
21st Computer Vision Winter Workshop
Luka Čehovin, Rok Mandeljc, Vitomir Štruc (eds.)
Rimske Toplice, Slovenia, February 3–5, 2016

Hessian Interest Points on GPU

Jaroslav Sloup, Michal Perd’och, Štěpán Obdržálek, Jiřı́ Matas
Center for Machine Perception

Czech Technical University Prague
sloup|perdom1|xobdrzal|matas @fel.cvut.cz

Abstract.
This paper is about interest point detection and

GPU programming. We take a popular GPGPU im-
plementation of SIFT – the de-facto standard in fast
interest point detectors – SiftGPU and implement
modifications that according to recent research re-
sult in better performance in terms of repeatability
of the detected points. The interest points found at
local extrema of the Difference of Gaussians (DoG)
function in the original SIFT are replaced by the lo-
cal extrema of determinant of Hessian matrix of the
intensity function.

Experimentally we show that the GPU implemen-
tation of Hessian-based detector (i) surpasses in
repeatability the original DoG-based implementa-
tion, (ii) gives result very close to those of a refer-
ence CPU implementation, and (iii) is significantly
faster than the CPU implementation. We show what
speedup is achieved for different image sizes and
provide analysis of computational cost of individual
steps of the algorithm.

The source code is publicly available.

1. Introduction

A viewpoint-independent representation of ob-
jects in images is one of the fundamental problems
in computer vision. A popular approach is to extract
a set of local measurements, known as descriptors,
at a sparse set of image locations. These locations
are called interest points and their purpose is (as op-
posed to dense image sampling) to reduce the spatial
domain of further computation, hence reducing the
cost to obtain, and memory requirements to store, the
image representation.

It follows that for an interest point extraction pro-
cess to be practical it needs to repeatedly identify the
same points on object surface when the viewpoint or

environment (e.g. illumination) change. Establishing
correspondences between interest points represent-
ing an object in multiple images is a building step
for a multitude of computer vision tasks, including
stereo or multi-view reconstruction, object recogni-
tion, and image search and retrieval.

These are the desirable qualities for which interest
point detectors are evaluated:

• Transformation Covariance. The detected
points should correspondingly ‘follow’ the ob-
ject as it is depicted from different viewpoints.
This paper concerns similarity-covariant detec-
tors which follow 2D image locations (objects
at different positions in the image), scales (ob-
jects at different distances) and 2D orientations
(in-plane rotation of the objects). Affine detec-
tors, which additionally follow out-of-plane 3D
rotations, are not considered here.

• Repeatability of detected interest points. The
percentage of the points detected at corre-
sponding image locations when the viewpoint
changes.

• Accuracy with which the interest points are lo-
cated and their scales and orientations are esti-
mated.

• Coverage of various visually different classes
of objects.

• Robustness under image degradation – noise,
motion blur, compression, out of focus images,
etc.

• Detection Speed, the computational cost of the
interest points detection.

One of the most popular interest point detection
algorithms is still the Scale-Invariant Feature Trans-
form (SIFT) proposed by David Lowe [8] in 2004.

It consistently ranks high on benchmarks in qual-
ity of detected points, but is computationally expen-
sive, therefore unsuitable e.g. for real-time video pro-
cessing. Many speedier approximations and alter-
natives were proposed, e.g. SURF [2], FAST [11]
and ORB [12], or CenSurE [1] and SUSurE [3],
which can detect interest points significantly faster
than SIFT. But often at the expense of repeatability
and accuracy.

The only widely used detector that in most tests
scores higher in repeatability than SIFT is the so-
called Hessian detector. In SIFT, points are identi-
fied at local minima or maxima of the Difference of
Gaussians function, thence in presence of blob-like
local image structures. In the Hessian detector, the
points are located where the determinant of the Hes-
sian matrix (a matrix of second-order partial deriva-
tives) attains local extrema. Which occur either for
blob-like (local maxima) or for saddle-like structures
(local minima). Experiments show that the extrema
of the determinant of Hessian are more repeatable
and accurate than the extrema of the Difference of
Gaussians, and, thanks to the additional detection of
saddle points, the object coverage is generally also
improved. The detection speed of Hessian is similar
to that of the SIFT.

Taking advantage of the recent widespread avail-
ability of programmable graphic cards, execution
time of many computer vision algorithms benefits
if reimplemented for GPUs. Interest point detectors
are no exception, a GPGPU (general-purpose GPU)
SIFT implementation is available from [15, 14, 4].
The SIFTs are detected in real-time for moderately
sized videos or images on a consumer-grade GPU,
therefore there is now a large group of applications
for which it is no longer necessary to sacrifice detec-
tion quality for execution speed.

We build upon the available GPU SIFT implemen-
tation [15] and extend it with several contributions.
The Difference of Gaussians is replaced with the de-
terminant of the Hessian matrix as the function of
which extrema indicate presence of interest points.
This improves repeatability, and coverage, of the de-
tected points, as is experimentally demonstrated be-
low. Selection of best K points (when ordered by
magnitude of the determinant) is implemented in an
early stage of the algorithm. If only a specific num-
ber of points is requested, it is faster to decide which
these are early, on the GPU, before orientations are
determined and descriptors computed. Additionally,

the feature type (saddle, dark or white blob) is now
part of the GPU code output. This is useful in follow-
up matching – features of different types should not
be considered for a correspondence.

Some of the functionality that was available in
the original CPU SIFT implementation and omitted
in the GPU version was reintroduced. We add the
optional capability to compute orientations and de-
scriptors only in 〈0, π〉 range instead of 〈0, 2π〉 by
disregarding sign of the gradients involved, which is
beneficial when matching images taken under signif-
icantly different illumination (day and night). The
restriction that at each image location only at most
two interest point orientations are detected was lifted.
And the maximal number of iterations used for sub-
pixel localization of a detected point is now config-
urable, the original Sift-GPU code allowed only a
single iteration.

In the rest of the paper we quickly describe the
SIFT detector and explain the relations and differ-
ences between the Laplacian operator, the Difference
of Gaussians and the determinant of the Hessian ma-
trix (Section 2). In Section 3 we sketch the GPU
implementation and analyze the computational cost
of individual components. Experiments in Section 4
show that the Hessian indeed achieves better perfor-
mance than original SIFT and that the GPU and CPU
implementations of Hessian give very similar results.

2. Laplacian of Gaussian, Difference of Gaus-
sians and Determinant of Hessian Matrix

Let us consider a grayscale image to be a dis-
cretized form of an underlying real-valued continu-
ous function f(x, y) : R2 → R. Its Gaussian scale-
space representation L(x, y, t) : R3 → R is then
defined as

L(x, y; t) = g(x, y, t) ∗ f(x, y)

where

g(x, y, t) =
1

2πt
e−

x2+y2

2t

is a rotationally symmetric 2D Gaussian kernel
parametrized by variance t = σ2, and where ∗ de-
notes convolution. Partial Gaussian derivatives of
the image at a given scale t are then written as

Lxαyβ (·, ·, t) = ∂xαyβL(·, ·, t)
= (∂xαyβg(·, ·, t)) ∗ f(·, ·).

The Hessian matrix for a given t is a square matrix

of second-order partial derivatives

H =


∂2(f ∗ g)

∂x2
∂2(f ∗ g)

∂x ∂y
∂2(f ∗ g)

∂x ∂y

∂2(f ∗ g)

∂y2

 =

(
Lxx Lxy

Lxy Lyy

)
.

Let λ1 and λ2 denote the eigenvalues of the Hes-
sian matrix. Laplacian (or the Laplace operator, the
sum of second partial derivatives) of the Gaussian is
then

∇2L = Lxx + Lyy = λ1 + λ2.

The Laplacian of Gaussian, appropriately normal-
ized for different scales [7], is a basis for one of
the first and also most common detector of blob-
like interest points. Local scale-space extrema are
detected that are maxima/minima of ∇2L simulta-
neously with respect to both space (x, y) and scale
t [5]. In discrete domain, interest points are detected
if the value of ∇2L at this point is greater/smaller
than all values in its 26-neighbourhood. Locations
of such points are covariant with translations, rota-
tions and rescaling in the image domain. If a scale-
space maximum is found at a point (x0, y0; t0) then
after a rescaling of the image by a scale factor s
there will be a corresponding scale-space maximum
at (sx0, sy0; s

2t0) [6].
The Laplacian of the Gaussian operator

∇2L(x, y, t) can be approximated [7] with a
difference between two Gaussian-smoothed images
at different scales t and t+ ∆t

∇2L(x, y; t) ≈ t

∆t
(L(x, y; t+ ∆t)− L(x, y; t)) .

This approach is referred to as the Difference of
Gaussians (DoG). In fashion similar to the Laplacian
detector, interest points are detected as extrema in the
3D scale-space. The Difference of Gaussian is used
in the SIFT algorithm [8].

Another differential interest point detector is de-
rived from the determinant of the Hessian matrix H

detHL(x, y; t) = (LxxLyy − L2
xy) = λ1λ2.

At image locations where the determinant is positive
the image contains a blob-like structure. The Hes-
sian matrix will there either be positive or negative
definite, indicating presence of either bright or dark
blobs. If the determinant of the Hessian matrix is
negative, the matrix is indefinite, which indicates a
saddle-like interest point [5].

The determinant of the Hessian operator has bet-
ter scale selection properties under affine image
transformations than the Laplacian operator or its
Difference-of-Gaussians approximation [7]. It was
also shown to perform significantly better for image-
based matching using local SIFT-like or SURF-like
image descriptors, leading to higher efficiency and
precision scores [7]. In an approximation computed
from Haar wavelets it is the basis for the interest
point detector in SURF [2].

3. GPU Implementation and Computation
Time Analysis

The GPU interest point implementation proceeds
in steps shown in Figure 1. First, the input image is
loaded and transferred to a GPU texture. The scale
pyramid data structures, which make up the major-
ity of the GPU memory required, are allocated once
at the beginning, and reallocated only in case a big-
ger image is eventually processed later. The alloca-
tion typically takes several hundreds of milliseconds.
Initial image upscaling by a factor of two, which
is sometimes used in feature detection, is not per-
formed. The scale space pyramid is then filled – a
process that involves smoothing with Gaussian ker-
nels with multiple std. deviations. Keypoints are de-
tected as scale-space extrema of the determinant of
the Hessian matrix and their locations are collected
to a linear list. Optionally, the points are ordered by
the response (the absolute value of the determinant)
and only the top K points are kept for further pro-
cessing. Keypoint orientations are then determined,
with approximately 20% of the points ending with
two or more orientations assigned. The points, now
with the orientations, are again collected to a list and
SIFT descriptors are computed.

Figure 2 shows the execution speed measured on
three GPU cards. The photo shown on left, which
represents a typical picture used in large-scale im-
age retrieval tasks, was resized to eight different res-
olutions. Three CUDA-enabled graphics cards were
tested: NVidia GeForce GT 730M (384 CUDA cores
in 2 streaming multiprocessors, 1024MB DDR3
memory, 64-bit bus) is a representative of a common
mobile/laptop GPU. NVidia GTX 750Ti (640 CUDA
cores in 5 SMs, 2048MB GDDR5 memory, 128-bit
bus) represents a gaming desktop card, and NVidia
GTX Titan Black (2880 CUDA cores in 15xSMs,
6144MB GDDR5 memory, 384-bit bus) is a server
card. Additionally, execution times of the reference

Load image
(Re)Allocate

pyramid
Pyramid

construc�on
Keypoint
detec�on

Linear list of
detected

points

Top K
selec�on

Keypoint
orienta�ons

Mul�‐
orienta�on
linear list

Descriptors
GPU code

CPU code

Figure 1. Block diagram of the computation pipeline. CPU code shown in yellow, GPU code in blue.

2592x1944 1920x1440 1600x1200 1280x960 1024x768 800x600 640x480 320x240

GT 730M 231,13 142,53 108,01 78,91 60,67 46,57 36,06 20,59

GTX 750Ti 64,08 43,25 35,67 27,57 24,02 19,05 17,15 11,09

GTX Titan 38,5 29,55 24,81 20,75 18,53 16,67 14,95 10,78

i7 4770 306,67 174,79 125,12 86,61 61,3 40,94 29,67 9,91

0

50

100

150

200

250

300

350

Ti
m

e
[m

s]

Total �me (excluding image load and pyramid alloca�on)

Figure 2. Detection time for a test image (left) at eight different resolutions (right). Three GPUs were measured, together
with a reference CPU implementation.

CPU implementation running on a current desktop
CPU (i7 4470) are reported. While the mobile GPU
is only slightly faster than the CPU, the other two
GPU cards are roughly five and eight times faster.

Figure 3 shows a break down of load distribution
over individual stages of the keypoint detection pro-
cess (refer to Fig. 1). The analysis is shown for the
desktop (left) and the mobile (right) GPUs. While
the desktop card is about five times faster, the pro-
portional distribution of the load is very similar.

Comparing the execution speed of the original
Sift-GPU implementation (using the Difference of
Gaussians) with our Hessian-based detector, see
Fig. 4, we observe that the quality improvement
demonstrated below in Experiments comes at no ad-
ditional computational cost.

Finally in Figure 5 we show the timing when re-
questing only the best K keypoints. As expected,
the stages preceding the top K selection are not af-
fected. The stages following, orientation estima-
tion and computation of the descriptor, take longer
for more keypoints, although the increase is sub-
linear until the GPU processing power is saturated
at around 8000 descriptors computed in parallel.

4. Experiments

The performance of the proposed GPGPU im-
plementation of the determinant-of-Hessian detec-
tor was compared with other publicly available de-
tectors, based on the Difference of Gaussians, mul-
tiscale Laplacian and the determinant of the Hes-
sian matrix. In particular, we have evaluated
Lowe’s[8] original version of SIFT and its VLFeat
re-implementation, CPU implementation of the Hes-
sian and the Laplacian, and the original GPU code
of SiftGPU. SURF detector [2], which is based on
a fast approximation of the Hessian matrix, is also
included. Two sets of experiments are presented:
first one evaluating transformation invariance of the
detectors in terms of repeatability and the number
of correspondences, second one evaluating perfor-
mance in a retrieval system.

4.1. Parameter Setting

One of the advantages of the determinant of Hes-
sian based detector is in responding to an additional
type of local features – saddle points [6]. In our ini-
tial experiments on a large set of images, we ob-
served that the number of saddle points in natural
images is about the same as the number of bright
and dark blobs together. Therefore the Hessian gives
roughly twice as many points as the Laplacian/DoG

2592x1944 1920x1440 1600x1200 1280x960 1024x768 800x600 640x480 320x240

21,86 17,21 14,82 12,49 11,88 9,94 9,05

1,54 1,21 1,25 1,1 1,12 0,78 0,95

3,56 3,3 3,03 2,81 2,58 2,34 2,13

4,99 2,93 2,16 1,5 1,06 0,77 0,61

15 8,57 6,2 4,21 2,95 2,03 1,55

17,13 10,03 8,21 5,46 4,43 3,19 2,86

0

10

20

30

40

50

60

70

Timing for GTX 750Ti

6,26

0,55

1,51

0,31

0,81

1,65

Time [ms]

Descriptors

Mul�‐orienta�on linear list

Keypoint orienta�on

Linear list of detected points

Keypoint detec�on

Pyramid construc�on

2592x1944 1920x1440 1600x1200 1280x960 1024x768 800x600 640x480 320x240

62,71 43,23 34,02 27,24 23,46 18,39 15,21

3,06 2,81 2,69 2,52 2,25 1,98 1,89

9,2 7,92 7,17 6,57 5,95 5,36 4,8

23,96 13,31 9,59 6,41 4,15 2,81 1,96

62,03 34,59 24,45 15,99 10,66 7 4,79

70,17 40,67 30,09 20,18 14,2 11,03 7,41

50

100

150

200

250

Time [ms] Timing for GT 730M

9,35

1,48

3,24

0,77

1,89

3,86

Descriptors

Mul�‐orienta�on linear list

Keypoint orienta�on

Linear list of detected points

Keypoint detec�on

Pyramid construc�on

Figure 3. Execution time of individual stages of the computation pipeline (refer to Fig. 1), evaluated at several image
resolutions, with a default threshold on the detector response. The desktop GPU is about five times faster than the mobile
GPU, but the relative load distribution between individual stages is virtually identical. Also the relation of the execution
speed and image resolution is similar.

2592x1944 1920x1440 1600x1200 1280x960 1024x768 800x600 640x480 320x240

22,4 18,61 15,85 13,6 12,09 11,16 9,24 7,13

1,53 1,4 1,18 1,03 0,98 1,06 0,74 0,78

3,57 3,43 3,14 2,84 2,65 2,48 2,17 1,69

13,37 9,63 8,13 6,41 5,16 4,99 3,69 2,98

14,67 8,37 5,97 4,02 2,77 1,95 1,4 0,75

20,76 13,12 9,85 7,04 5,32 4,71 3,34 2,29

0

10

20

30

40

50

60

70

80

90

Timing for GTX 750TiTime [ms]

Descriptors

Mul�‐orienta�on linear list

Keypoint orienta�on

Linear list of detected points

Keypoint detec�on

Pyramid construc�on

Figure 4. Execution time of the original Sift-GPU code,
evaluated at several image resolutions. Compare to the
timing of our Hessian-based detector on the same hard-
ware (Fig. 3 left). The improved qualitative performance,
demonstrated in Section 4, comes with a negligible com-
putational cost.

detectors, if detector configurations and thresholds
are kept the same. To take an advantage of these
additional points while keeping the representations
comparable in size for the experiments, the detected
points in each image were ordered by the absolute re-
sponse value of the detector and the best 1000, 2000
and 4000 points were selected for evaluation. Fi-
nally, to diminish the slight differences in detection
of dominant orientation, the orientations were fixed
to vertical in the retrieval experiment, and were not

topK = 1 10 100 1000 2000 5000 10000 25000

0,48 1,84 6,18 12,15 15,75 24,27 36,89 71,36

0,11 0,29 0,8 1,23 1,5 1,69 2,17 2,82

0,22 0,54 1,5 2,72 3,17 3,75 4,26 5,79

1,63 1,81 2,35 2,65 2,85 2,78 3,12 3,08

5,62 5,68 6,15 6,48 6,76 6,72 7,01 6,63

22,33 22,29 22,32 22,34 22,35 22,34 22,32 22,3

0

50

100

150

200

250

all

144,27

5,98

8,91

0

5,07

22,46

17,11 17,05 16,79 16,94 17,02 16,63 17,18 16,87 17,01

Time [ms] Timing for GTX 750Ti

Descriptors

Mul�‐orienta�on linear list

Keypoint orienta�on

Linear list of detected points

Keypoint detec�on

Pyramid construc�on

Figure 5. Execution times when a limited number of
K best points is requested. Computed on the full size
2592x1944 image without a threshold on detector re-
sponse. As expected, the processing time of the steps pre-
ceding the top K selection are not affected, while the later
steps, most importantly the computation of the descriptor,
scale with the number of points requested.

used in the detector repeatability experiment.

4.2. Datasets and Evaluation Protocols

A standard benchmark protocol and dataset for
evaluation of covariant interest point detectors was
proposed by Mikolajczyk et al. [9]. It consists of
eight sets, each of six images, with an increasing
effect of image distortions: camera viewpoint, im-
age scale, isotropic blur, underexposure and image

compression. We have selected one scene with each
distortion. Ground truth transformations are known,
relating reference images of each set to all other im-
ages in that set. The transformations are used to com-
pute repeatability scores by considering the overlap
error ε of all pairs of detected points:

ε(RE1 , RE2) = 1−
RE1 ∩RH>12E2H

−1
12

RE1 ∪RH>12E2H
−1
12

,

where RE represents the elliptic region defined by
x>REx = 1 and H12 is the known homography be-
tween the reference 1 and the test image 2. To com-
pensate for different sizes of regions from different
detectors, a scale factor is applied such that a region
RE1 is transformed to a normalized size (equivalent
to a radius of 30 pixels). Before evaluating the over-
lap error, region RE2 is scaled using the same factor.

The image retrieval performance was tested us-
ing the Oxford buildings dataset and protocol defined
by Philbin et al. [10]. In short, five queries are de-
fined for each of eleven landmarks in Oxford, and a
ground truth shortlist of positive examples is given.
For each query an average precision (AP) is com-
puted as the area below the precision-recall curve.
Finally, a mean AP (mAP) is reported for the whole
set of 55 query images.

4.3. Evaluation of detectors Repeatability

Repeatability is of one of the important properties
of interest point detectors. It is a measure that ap-
proximates the probability of the point redetection
given the distortion between images. The detectors
should be configured to provide comparable numbers
of points to make the assessment fair. The repeata-
bility score is complemented with the absolute num-
ber of corresponding points detected – the predicted
upper bound of the matching problem. Figures 6, 7
and 8 show the measured scores when the number of
detected points was limited to 1000, 2000, and 4000
respectively.

We observe that all the three DoG-based detectors
(original Lowe’s, from VLFeat and SiftGPU) per-
form virtually the same, as do the two Hessian-based
detectors (CPU and GPU implementations). This
strongly indicates that the measured performance is
indeed inherent of the methods and not of a partic-
ular implementation. We also see that the Hessian
performs in most cases better than the Laplacian and
its DoG approximation. The additionally detected
saddle points complement the blobs well and provide

valuable correspondences between the images. With
the exception of image blur, the fast but approximate
SURF performs slightly worse than the other meth-
ods.

4.4. Evaluation in Image Retrieval

The repeatability of a detector predicts its pairwise
matching potential. To assess the discrimination abil-
ity of a coupling of a detector (DoG, Laplacian, or
Hessian) with a descriptor (SIFT), a large-scale im-
age retrieval experiment was performed. The Oxford
building dataset with about 5000 images was used.
Each detector was again run in three configurations,
requesting at most 1000, 2000, resp. 4000 best inter-
est points. The SIFT descriptor was computed from
a local neighborhood around each point and stored.
As there are no significant orientation changes in the
dataset, orientation of the interest points was fixed as
vertical in this experiment. The measurement region
sizes – radius of the SIFT index w.r.t. the detected
scale of a interest point – were kept on their default
values: 6.0 for DoG detectors (Lowe, VLFeat), 5.2
for Laplacian and CPU and GPU Hessian. The rea-
soning behind this is that the DoG detectors return
slightly smaller (5-10%) intrinsic scale, determined
by the smaller of the two subtracted Gaussians.

A standard Bag of Words (BoW) approach with
and without Spatial Verification (SV) was used [13,
10]. SIFT descriptors were quantized into three dif-
ferent vocabularies for each detector, with: 500k vi-
sual words for 1000 points/image, and 1M visual
words for 2000 resp. 4000 interest points per im-
age. The TF-IDF scoring in an efficient inverted in-
dex was used to get the BoW ranking. The spatial
verification estimated a similarity transformation be-
tween the query and each of the top 1000 ranked
images. Finally, images were re-ranked based on
number of correspondences. The ranking for each
query was evaluated using Oxford buildings protocol
and an mean Average precision computed as defined
in [10].

The results are summarized in Table 1. The Hes-
sian detectors consistently outperformed both the
Laplacian and the Difference of Gaussians, regard-
less the size of the representation. Particularly for the
highest number of interest points per image (4000),
where both DoG implementations were struggling to
deliver this many points, their performance dropped.
Thus we can conclude that the complementary saddle
points detected by the Hessian detector consistently

Viewpoint angle
20 25 30 35 40 45 50 55 60

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Viewpoint - Graffiti, K = 1000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Scale change
1 1.5 2 2.5 3 3.5 4

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Zoom+Rotation - Bark, K = 1000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Increasing blur
2 2.5 3 3.5 4 4.5 5 5.5 6

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Blur - Bikes, K = 1000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Decreasing light
2 2.5 3 3.5 4 4.5 5 5.5 6

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Illumination - Cars, K = 1000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Viewpoint angle
20 25 30 35 40 45 50 55 60

N
 o

f c
or

re
sp

on
de

nc
es

0

100

200

300

400

500

600
Viewpoint - Graffiti, K = 1000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Scale change
1 1.5 2 2.5 3 3.5 4

N
 o

f c
or

re
sp

on
de

nc
es

0

50

100

150

200

250

300

350

400
Zoom+Rotation - Bark, K = 1000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Increasing blur
2 2.5 3 3.5 4 4.5 5 5.5 6

N
 o

f c
or

re
sp

on
de

nc
es

200

250

300

350

400

450

500

550

600

650

700
Blur - Bikes, K = 1000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Decreasing light
2 2.5 3 3.5 4 4.5 5 5.5 6

N
 o

f c
or

re
sp

on
de

nc
es

450

500

550

600

650

700
Illumination - Cars, K = 1000

SIFT Lowe
SIFT VLFeat
Laplacian
CPU Hessian
GPU Hessian
GPU DoG

Figure 6. Repeatability score and number of correspondences on image sequences with (from left to right): a significant
view angle change, scale change, image blur and exposure change. Number of features per image was limited to the best
1000 according to absolute response value.

Viewpoint angle
20 25 30 35 40 45 50 55 60

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Viewpoint - Graffiti, K = 2000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Scale change
1 1.5 2 2.5 3 3.5 4

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Zoom+Rotation - Bark, K = 2000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Increasing blur
2 2.5 3 3.5 4 4.5 5 5.5 6

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Blur - Bikes, K = 2000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Decreasing light
2 2.5 3 3.5 4 4.5 5 5.5 6

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Illumination - Cars, K = 2000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Viewpoint angle
20 25 30 35 40 45 50 55 60

N
 o

f c
or

re
sp

on
de

nc
es

0

200

400

600

800

1000

1200
Viewpoint - Graffiti, K = 2000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Scale change
1 1.5 2 2.5 3 3.5 4

N
 o

f c
or

re
sp

on
de

nc
es

0

100

200

300

400

500

600

700

800
Zoom+Rotation - Bark, K = 2000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Increasing blur
2 2.5 3 3.5 4 4.5 5 5.5 6

N
 o

f c
or

re
sp

on
de

nc
es

200

400

600

800

1000

1200

1400

1600
Blur - Bikes, K = 2000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Decreasing light
2 2.5 3 3.5 4 4.5 5 5.5 6

N
 o

f c
or

re
sp

on
de

nc
es

200

400

600

800

1000

1200

1400

1600
Illumination - Cars, K = 2000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Figure 7. Repeatability score and number of correspondences on image sequences with (from left to right): a significant
view angle change, scale change, image blur and exposure change. Number of features per image was limited to the best
2000 according to absolute response value.

Viewpoint angle
20 25 30 35 40 45 50 55 60

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Viewpoint - Graffiti, K = 4000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Scale change
1 1.5 2 2.5 3 3.5 4

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Zoom+Rotation - Bark, K = 4000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Increasing blur
2 2.5 3 3.5 4 4.5 5 5.5 6

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Blur - Bikes, K = 4000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Decreasing light
2 2.5 3 3.5 4 4.5 5 5.5 6

R
ep

ea
ta

bi
lit

y
%

0

10

20

30

40

50

60

70

80

90

100
Illumination - Cars, K = 4000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Viewpoint angle
20 25 30 35 40 45 50 55 60

N
 o

f c
or

re
sp

on
de

nc
es

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Viewpoint - Graffiti, K = 4000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Scale change
1 1.5 2 2.5 3 3.5 4

N
 o

f c
or

re
sp

on
de

nc
es

0

200

400

600

800

1000

1200

1400

1600

1800
Zoom+Rotation - Bark, K = 4000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Increasing blur
2 2.5 3 3.5 4 4.5 5 5.5 6

N
 o

f c
or

re
sp

on
de

nc
es

0

500

1000

1500

2000

2500

3000
Blur - Bikes, K = 4000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Decreasing light
2 2.5 3 3.5 4 4.5 5 5.5 6

N
 o

f c
or

re
sp

on
de

nc
es

0

500

1000

1500

2000

2500

3000
Illumination - Cars, K = 4000

GPU Hessian
CPU Hessian
GPU SIFT
CPU SIFT Lowe
CPU SIFT VLFeat
CPU OpenSURF
CPU Laplacian

Figure 8. Repeatability score and number of correspondences on image sequences with (from left to right): a significant
view angle change, scale change, image blur and exposure change. Number of features per image was limited to the best
4000 according to absolute response value.

Method Max.feat. Lowe DoG VLFeat DoG CPU Laplacian CPU Hessian GPU Hessian

BoW
1000 0.551 0.512 0.572 0.584 0.579
2000 0.517 0.547 0.568 0.625 0.629
4000 0.558 0.585 0.617 0.643 0.615

BoW+SV
1000 0.590 0.554 0.601 0.627 0.621
2000 0.584 0.594 0.617 0.675 0.678
4000 0.639 0.650 0.692 0.716 0.699

Table 1. Image retrieval experiment. The Bag of Words (BoW) method with and without Spatial Verification (SV) was
evaluated with different interest point implementations. Features were limited to best 1000, 2000 resp. 4000 points per
image based on detector’s response. The values in the table are the measured mean average precisions, defined in [10].

improve the retrieval performance.

5. Conclusion

We have implemented an interest point detector
based on the determinant of the Hessian matrix. Such
a detector was previously shown, and the observation
was confirmed in our experiments, to be superior in
the quality of detected points to commonly used de-
tectors based on the Difference of Gaussians. Start-
ing with a publicly available GPU implementation of
SIFT detector, we have implemented several modi-
fications and experimentally verified that the perfor-
mance indeed improved. The implementation, which
is in CUDA for compatible NVidia graphics cards,
was published and made available.

Acknowledgements

The authors were supported by Toyota Motor Eu-
rope.

References

[1] M. Agrawal, K. Konolige, and M. R. Blas. Censure:
Center surround extremas for realtime feature detec-
tion and matching. In D. A. Forsyth, P. H. S. Torr,
and A. Zisserman, editors, ECCV (4), volume 5305
of Lecture Notes in Computer Science, pages 102–
115. Springer, 2008. 2

[2] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool.
Speeded-up robust features (surf). Computer Vision
and Image Understanding (CVIU), 110(3):346–359,
June 2008. 2, 3, 4

[3] M. Ebrahimi and W. W. Mayol-Cuevas. SUSurE:
Speeded Up Surround Extrema feature detector and
descriptor for realtime applications. pages 9–14,
Aug. 2009. 2

[4] H. Fassold and J. Rosner. A real-time gpu imple-
mentation of the sift algorithm for large-scale video
analysis tasks. In IS&T/SPIE Electronic Imaging,
pages 940007–940007. International Society for Op-
tics and Photonics, 2015. 2

[5] T. Lindeberg. Scale-Space Theory in Computer Vi-
sion. Kluwer, 1994. 3

[6] T. Lindeberg. Feature detection with automatic scale
selection. IJCV, 30(2):79–116, 1998. 3, 4

[7] T. Lindeberg. Image matching using generalized
scale-space interest points. Journal of Mathemati-
cal Imaging and Vision, 52(1):3–36, 2015. 3

[8] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal on Com-
puter Vision, 20(2):91–110, 2004. 1, 3, 4

[9] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zis-
serman, J. Matas, F. Schaffalitzky, T. Kadir, and
L. V. Gool. A comparison of affine region detectors.
IJCV, 65(1-2):43–72, 2005. 5

[10] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zis-
serman. Object retrieval with large vocabularies and
fast spatial matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, 2007. 6, 8

[11] E. Rosten and T. Drummond. Machine learning
for high-speed corner detection. In A. Leonardis,
H. Bischof, and A. Pinz, editors, Computer Vision
ECCV 2006, volume 3951 of Lecture Notes in Com-
puter Science, pages 430–443. Springer Berlin Hei-
delberg, 2006. 2

[12] E. Rublee, V. Rabaud, K. Konolige, and G. Brad-
ski. Orb: An efficient alternative to sift or surf. In
Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2564–2571, Nov 2011. 2

[13] J. Sivic and A. Zisserman. Video google: A text
retrieval approach to object matching in videos. vol-
ume 2, pages 1470–1477, 2003. 6

[14] M. Soltan Mohammadi and M. Rezaeian. Siftcu:
An accelerated cuda based implementation of sift.
In Third Symposium on Computer Science and Soft-
ware Engineering, Sharif University, Tehran, vol-
ume 3, 2013. 2

[15] C. Wu. SiftGPU: A GPU implementation of scale
invariant feature transform (SIFT). http://cs.
unc.edu/˜ccwu/siftgpu, 2007. 2

http://cs.unc.edu/~ccwu/siftgpu
http://cs.unc.edu/~ccwu/siftgpu

