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Abstract. We revisit the problem of local optimiza-
tion (LO) in RANSAC for homography estimation.
The standard state-of-the-art LO-RANSAC improves
the plain version’s accuracy and stability, but it may
be computationally demanding, it is complex to im-
plement and requires setting multiple parameters.
We show that employing L1 minimization instead of
the standard LO step of LO-RANSAC leads to results
with similar precision. At the same time, the pro-
posed L1 minimization is significantly faster than the
standard LO step of [8], it is easy to implement and
it has only a few of parameters which all have in-
tuitive interpretation. On the negative side, the L1

minimization does not achieve the robustness of the
standard LO step, its probability of failure is higher.

1. Introduction

RANSAC [3] is a robust model fitting algorithm
that is the standard method used for two-view geom-
etry estimation [5]. The plain version of RANSAC
proceeds as follows: (i) randomly sample the mini-
mum number of points required to calculate model
parameters, (ii) compute the cardinality of the set
consistent with that model, i.e. the number of in-
liers, and (iii) terminate if the probability that a bet-
ter model than the one best so far will be found
falls under a predefined threshold. The precision of
the model returned by the algorithm is typically im-
proved by least square fitting of the inliers of the best
mode.

It has been observed [11] that the termination cri-
terion (iii) stops the process later than expected given
the recovered percentage of inliners. The discrep-
ancy is due to a generally incorrect (overoptimistic)
assumption that every minimal sample of inliers gen-
erates a “good” model, i.e. a model that will be con-

sistent with all correct correspondences.
The problem was first addressed in a paper by

Chum et al [2] who proposed an additional RANSAC
step, the so called local optimization (LO). The LO
step is employed whenever a new candidate model
M is the best one so far found in the RANSAC loop,
i.e. it has more inliers than any of the models esti-
mated from the random minimal samples evaluated
so far. Chum et al [2] proved that with the strategy,
the LO step is run only log(k) times, where k is the
number of random models tested.

The local optimization step[2] performs various
heuristic procedures with the objective of increasing
the accuracy ofM , such as generating hypotheses by
resampling the inliers of M and performing iterative
least square estimation combined with scheduled in-
lier threshold changes. The standard implementation
of RANSAC with the local optimization step, found
in the commonly used publicly available code [10], is
a combination of the above-mentioned heuristic pro-
cedures.

The choice and parameter settings of local opti-
mization methods influence the speed and accuracy
of the algorithm. In the state-of-the-art version [8],
the LO step executes a complex procedure which in-
volves repeated sampling from inliers of M and re-
peated iterative least squares minimisation. As the
sampling is involved, it is stochastic1. Due to both
repeated sampling and iterative least squares, it is
so computationally demanding, in comparison with
RANSAC steps (i) and (ii), that despite being exe-
cuted only rarely, the LO step significantly influences
the overall running time.

In this paper, we propose to replace the complex
LO procedure of Lebeda et al. by minimization of the

1Since the outer loop of RANSAC is stochastic, the inner
sampling does not change the character of the algorithm.



1: procedure STANDARD LO
2: Input: M (model estimated by LSq),

I (inliers)
3: for r = 1→ reps do
4: sample S drawn from inliers
5: model M is estimated from S
6: iterative least squares on M
7: end for
8: return best model
9: end procedure

1: procedure L1-BASED LO
2: Input: M (minimum sample model),

I (inliers)
3: while stopping condition not met do
4: M ←model estimated from inliers by

IRLS optimization
5: I ← inliers to M
6: end while
7: return M
8: end procedure

Table 1: Comparison of the standard and proposed local optimization procedures in RANSAC – left and right
columns, respectively. IRLS stands for interated re-weighted least squares. Note that the standard LO method
includes several rounds of IRLS s which are themselves computationally demanding (for details, see [8]).The
iteration stops if either the change in the cost function is below 10−3 or the maximum number of iterations is
reached (set to 5).

sum of L1 norms of the residuals, ie. the algebraic
errors of the model on individual points. The mini-
mizer of the L1 norm, also known as geometric me-
dian, is robust to a modest contamination by outliers.
This means that RANSAC becomes less sensitive to
the inlier-outlier threshold. The threshold, a critical
parameter of RANSAC, can be set more loosely and
thus cover a wide range of problems. Moreover, the
L1-based procedure need not include least square es-
timation with multiple thresholds, thus saving time.

In practice we replace the L1 norm by the Huber
robust kernel response to the inlier algebraic errors.
The Huber cost function is defined in Eq. 6. The Hu-
ber kernel is differentiable and convex and the global
minimum of the cost function can be found by gra-
dient descent. The gradient minimization alternates
with the inlier-outlier selection process. The alternat-
ing minimisation can be seen as local optimization of
the truncated Huber kernel. The procedure has only a
small number of parameters that have intuitive mean-
ing, it is simple, and deterministic.

We show that the minimization produces errors
which are comparable to the standard LO-RANSAC,
while being computationally much less expensive –
of an order of magnitude in our experiments com-
pared to the standard local optimization.

2. Method

The difference of the standard and proposed LO
method is presented in Table 1. The L1 mini-
mization is carried out by iterated reweighted least
squares (IRLS). The particular instantiation of IRLS
is knows as the generalized Weiszfeld algorithm [1].

Weiszfeld proved that the geometric mean minimia-
tion by IRLS requires solving repeated least squares
problems where each data point is weighted by the
reciprocal of its residual to the current estimate of
the model. The algorithm has to be modified to avoid
singularities when some point is exactly consistent
with the model, i.e. it has a zero residual. To avoid
the problem, we replace L1 minimization with Huber
kernel minimization. In the implementation, it only
means that points with small residuals are not scaled.

First, the necessary notation is introduced. The L2
2

norm (for a vector r ∈ RD) is defined as:

‖r‖22 =
D∑
j=1

|rj |2, (1)

the L1
2 norm (for r ∈ RD) as

‖r‖12 =

√√√√ D∑
j=1

|rj |2 (2)

2.1. Homography estimation by algebraic error
minimization in L2

2 and L1
2 norms

Let the number of correspondences be M . The
data matrix Z is computed from correspondences by
a standard procedure ([5]): Let (x, y) and (x′, y′) be
the correspondence pair. It generates two rows into
the data matrix Z:[

x y 1 0 0 0 −x′x −x′y −x′
0 0 0 x y 1 −y′x −y′y −y′

]
.

(3)



Let z(i) denote the two rows generated by i-th corre-
spondence. The homography h is estimated from Z
by one of the following optimizations:
The L2

2 optimization

h = argmin
ĥ

M∑
i=1

‖z(i)ĥ‖22 , (subj. to ĥ>ĥ = 1)

(4)
The minimization is solved by computing the spec-
tral decomposition of Z>Z and taking the eigenvec-
tor corresponding to the smallest eigenvalue. The
algorithm has the following properties: it is fast,
but not robust with a breakdown point of zero [7]
– in general a single outlier can make h arbitrarily
wrong2.
The L1 optimization, defined as

h = argmin
ĥ

M∑
i=1

‖z(i)ĥ‖1 , (subj. to ĥ>ĥ = 1)

(5)
is robust and can be solved by the generalized
Weiszfeld algorithm, an instance of IRLS. Instead
of modifying the algorithm to take of the techni-
cal problems associated with the Weiszfeld algorithm
arising if one of the residuals vanishes, we instead
optimize the response to the Huber kernel.
Huber optimization is defined as

h = argmin
ĥ

M∑
i=1

{
1
2‖r

(i)‖22 : ‖r(i)‖12 ≤ k
k(‖r(i)‖12 − k

2 ) : ‖r(i)‖12 ≥ k

(subj. to ĥ>ĥ = 1 and r(i) = z(i)ĥ)

(6)

The minimization is carried out by a slightly
modified Weiszfeld algorithm ([12]), an iterative
reweighted least squares method:

1: procedure IRLS OPTIMIZATION

2: Initialize h as the estimate obtained from the
minimal sample h

3: while stopping condition not met do
4: Compute the geometric error r(i):

r(i) = ‖z(i)h‖12 (∀i = 1, 2, ...,M) (7)

5: Reweight Z:

z(i) ←
√
w(i)z(i) (8)

(∀i = 1, 2, ...,M)

2In RANSAC, the error on a single point is bounded by the
inlier threshold. In practice, points close to the the inlier-outlier
boundary make the outcome of standard RANSAC unstable.

6: Recompute h using L2
2 optimization (4)

7: end while
8: end procedure

The iteration stops when∑
i

r
(i)
t −

∑
i

r
(i)
(t+1) ≈ 0

, i.e. if the value of the cost function does not change
between consecutive iterations or after 5 iterations
are completed. The second condition reflects the em-
pirical observation that most of the time, the IRLS
algorithm converges after 3 iterations and it is used
only as a guarantee against an infinite loop.

In the case of L1
2 optimization, the weight w(i) is

set to 1/
(
‖r(i)‖12 + δ

)
. A small constant δ is used

to avoid the problem of dividing by zero when the
residuals vanish.

The L1 optimization proposed above introduces
additional parameter δ in order to deal with the di-
vision by zero, but its interpretation is not clear. Us-
ing the Huber cost function instead of the L1 norm
avoids the numerical issue. The weight w(i) is set as
follows ([13]).

w(i) =

{
1 : ‖r(i)‖12 ≤ k
k/‖r(i)‖12 : ‖r(i)‖12 ≥ k

The additional Huber parameter k can be intuitively
seen as a smoothing factor between L2

2 and L1
2 norms

or, alternatively, like a lower bound on the inlier
threshold.

The motivation for using this optimization is its
robustness. It is closely related to geometric me-
dian computation and the formulation is convex.It is
a well known property of median that it is robust to
outliers for up to 50% contamination of samples by
the outliers. The property makes the procedure non
sensitive to the choice of the inlier-outlier threshold
of the “outer” RANSAC loop.

3. Experiments.

We compared the standard RANSAC, the state-
of-the-art LO-RANSAC and the proposed L1-based
RANSAC on a dataset consisting of 42 image
pairs, including selected images from the ZuBuD
dataset [4], images from Lebeda’s homog dataset [9]
used for evaluation of the LO-RANSAC, and images
from the symbench dataset [6]. The Hessian Affine
feature detector with SIFT descriptor was used for
obtaining the tentative correspondences.



Image Qty↓ RANSAC LO-RANSAC L1-based RANSAC

05

I 953.2 ±0.9 (950-956) 953.0 ±0.0 (953-953) 953.0 ±0.1 (952-953)
LO time (µs) 0.0 ±0.0 (0-0) 29158.8 ±3383.8 (27499-42497) 3934.6 ±1035.1 (1901-6479)

I (%) 76.9 ±0.1 (77-77) 76.9 ±0.0 (77-77) 76.9 ±0.0 (77-77)
Samp 11.8 ±5.7 (7-35) 11.8 ±5.7 (7-35) 7.5 ±1.9 (7-19)

Time(ms) 6.1 35.5 13.7
Error 0.74 ±0.05 (0.6-0.9) 0.72 ±0.00 (0.7-0.7) 0.73 ±0.01 (0.7-0.8)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1) 2.2 ±0.9 (1-5)

ad
am

I 250.8 ±1.1 (244-252) 251.0 ±0.0 (251-251) 251.0 ±0.0 (251-251)
LO time (µs) 0.0 ±0.0 (0-0) 10922.9 ±1797.6 (8737-15292) 1318.5 ±214.1 (917-1917)

I (%) 97.6 ±0.4 (95-98) 97.7 ±0.0 (98-98) 97.7 ±0.0 (98-98)
Samp 5.0 ±2.6 (2-14) 5.0 ±2.6 (2-14) 2.0 ±0.3 (2-4)

Time(ms) 2.3 14.4 4.4
Error 1.15 ±0.45 (0.4-2.8) 0.77 ±0.05 (0.6-0.8) 0.79 ±0.02 (0.6-0.8)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1) 1.4 ±0.5 (1-2)

bo
at

I 328.4 ±0.5 (328-330) 328.0 ±0.2 (328-329) 328.0 ±0.0 (328-328)
LO time (µs) 0.0 ±0.0 (0-0) 13874.9 ±2006.0 (11071-16489) 1738.3 ±323.7 (917-2428)

I (%) 86.2 ±0.1 (86-87) 86.1 ±0.1 (86-86) 86.1 ±0.0 (86-86)
Samp 6.2 ±2.5 (4-15) 6.2 ±2.5 (4-15) 4.1 ±0.4 (4-7)

Time(ms) 2.6 17.8 5.9
Error 1.30 ±0.14 (1.1-2.1) 1.23 ±0.01 (1.2-1.2) 1.24 ±0.00 (1.2-1.2)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1) 1.7 ±0.7 (1-3)

B
ru

ss
el

s

I 450.0 ±3.5 (428-451) 451.0 ±0.0 (451-451) 451.0 ±0.0 (451-451)
LO time (µs) 0.0 ±0.0 (0-0) 16342.6 ±2310.4 (13755-19648) 2094.9 ±347.1 (1090-3084)

I (%) 87.2 ±0.7 (83-87) 87.4 ±0.0 (87-87) 87.4 ±0.0 (87-87)
Samp 8.3 ±4.2 (4-22) 8.3 ±4.2 (4-22) 4.1 ±0.3 (4-6)

Time(ms) 3.4 20.6 6.6
Error 1.39 ±0.37 (1.1-3.3) 1.24 ±0.00 (1.2-1.2) 1.24 ±0.00 (1.2-1.3)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1) 1.8 ±0.7 (1-3)

gr
af

I 840.1 ±9.8 (808-848) 846.2 ±0.4 (846-847) 846.0 ±0.0 (846-846)
LO time (µs) 0.0 ±0.0 (0-0) 24032.7 ±2219.6 (21845-29919) 4274.4 ±834.5 (1794-6007)

I (%) 89.9 ±1.1 (87-91) 90.6 ±0.0 (91-91) 90.6 ±0.0 (91-91)
Samp 7.3 ±3.5 (3-20) 7.3 ±3.5 (3-20) 3.2 ±0.7 (3-8)

Time(ms) 4.8 29.5 11.9
Error 1.69 ±0.22 (1.4-2.7) 1.45 ±0.00 (1.4-1.5) 1.45 ±0.01 (1.4-1.6)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1) 1.7 ±0.7 (1-4)

sy
m

no
tr

ed
am

e1
3 I 89.6 ±2.4 (77-93) 91.0 ±0.2 (91-92) 91.0 ±0.2 (90-92)

LO time (µs) 0.0 ±0.0 (0-0) 8090.3 ±1025.8 (7196-10973) 707.8 ±131.0 (437-1009)
I (%) 48.4 ±1.3 (42-50) 49.2 ±0.1 (49-50) 49.2 ±0.1 (49-50)
Samp 110.6 ±53.7 (45-257) 54.0 ±4.0 (45-67) 46.1 ±14.8 (37-123)

Time(ms) 4.2 11.7 5.9
Error 1.81 ±0.62 (1.1-4.7) 1.13 ±0.02 (1.1-1.2) 1.15 ±0.09 (1.1-1.7)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1) 2.9 ±1.2 (1-7)

Table 2: Results on six pairs representing well the whole dataset with the exception of cases in Tab.4. The number of
inliers found (I), the inlier ratio I(%), the LO step time (LO time), the number of RANSAC samples (Samp), CPU time
(time), the mean error on ground truth correspondences (Error) and the number of local optimizations (LO). Values in
bold are means over 100 runs. The ± entries are standard deviations, minimum and maximum are shown in parentheses.
The blue plots represent the stability of each algorithm over 100 runs. The left one represents a probability of a tentative
correspondence to be an inlier (probability on the vertical axis, correspondence index on the horizontal axis). The cor-
respondences were sorted so that the plot is non-increasing. In the ideal case, the plot should look like a rectangle. Any
other shape indicates that some of the tentative correspondences were not classified as inliers/outliers consistently over
the 100 runs. The second plot is a histogram of the first plot.
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Table 3: The dependence of the ground truth error on the inlier threshold (RANSAC green, LO-RANSAC blue,
L1-based RANSAC red). Note that the proposed L1 algorithm yields results very similar to LO-RANSAC. The
ground truth error was averaged over 10 runs for each of the methods. Experimental results demonstrated on
the same image pairs as in Table 2.

The RANSAC parameters common to all three
tested versions used in our experiments are sum-
marized in table 6. The inlier threshold θ is set,
following[8] given σ in the following way:

θ = 5.99 (σS)2

where S = max(w, h)/768 is a scale factor depen-
dent image dimensions. The 5.99 term is the 95%
percentile of the χ2 distribution with two degrees of
freedom.

Additional parameters used for the standard LO-
RANSAC are summarized in Table 7. The proposed



Image Qty↓ RANSAC LO-RANSAC L1-based RANSAC

B
ru

gg
eS

qu
ar

e

I 201.0 ±12.9 (172-234) 227.2 ±1.3 (224-232) 214.9 ±11.4 (195-228)
LO time (µs) 0.0 ±0.0 (0-0) 12567.0 ±1944.9 (10166-16251) 993.8 ±187.2 (598-1650)

I (%) 60.0 ±3.9 (51-70) 67.8 ±0.4 (67-69) 64.1 ±3.4 (58-68)
Samp 52.6 ±24.8 (15-153) 42.5 ±10.9 (15-59) 17.7 ±5.7 (9-41)

Time(ms) 5.2 18.0 5.8
Error 3.50 ±1.25 (1.2-6.2) 2.44 ±0.12 (2.0-2.7) 2.93 ±0.91 (1.3-4.6)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1) 2.7 ±1.2 (1-5)

dl
az

ky

I 11.0 ±0.2 (9-11) 11.0 ±0.0 (11-11) 10.9 ±0.6 (7-11)
LO time (µs) 0.0 ±0.0 (0-0) 1531.3 ±746.7 (603-4434) 249.7 ±68.9 (109-419)

I (%) 14.8 ±0.3 (12-15) 14.9 ±0.0 (15-15) 14.7 ±0.8 (9-15)
Samp 10745.0 ±5429.3 (6963-27356) 8392.7 ±3432.8 (6963-25008) 8220.6 ±3301.0 (4820-19947)

Time(ms) 87.3 76.0 71.6
Error 2.99 ±0.95 (2.6-6.4) 2.61 ±0.00 (2.6-2.6) 5.43 ±20.63 (2.6-204.9)

LO count 0.0 ±0.0 (0-0) 4.7 ±1.6 (1-9) 7.0 ±3.1 (2-21)

Table 4: Results on two image pairs with unusual sensitivity to the inlier threshold. See caption of Tab. 2 for
description of entries.
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Table 5: The dependence of the ground truth error on the inlier threshold (RANSAC green, LO-RANSAC blue,
L1-based RANSAC red) for two failure cases.

confidence 0.95
σ 2.0
sample limit 500000

Table 6: RANSAC parameters

ILSQ iterations 4
ILSQ sample limit 28
threshold multiplier 4
inner RANSAC repetitions 10

Table 7: LO-RANSAC parameters

method does not introduce any new parameters.
Table 2 shows a sample of six image pairs well

representing the results on the whole dataset, with
the exception of a few cases described later. Note
that the proposed L1 optimization is usually about
5 times faster than the standard LO step (see ’LO
time’).Table 4 summarizes the performance on the
few exceptional cases.

The error (see ’Error’ in the table) was computed
by reprojecting hand-made ground truth correspon-
dences (about 8 of them for each image pair) by the
model found by the algorithm used.

Two observations summarize the results: i) the
proposed procedure yields error which is compara-
ble to the standard LO-RANSAC, and ii) it usually
runs approximately 5 times faster (see ’LO time’ in
the table).



Table 3 shows the comparison of the dependence
of the error on the inlier threshold for standard
RANSAC, standard LO-RANSAC and the proposed
method. The results shown on the same subset of
six image pairs which are representative of the whole
dataset. The experiment confirms that the proposed
procedure is able to achieve results similar to the
standard LO-RANSAC.

The results for two exceptional image pairs are
shown in table 5. The standard LO-RANSAC
achieves good results (high stability, low error),
while our proposed algorithm fails to stabilize the
plain RANSAC results (the ’dlazky’ pair is one of
the most challenging ones from our dataset, as there
are only 11 inliers).

4. Conclusions

We have shown that replacing the standard LO
step of LO-RANSAC with minimization of the sum
of Huber kernel responses to residuals has the fol-
lowing properties: it is simple, deterministic and pro-
duces similar errors as the standard LO-RANSAC
and is usually approximately 5 times faster. On the
negative side, in the current implementation, it has
higher probability of failure than the standard LO-
RANSAC.
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