated from
IMU sensor), ii) angles of flippers, iii) currents in
flipper engines, and iv) 6-dimensional output of the
force sensor.



Variables: h - vector of terrain bin heights,
v - vector of height variances,
s - vector of proprioceptive measurements.

while ATEM is requested do
stop robot;
// Invoke flipper exploration mode
// Section 4.1
while torque in front flippers < threshold do

push flippers down;
end
s = capture proprioceptive measurements();

// Perform kinematic reconstruction
// Section 4.2
[h,v] = kinematic reconstruction(s);

// Perform probabilistic reconstr.
// Section 4.3
[h,v] = probabilistic reconstruction(h,v, s);

// Invoke arm exploration
// Section 4.4
if any(v > threshold) then

[h,v] = arm exploration(h,v);
[h,v] = probabilistic reconstruction(h,v, s);

end
move forward;

end

Algorithm 1: Active tactile exploration mode for
terrain shape reconstruction.

4.2. Kinematic reconstruction

The terrain shape is modeled by Digital Eleva-
tion Map (DEM), which consists of eleven 0.1m-
wide bins. If there is only one isolated contact point
sensed by the force sensor and the force surpasses
experimentally identified threshold (see Fig. 4, sec-
ond case), the height hi of the terrain in the corre-
sponding bin i is estimated by a geometric construc-
tion from known robot kinematics, using the attitude
of the robot, configuration of joints and the position
of the contact point on the flipper. Variance vi for
the corresponding force sensor is set to an experi-
mentally estimated value. The remaining hi and vi

values are set to non-numbers.

4.3. Probabilistic reconstruction

In the probabilistic reconstruction procedure, the
vector of heights h and the vector of variances v are
estimated by the Gibbs sampling [18]. Let us de-
note the set of all bins J and the set of all bins in
which the reconstruction is needed by I (i.e. those
which height was not estimated in the kinematic re-
construction procedure or measured by the robotic
arm). We use the Gibbs sampling to obtain height
samples hk

I , k = 1 . . .K from the joint probability

distributions p(hI |hJ\I , s) of all missing heights hI .
Missing heights hI are reconstructed as the mean of
generated samples, variances vI are estimated as the
variance of samples.

In the beginning, the missing heights hI are ran-
domly initialized. The k-th sample hk

I is obtained
by iterating over all unknown bins i ∈ I and gener-
ating their heights hk

i from conditional probabilities
p(hi|hJ\i, s). The conditional probability is mod-
eled by Gaussian process [19, 13, 20] with a squared
exponential kernel.

To train the conditional probabilities, we collected
real-world trajectories with i) sensor measurements
su and ii) corresponding terrain shapes hu estimated
from the 3D laser map for u = 1 . . . U . The i-th
conditional probability p(hi|hJ\i, s) is modeled by
one Gaussian process learned from the training set
{[(h1

J\i, s
1)>,h1

i ], . . . , [(h
U
J\i, s

U )>,hU
i ]}.

Modeling the bin height probabilities as normal
distributions is a requirement laid by the Gaussian
process. However, it allows samples of the bin height
that collide with the body of robot, which is of course
physically impossible. We propose to use Gaus-
sian distribution truncated by known kinematic con-
straints, in which are samples constrained by the
maximal height that does not collide with the body
of the robot. We discuss impact of this modification
in the Section 5.

4.4. Active arm exploration

We use the robotic arm to measure the height of
the terrain in bins the flippers cannot reach. The
measurement taken by the robotic arm is reasonably
accurate and precise but in its current state it takes
about 45s to complete [17]. If the probabilistic recon-
struction contains bins with variance v higher than
a user-defined threshold, the robotic arm is used to
measure the height in the most uncertain bin, i.e. the
bin j = argmaxi vi. The height sensed in the given
bin is then fixed and the probabilistic reconstruction
process is repeated.

5. Experimental evaluation

In qualitative experiments, we focus on typical
cases of terrain profile shapes and discuss perfor-
mance of different settings of our algorithm. In quan-
titative experiments, we present performance statis-
tics over the whole testing dataset.

The training dataset consists of 28 runs contain-
ing driving on flat terrain, approaching obstacles of
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Figure 5. From left: photo of the robot on a concrete ground; measured forces; terrain reconstruction, the gray polygon
indicates position of the robot and its flippers, thin red line is the ground truth—flat ground in this instance.

two different heights, traversing them and descend-
ing from them back to flat ground. Shape of obsta-
cles selected for the dataset reflects the industrial ac-
cident scenario of the TRADR project - the environ-
ment mostly consists of right-angle-shaped concrete
and steel objects. From the recorded runs, we have
extracted approximately 1400 individual terrain pro-
file measurements for training. The whole training
dataset was recorded indoors on flat hard surfaces.
The testing dataset was recorded outdoors and com-
bines uneven grass, stone and rough concrete sur-
faces. It contains more complex obstacles with vari-
ous heights (different from those seen in the training
dataset). The testing dataset consists of more than
300 terrain profiles with the corresponding sensory
data. Ground truth necessary for training and test-
ing was created manually by sampling scans from the
laser range-finder recorded during the experiments.

We compare four different algorithms for terrain
profile prediction. The baseline approach [8] uses
only the IMU sensor and angles of flippers, we call
it PA (pitch + angle of flippers) for short. The sec-
ond setup uses the same data and adds the probability
of terrain height being adapted in the way described
in Section 4.3. If the sampled height collides with
the robot, the sample is set to the maximal possible
height that is not in collision. The approach is called
PAc (pitch + angle of flippers; constrained). The
third approach adds the flipper force sensor; mea-
sured data are used in two ways. If the force mea-
sured by a sensor element exceeds a threshold (ex-
perimentally set on 2 units), then the height of the
bin is computed from kinematics of the robot (pitch
and flipper angles and position of the sensor element)
and the bin is fixed and excluded from the Gibbs sam-
pling step. It should be noted however, that the mea-
sured forces are used even if they are not bigger than
the threshold – they are part of the proprioceptive
data s. The approach is called as PAFc (pitch + angle
of flippers + flipper force sensor; constrained). The

fourth approach adds direct terrain measurement: we
simulate use of the robotic arm for measurements the
terrain height in bins with high uncertainty [17]. The
simulation means revealing the value of the bin cap-
tured in the ground truth, variance of the bin is then
equal to the variance of the arm measurements. In
the experiments shown in this paper we set the stan-
dard deviation threshold of Gibbs samples that leads
to arm exploration to 0.06m. The fourth approach is
called as PAFAc (pitch + angle of flippers + flipper
force sensor + robotic arm; constrained).

5.1. Qualitative Evaluation

In the figures 5, 6 and 7, we present typical ter-
rain profiles and robot actions: flat ground, two steps
with different height, climbing up a step and stepping
down of a step. We compare performance of two al-
gorithms: i) PAc uses the kinematic constraints when
sampling but does not use the force sensors (light
blue line in the plots) ii) PAFc algorithm which uses
the force sensors (green line and bars). The last two
bars marked yellow in order to emphasize the predic-
tions are learnt from training dataset and we do not
have enough information to correct the predictions
from the sensing by flippers.

We use mean of the (Gibbs) samples as the pre-
dicted value (connected by lines) and 0.1 and 0.9
quantiles for displaying dispersion of samples (error-
bars). The point (0, 0) coincides with the location of
the IMU sensor inside the robot body. The depicted
sketch of the robot: the pitch is estimated by IMU,
flipper angle is directly measured. When the robot
lies on a flat ground, Fig. 5, contact point is sensed
by the sixth element. The force measurement reduces
uncertainty mainly in positions 0.3− 0.7m.

Climbing up a step cases are depicted in Fig. 6.
The higher 0.28m step obstacle is on top. The fifth
sensor element measures the force that is bigger than
threshold and the height in the bin 0.4 is fixed and
not sampled. Note that algorithm PAc which does
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Figure 6. Top: 0.28m step, bottom: 0.2 cm step. Note the reduced uncertainty for the PAFc – green line and errorbars.
The top photo of the robot is flipped in order to preserve left-to-right orientation which should ease the visual comparison.
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Figure 7. Top: climbing up a step; Bottom: stepping down of a step. When stepping down, the robot “hangs” on the rear
flippers, not the main flippers.
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Figure 8. Quantitative evaluation of reconstruction quality
in the places/bins that are under the flipper.
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struction – for all the DEM bins. Median, 1st quartile and
3rd quartile of errors are shown



not use force sensor cannot predict the exact edge
location. This fact is indicated by big dispersion of
samples in bins 0.3 and 0.4. The second situation
shown in Fig. 6 is the lower step. The height of the
lower step 0.2m was correctly measured by the sixth
element of the force sensor.

Climbing up and stepping down cases are dis-
played in Fig. 7. Variances in the bins that are un-
derneath the robot are high because we do not have
enough information to estimate the correct heights.
Still, the means are correct due to models learnt from
the training data.

5.2. Quantitative Evaluation

As our metric of performance is the absolute error
of estimated bin heights which is non-negative, we
prefer to describe its statistical properties by quan-
tile characteristics rather than by the means and stan-
dard deviations. The statistics are computed from the
whole testing dataset - i.e. from more than 300 out-
door terrain profiles.

First, we measure the direct effect of the force
measurement on the accuracy of the height estimates.
The graph on Fig 8 shows the height error frequency
of the DEM-bins that are underneath the front flipper.
Note that the attribute “underneath the front flipper”
is not fixed, it depends on the flipper angle. The force
sensor indeed improves the accuracy over the using
the flipper angle only.

The second experiment studies the statistics for
all the DEM-bins individually, see Fig 9. Adding
the kinematic contraint c naturally improves the
estimates of the bins underneath the robot body
(−0.3 . . . 0.2). Using the force sensors (PAFc) im-
proves height estimates of the DEM-bins underneath
the front flipper (0.3 . . . 0.5). The bins in front of the
flippers, i.e. (0.6 and 0.7) are directly measurable
only by the arm exploration. It is thus obvious that
including the measurement by arm (PAFAc) has the
dominant effect.

6. Conclusions

In this paper the aim was to demonstrate a com-
bined hardware and software solution that enhances
sensor suite and perception capabilities of our mo-
bile robot intended for real Urban Search & Rescue
missions. We focused our efforts on enabling pro-
prioceptive terrain shape prediction for cases when
vision and laser measurements are unavailable or de-
teriorated (such as in presence of a dense smoke).

To evaluate our proposed solution experimentally,
we designed and compared four algorithms—four
possible approaches for proprioceptive terrain shape
reconstruction: simple kinematics based approach,
constrained kinematics, constrained kinematics with
force sensors, and constrained kinematics with both
force sensors and robotic arm—intended for special
cases, where terrain prediction reaches very high un-
certainty. From the presented qualitative and quan-
titative experimental evaluation we can clearly see
that enhancing the sensor suite with force sensor
array proves to be superior. The proposed algo-
rithm, which combines Gaussian processes followed
by Gibb’s sampling, was successfully implemented
on-board the robot to process the raw force measure-
ments and perform the actual terrain shape prediction
in a probabilistic manner. We certainly do not claim
this is the only and best way to perform such terrain
prediction, but, it definitely serves as sufficiently ro-
bust and accurate proof of concept for intended de-
ployment. As part of this concept, the integration
of robotic arm for active perception in cases when
the prediction based on force sensors is too uncertain
proved to be important. For future work, we aim to
embed additional force sensor arrays on all the four
robot flippers and extend the terrain prediction algo-
rithm accordingly.
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