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ABSTRACT

A mixture-model clustering algorithm is presented for robust MRI brain image segmentation in the presence of
partial volume averaging. The method uses additional classes to represent partial volume voxels of mixed tissue type
in the image. Probability distributions for partial volume voxels are modeled accordingly. The image model also
allows for tissue-dependent variance values and voxel neighborhood information is taken into account in the clustering
formulation. Additionally we extend the image model to account for a low frequency intensity inhomogeneity that
may be present in an image. This so-called shading effect is modeled as a linear combination of polynomial basis
functions, and is estimated within the clustering algorithm. We also investigate the possibility of using additional
anatomical prior information obtained by registering tissue class template images to the image to be segmented.
The final result is the estimated fractional amount of each tissue type present within a voxel in addition to the label
assigned to the voxel. A parallel implementation of the method is evaluated using synthetic and real MRI data.
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1. INTRODUCTION

A fundamental operation in many applications of medical image analysis is image segmentation, the object of which is
to associate with each image voxel a particular class based on its attributes, neighborhood information, or geometric
characteristics of objects belonging to the class. This classification is then used by or to constrain higher-level image
analysis and processing algorithms, thus robust and accurate image segmentation is a key element of many medical
imaging applications.

In this work we consider the problem of segmenting magnetic resonance (MR) images, which is made difficult
by the existence of partial volume (PV) averaging and intensity shading artifacts due to limited spatial resolution
of the scanner and RF field inhomogeneity, respectively. To improve the quantitative precision of our segmentation,
we develop a method for determining the fractional content of each tissue class for so-called partial volume voxels
of mixed tissue type, taking into account shading artifacts. Of specific interest in the current work are the primary
tissue constituents of the brain: gray (GM) and white matter (WM) as well as cerebrospinal fluid (CSF).

To our knowledge, two general approaches have been applied to address the problem of partial volume (PV)
segmentation. A mixel model1,2 assumes that every voxel in an image is a PV voxel, consisting of a mixture of
pure tissue classes. The object of segmentation in this case is to determine the relative fraction of each tissue class
present within every image voxel. Because of the number of parameters that must be estimated at each voxel,
either multi-channel data and/or additional constraints are required to obtain the segmentation solution. A second
approach3,4 to dealing with PV voxels has been to marginalize over the variables describing the fractional portions
of each pure tissue class. This produces an additional, new set of partial volume classes, with which each image
voxel may be associated. However, an additional estimation step is necessary to obtain the fractional amount of the
pure tissues in each voxel. In the current work, the latter method is used to adapt the maximum likelihood mixture
model clustering algorithm5–7 for segmentation of PV voxels in MR images of the brain.
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Image intensity artifacts due to RF field inhomogeneity can be either corrected before segmentation as a separate
preprocessing task,4,8,9 or during segmentation where intermediate segmentation results can be utilized. Further
classification of shading correction methods is possible by differentiating between methods which model the bias field
(usually of multiplicative nature) as a correction to the true intensity,4,10,11 and methods which directly model the
intensity variability as a function of voxel location in the image.2,12 We chose the latter approach, since it is a direct
extension of the existing maximum likelihood clustering algorithm.

Any additional information about the location of the tissues can improve the segmentation considerably. This
prior information can be provided by registering a manually segmented image to the image that is being segmented.7,10

This way for every voxel, some information about its tissue content is provided. However special care must be taken
in these approaches as the results of a registration procedure are in general not always correct and can lead to poor
segmentation results.

2. IMAGE MODEL

We generalize the image model proposed in [3,4] to account for tissue-dependent intensity variations. Experiments
on MRI data show that differences in intensity variation across tissue type are not insignificant: the intensity values
for CSF voxels always having the largest amount of variability, followed by GM and WM.

Let Ii = (Ii,1, Ii,2, . . . Ii,M )T be the M -channel observation of the i-th voxel in an input image. Voxels of pure
tissue class are described by a particular intensity distribution associated with the image appearance of that tissue
type. Partial volume voxels, on the other hand, are represented as a linear combination of the intensity distributions
associated with the K possible tissue types that can be found in those voxels:

Ii =
K∑

k=1

ti,kN(µk,Σk) ,
K∑

k=1

ti,k = 1 , i = 1 . . . N , (1)

where the voxel intensity I for pure tissue class k is represented as an M -element column vector of random variables,
which are distributed according to a multivariate Gaussian distribution N with µk = (µk,1, µk,2, . . . , µk,M )T the
vector of mean class intensity values (M channels) for pure tissue class k, and Σk is the associated M by M
covariance matrix for the M -channel observation. Term ti,k is the fraction of pure tissue class k that is present at
the i-th voxel. There are N voxels in an image.

Note that the mean intensity values (µk) can also be a function of voxel location i, thus modeling shading artifacts
in the MRI data. We will explain later in the paper how to model spatially dependent mean intensity values. For
now let us just assume that the value of µk is known for every voxel in an image. Variances (Σk) on the other hand
do not change with spatial location i.

2.1. Image model simplification
To determine the fractional amount of specified pure tissue classes within every image voxel, we must solve for
N × (K − 1) unknowns ti,k from N vector equations (1), one for each voxel and there are N voxels in the image.
Since each vector Ii has M components, we have N ×M equations. Assuming that the tissue class parameters (µk

and Σk) are known, a solution can be found if M ≥ K − 1. In practice, we are interested in the three classes: CSF,
GM and WM. Multi-echo images of high resolution are generally not available and even these would be partially
correlated and noisy, so that the problem remains ill posed.

Additional constraints are therefore necessary and as in [3,4], we make the assumption that each partial volume
voxel is a mixture of only two tissue types, which introduces negligible error in practical applications that use high-
resolution T1 data. Formally, we define a number of sets Gk each containing indices of pure classes that are present
in the k-th PV class:

Gk = {k1, k2} , k = 1 . . .KPV , k1, k2 ∈ {1 . . .K} , (2)

where KPV is the number of PV classes in an image while K is the total number of pure tissue classes. For voxels
of pure tissue class k and PV voxels consisting of pure classes k1 and k2, respectively, (1) reduces to:

Ii = N(µk,Σk) (3)

and
Ii = ti,k1N(µk1

,Σk1) + ti,k2N(µk2
,Σk2) , ti,k1 + ti,k2 = 1 . (4)



3. MIXTURE MODEL CLUSTERING

To determine the parameters (µk, Σk) for the pure tissue classes, an extended version of the maximum likelihood
mixture model algorithm5–7 was developed. First, appropriate probability density functions are described for the
pure tissue and PV classes. Second, we introduce a Gibbs model as the weighting function to favor spatially extended
classifications.4 Finally, P (k|Ii) is determined and used to estimate the parameters µk and Σk.

3.1. Probability density functions

The intensities of voxels belonging to pure tissue class k are assumed to conform to a multivariate normal distribution:
Ii = N(µk,Σk). The corresponding probability density function for observing intensity Ii given tissue class k is
therefore given by:

P (Ii|k) = 1√
(2π)M |Σk|

exp
(
− 1

2
(Ii − µk)

T Σk
−1(Ii − µk)

)
. (5)

The probability density function for PV voxels containing a mixture of pure tissue classes k1 and k2 is derived from
(4) and involves a linear combination of two Gaussian distributions:

PPV (Ii|k1, k2, t) =
1√

(2π)M
∣∣∣Σ̂k(t)

∣∣∣ exp
(
− 1

2
(
Ii − µ̂k(t)

)T
Σ̂k(t)−1

(
Ii − µ̂k(t)

))
, (6)

µ̂k(t) = tµk1
+ (1− t)µk2

,

Σ̂k(t) = t2Σk1 + (1− t)2Σk2 .

As in [3,4], we then marginalize (6) over t to obtain the probability density function for the PV classes:

P (Ii|k) =
∫ 1

0

PPV (Ii|k1, k2, t)dt , (7)

k = K + 1 . . .K +KPV , k1, k2 ∈ Gk−K , k1 	= k2 .

To generalize the notation, we have numbered the PV classes from K +1 to K +KPV , so that P (Ii|k) expresses
the probability density for both pure tissue and PV classes. The integral in (7) does not have a closed form solution
and must therefore be evaluated by numerical integration.

3.2. Weighting functions using neighborhood and prior anatomical information

In [5,6] the probability density function for class k is weighted by the current estimate of the voxel count for that
class. This weighting is used to update the probabilities in a manner similar to that of a Bayesian prior. Here we
introduce an alternative weighting function that favors segmentations which are spatially extended. Specifically, we
use the slightly modified Potts model that is also applied in [4]:

Pi(k) =
1
Z
exp

(
− β ·

∑
j∈Ni

δ(k, kj)
d(i, j)

)
, k = 1 . . .K +KPV , (8)

kj = argmax
k′

(
P (Ij |k′)

)
,

where

δ(k1, k2) =
{ −2 if k1 = k2

+1 otherwise ; k1, k2 ∈ {1 . . .K +KPV } ; (9)

kj is the current ML class estimate for the voxel at location j in the image; k is the class for which we are updating
the weighting function; Ni is the set of D18 neighborhood voxels of voxel i; β is a parameter of the distribution,
controlling the amount of influence the weighting function should exert on the solution; and Z is a normalizing
constant. Function d(i, j) represents the distance between voxels i and j, which limits the influence of distant
neighborhood voxels.

Additional spatial information can be obtained from registered class template images, which contain prior class
probabilities for every voxel in an image. One such template image is required for every class present in an image.



Class templates, which have been derived from MR images of a large number of subjects, were provided by the
Montreal Neurological Institute.13–15 As in [7], prior to segmentation, the class templates need to be registered to
the image, which is being segmented. In this paper we do not focus on the registration procedure. We do, however
assume, that the registration is not always perfect. Some limitation of the influence of class templates is therefore
required, otherwise the errors in registration process will directly corrupt the segmentation solution.

We extend the spatial neighborhood based weighting function (8) to include the information from class templates:

Pi(k) =
1
Z
exp

(
− β ·

∑
j∈Ni

δ(k, kj)− αQi(k)
d(i, j)

)
, (10)

where 0 ≤ Qi(k) ≤ 1 is the probability that the i-th voxel belongs to class k, according to the class template Qi(k).
Qi(k) is assumed to be normalized so that they sum to unity over all classes. α is a constant that governs the
influence of the class templates on the segmentation. Based on definition (9) of the delta function, we set α = 2, to
obtain an approximate equilibrium between the neighborhood and spatial class information while slightly favoring
the former, which is based only on the current estimate of the class parameters. This way, even if the class template
is completely wrong, the neighborhood information can accommodate this, resulting in a weighting function that
still contains useful information.

3.2.1. Prior information for partial volume classes

Class templates only provide prior spatial information for pure classes. To avoid making PV classes a priori less
likely, additional PV class templates need to be created. Note that class templates do not contain any specific
information about location and amount of PV voxels in the image. We can however assume that PV classes are more
likely to occur at locations where the prior probability for two pure classes is high. Therefore we base the prior PV
information on the joint probability of the corresponding pure classes and transform it appropriately to provide the
same amount of weighting as pure class templates:

Qi(k) = 2
√
Qi(k1)Qi(k2) , k1, k2 ∈ Gk−K , k = K + 1 . . .K +KPV . (11)

Since the class templates do not change, some parameter needs to be introduced providing information about the
number of PV voxels in the image. We propose to raise the Qi for pure classes to the power of γ and for PV classes
(11) to the power of 1

γ . This effectively widens (γ > 1) or shrinks (γ < 1) classes, for which Qi < 1 (PV classes)
while not affecting values close to 1 (pure classes).

3.3. Parameter estimation and intensity inhomogeneity correction

Given the probability density and weighting functions, the conditional probability P (k|Ii) is calculated as follows:

P (k|Ii) =
Pi(k)P (Ii|k)∑K+KP V

k′=1 Pi(k′)P (Ii|k′)
, k = 1 . . .K +KPV . (12)

In the original maximum likelihood mixture model clustering algorithm6 the likelihood is maximized when

N∑
i=1

P (k|Ii)Σ−1
k (Ii − µk) = 0 , k = 1 . . .K , (13)

which yields the following new estimates of the spatially independent µk and Σk for each pure tissue class k:

µk = 1
hk

N∑
i=1

P (k|Ii) · Ii

Σk = 1
hk

N∑
i=1

P (k|Ii) · (Ii − µk)(Ii − µk)T
, hk =

N∑
i=1

P (k|Ii) , k = 1 . . .K . (14)

To model the bias field, we let the class mean value be a smooth parametric function of voxel location i. Let us
suppose that we can write this function as a linear combination of R scalar basis functions Φr(i), forming a vector



function Φ(i) = (Φ1(i),Φ2(i), . . . ,ΦR(i)). By proper definition of Φ(i), we can represent any continuous function
providing R is sufficiently large. A function representing the spatially dependent class mean values µk(i) can now
be written as:

µk(i) =
(
Φ(i)Sk

)T
, Sk =



Sk,1,1 Sk,1,2 . . . Sk,1,M

Sk,2,1 Sk,2,2 . . . Sk,2,M

...
...

. . .
...

Sk,R,1 Sk,R,2 . . . Sk,R,M


 , k = 1 . . .K. (15)

Sk is a matrix of or R×M parameters that define the class mean value function for the k-th pure class in the image.
Practically this allows us to define a different bias field for every class on every channel of the image.

Since Σk does not depend on voxel location, we can left multiply (13) with Σk, and substitute µk with µk(i):

N∑
i=1

P (k|Ii)(Ii − µk(i)) = 0 , (16)

which can be approximated by N vector equations, equivalent to N ×M scalar equations:

P (k|Ii)
(
Ii − (Φ(i)Sk)

T
)
= 0 , i = 1 . . . N . (17)

By defining

A[N×R] =




Φ(1)
Φ(2)
...

Φ(N)


 , B[N×M ] =




I1T

I2T

...
IN

T


 , Wk [N×N ] =



P (k|I1) 0 . . . 0

0 P (k|I2) . . . 0
...

...
. . .

...
0 0 . . . P (k|IN )


 , (18)

we can rewrite (17) as
Wk (B − ASk) = 0 , k = 1 . . .K , (19)

from which the solution for Sk can be expressed as a weighted least squares estimate:

Sk =
(
AT WkA

)−1
AT WkB , k = 1 . . .K . (20)

We can see that by setting R=1 and Φ1(i)=1, equation (20) yields the original ML class mean estimate (14) as
defined in [5,6]. With the inhomogeneity model defined above, we are not limited to a specific function, nor does it
matter whether the bias field is additive or multiplicative. Since we are estimating R×M shading field parameters,
from N ×M equations, the problem is well posed as long as N 
 R. A problem can, however, occur if we allow
the bias field to contain frequencies that are too high. This yields an incorrect segmentation since the likelihood of
the class estimates is larger, when the bias field compensates for changes in class mean values across the border of
two classes. Other authors2,12 deal with this problem by defining a model of bias field to implicitly include some
constraints which limit the use of high frequencies in bias field.

Based on this limitation we choose polynomial basis functions of up to 4th order as in [9,10]. This results in
R = 34 parameters that define the bias field. In our experience for most images polynomials of 2nd to 3rd order are
adequate for bias field estimation. Polynomial basis functions of up to 2nd order are shown in Table 1.

Φ1(i) = 1 Φ2(i) = x Φ3(i) = y Φ4(i) = z Φ5(i) = x2

Φ6(i) = xy Φ7(i) = xz Φ8(i) = y2 Φ9(i) = yz Φ10(i) = z2

Table 1. First and second order polynomial basis functions used for modeling the bias field. The independent
variables x, y and z are normalized (to [−1,+1]) Cartesian image coordinates for the i-th voxel in the image.

In accordance with (15), we use these parameters to define new class mean function estimates µk(i), which are
then used to estimate new covariance matrices in a fashion similar to (14), except that the class mean values are now
spatially varying:

Σk =
1
hk

N∑
i=1

P (k|Ii) · (Ii − µk(i))(Ii − µk(i))
T , hk =

N∑
i=1

P (k|Ii) , k = 1 . . .K . (21)



These estimates for class parameters µk(i) and Σk then yield new probability density functions and the process
is repeated until the voxel count in each pure tissue class does not change from one iteration to the next. This
approximation to maximizing the likelihood5,6 can also be seen as a special case of an Expectation Maximization
(EM) algorithm suited for Gaussian distributions.

3.4. Initialization

Based on extensive experimentation on real and simulated MR images, we have found that the clustering algorithm
can be made robust to initialization values by specifying a sufficiently large class variance. Therefore, without
additional prior information about the mean and variance values of the classes, the parameters are initialized as:

µk,l =
k

K + 1

(
max

i
(Ii, l)−min

i
(Ii, l)

)
+min

i
(Ii, l) (22)

σk,l, l =
(

1
K

(
max

i
(Ii, l)−min

i
(Ii, l)

))2

, k = 1 . . .K , l = 1 . . .M

Initial mean intensity values are equally distributed between the minimum and maximum intensity values found
in the image. Parameters for class mean functions which define spatial variability are set to zero – initially there is
no shading correction. Diagonal elements of the covariance matrix are all set to the image intensity range divided
by number of classes, whereas off-diagonal elements are set to zero.

4. PARTIAL VOLUME TISSUE CLASSIFICATION

The clustering algorithm determines µk and Σk by iterating over the estimation of P (k|Ii) until convergence is
achieved. Once the intensity distribution and all class parameters are known for each tissue type, the fractional
portion ti,k1 for a PV voxel at location i consisting of tissues k1 and k2 can then be obtained from (4) via maximum
likelihood estimation (MLE):

ti,k1 =
(µk1

− µk2
)T (Ii − µk2

)
(µk1

− µk2
)T (µk1

− µk2
)
. (23)

To produce a segmentation without having to specify a threshold for distinguishing between partial volume and
pure tissue voxels, we need to modify (23) to include the information about pure tissue classes. Using conditional
class probabilities as weights, we can write:

t∗i,k = P (k |Ii ) +
∑
k′
P (k′ +K |Ii )

(µk − µk2
)T (Ii − µk2

)
(µk − µk2

)T (µk − µk2
)
, ti,k =

t∗i,k∑K
k′′=1 t

∗
i,k′′

, (24)

k2 ∈ Gk′ ∧ k2 	= k , k = 1 . . .K ,

where summation index k′ runs over all PV classes that contain pure class k (for which k ∈ Gk′ is true). We must
also normalize the portions of pure classes so that they sum to unity over all classes k.

5. IMPLEMENTATION

Prior to clustering and segmentation, we extract the brain parenchyma from the MR image of the head using the
Brain Extraction Tool – details of the method can be found in [16].

A parallel version of the clustering algorithm was implemented by subdividing the image into a number of
segments, which are then processed in separate threads, one for each processor available. All threads are synchronized
at 4 time points: before and after the calculation of the weighting values (step 3) and before and after the estimation
of the new class parameters (step 5). The algorithm is outlined below:

1. Initialization

• Select number of pure tissue classes K.

• Define PV classes, represented as sets Gk, by specifying the corresponding combinations of pure tissue
classes.



• Set initial estimates of class parameters (µk,Σk) using (22).

2. Calculate the probability densities for all classes using (5) and (7) in multiple threads.

3. Calculate the weighting values in multiple threads using (10).

4. Calculate the updated probabilities using (12) for each class k in multiple threads.

5. Calculate the new estimates for the class parameters using (20), (15) and (21).

6. If the current voxel count for each pure tissue class is different from that found in the previous iteration, or
the maximum allowed number of iterations have not been processed, return to step 2. We terminate the loop
when the change in

∑K
k=1 hk between iterations is less than 1 or number of iterations iss 50. hk is defined in

(21).

7. Segment the image by determining the fractional amount of each tissue type for every image voxel using (24).

The algorithm was implemented in standard ANSI C code. Moreover, our multithreading support conforms to
both the POSIX-PTHREADS standard and Microsoft Windows multithreading API, so the code will compile on
both UNIX and Windows workstations.

6. EXPERIMENTAL RESULTS

The segmentation algorithm was evaluated using both synthetic and real data. In each of the reported experiments,
β was set to 0.1 and algorithm convergence usually occurred after 10-20 iterations.

6.1. Synthetic Image

We constructed a square, 100 by 100, image and subdivided the image into 3 regions, each separated by a vertical
boundary. The left and right most regions were considered pure “tissues” and their image values were drawn from
normal distributions with the following mean and variance values, respectively: µ1 = 70, Σ1 = 10 and µ2 = 150,
Σ2 = 20. The middle strip of the image, 30 pixels wide, contained partial volume pixels, which modeled a smooth
linear transition between the two pure classes. The synthetic image is shown in Fig. 1.
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Figure 1. Synthetic data. (Left) Image to be segmented. (Right) Plotted in dashed line is the horizontal intensity
profile obtained along line 50 of the image; solid thin line is the mean horizontal intensity profile averaged over all
lines in the image; and in solid thick line is the ideal horizontal profile (without noise added).

Since we know the ideal segmentation tideal, the disparity between estimated and ideal t values was defined as
the mean and standard deviation of the absolute difference over all pixels and classes:

Ei,k =
∣∣ti,k − tideal

i,k

∣∣ , Eµ =
1
NK

K∑
k=1

N∑
i=1

Ei,k , Eσ =

√√√√ 1
NK − 1

K∑
k=1

N∑
i=1

(Ei,k − Eµ)2 . (25)

We also used the mean squared error (E2
µ) to identify large errors in the segmentation.

E2
µ =

1
NK

K∑
k=1

N∑
i=1

E2
i,k (26)



The following are the estimated mean values and variances for the tissue classes: µ1 = 70.38, Σ1 = 10.07; µ2 =
148.28, Σ2 = 19.25. Mean and standard deviation of the absolute error were Eµ = 2.21×10−2 and Eσ = 4.81×10−2,
respectively. The segmentation results or t values for the first “tissue” class are shown in Fig. 2. The figure also
shows the squared error between the ideal and estimated t values for the class – E2

µ = 5.623× 10−3.
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Figure 2. Segmentation results for the synthetic data. (Left) Fractional values t for the first class at each voxel
plotted as an 8-bit gray-scale image with intensity = 0 corresponding to t = 0.0 and intensity = 255 to t = 1.0.
(Middle) Plotted in dashed line is the horizontal intensity profile obtained along line 50 of the segmentation; solid
thin line is the mean horizontal intensity profile averaged over all lines in the segmentation image; and thick line is
the ideal horizontal profile. (Right) Image of point wise squared error between estimated and ideal t values for the
first class

We can see that the errors occur only at the boundaries where the region with PV voxels meets the regions
containing pure classes. We attribute this error largely to noise because it decreases when we reduce the amount of
noise variance for the pure classes. This also explains the smaller amount of error in the segmentation of the left half
of the image, where the noise variance for the first pure class was smaller.

6.1.1. Shading correction

To see and better understand the shading model, we created spatially dependent class mean values using two 2nd

order polynomial functions. In the simple image used above, the difference in class intensities could easily be
modeled by even linear polynomial function. We therefore needed to create a different synthetic image containing
higher frequencies. We used the mirrored version of original image in x direction appended 3 times to the left, thus
producing 400 × 100 image and applied spatially dependent class mean values. The resulting image with heavy
shading is shown in Fig. 3.

Figure 3. Shading correction. (Left) Synthetic image used for shading model evaluation. Class mean values are
modeled by up to 2nd order polynomial functions – Φ(i) = (1, x, y, x2, xy, y2), S1 = (150, 10,−20, 35,−10, 10)T ,
S2 = (70,−5, 15,−15,−17,−10)T . (Right) Segmentation results for first class.

Segmenting this image, we have observed great robustness to initial parameters (initial guess for bias field was zero
for all classes) and accurately estimated the shading effect as long as the class mean functions could not compensate
for different intensities between two classes. Error in the segmentation was Eµ = 1.85 × 10−2, Eσ = 4.26 × 10−2

and the estimated mean function parameters were S1 = (70.64,−4.81, 15.22,−15.27,−17.043,−10.77)T and S2 =
(148.06, 9.58,−19.62, 34.44,−10.54, 10.52)T . Mean squared error E2

µ = 4.306 × 10−3, which is of the same order as
the result for the image without shading artifact.

By introducing a larger and more dynamic image, we limited the tendency for the mean function for one class to
model different classes, which span across the x axis of the image. This effect can be examined by segmenting the
original simple image (Fig. 1) with shading correction, which results in class mean values being very close together,
while shading field models changes in voxel intensities between different classes. Segmentation results are in this case
of course completely wrong and also largely depend on initial parameter estimates.



6.1.2. Prior anatomical information

Additionally we investigated the effect of class templates on the segmentation solution. We took the original true
segmentation (tideal) as the pure class templates and set γ = 10 for PV classes. This extends the weighting function
for PV class to almost all voxels for which Q < 1. The class templates are shown in Fig. 4.

Figure 4. True class template for both pure classes (left, middle) and PV class (right), respectively, plotted as an
8-bit gray-scale image with intensity = 0 corresponding to Q = 0.0 and intensity = 255 to Q = 1.0.

We ran segmentation procedure on the synthetic image using various corrupted versions of the ideal templates.
Segmentation results for different class templates are presented in Table 2. We can see that the spatial template
based weighting function can have significant effect on quality of segmentation in both positive and negative sense.
However, even if it is completely wrong, the segmentation procedure still finishes in correct minimum. Total error
is of course larger than using no class templates at all, but the maximum possible error is limited. Wrong class
templates were created from the ideal ones by changing the values of Q in such a way that classes, which don’t
exist at specific location had the highest spatial prior probability. This was achieved by subtracting the ideal class
templates from 1. We also observed a strong correlation between the quality of class templates and the number of
iterations needed for clustering.

Class template Eµ × 102 Eσ × 102 E2
µ × 103 iter

ideal 0.86 1.95 0.911 4
ideal + gaussian noise (σ = 0.5) 1.27 3.21 2.381 6

none 2.17 4.83 5.623 7
random noise (uniform, 0...1) 2.34 5.44 7.006 7

(1–ideal) + gaussian noise (σ = 0.5) 4.47 8.75 19.29 12
1–ideal 6.28 10.97 31.96 10

Table 2. Results of image segmentation using different class templates for spatial prior information. Eµ, Eσ and
E2

µ are defined in (25) and (26). Last column shows the number of iterations needed for the clustering algorithm to
converge.

6.2. Simulated T1-weighted Brain Volume

A second, more realistic synthetic dataset of an MRI head scan was created using the BrainWeb simulator.17–20 Each
simulation was a 1mm3 isotropic MRI volume with dimensions 181x217x181. Six datasets incorporating different
amounts of noise and intensity inhomogeneity were segmented. The total mean squared error values between the
ideal and estimated t values over all voxels are shown in Fig. 5 for the experiments.

noise 0% 3% 9%

0% shading 3.89 6.62 16.77
40% shading 4.15 6.89 19.86

9%
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0%

0% shading

40% shading
0

0,005

0,01

0,015

0,02

0,025

0,03

Noise level

Mean squared error over all tissue classes

Figure 5. Total mean squared error (E2
µ × 103) for segmentation of BrainWeb simulated image. Results are shown

for different amounts of noise present in the image, with and without shading artifacts.



We used polynomial functions of up to 2nd order to model shading artifacts in an image. Looking at the results
in Fig. 5 and 6, we can see that there is little difference in error between images with and without shading proving
that bias field was estimated correctly and estimation, using basis functions of higher order was unnecessary.
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Figure 6. Errors in segmentation shown for CSF, GM and WM respectively. Mean absolute errors are plotted for
images without shading artifacts.

A segmented slice of the synthetic brain volume with 9% noise level and 40% shading artifact is shown in Fig. 7.
Although there appears to be minimal partial volume averaging in the results, the segmentation obtained without
using PV classes (KPV =0) had errors about 2 times larger and the algorithm took much longer to converge (> 50
iterations).

Figure 7. Partial volume segmentation of simulated brain volume, where fractional values t at each voxel are
plotted as an 8-bit gray-scale image with intensity = 0 corresponding to t = 0.0 and intensity = 255 to t = 1.0.
(Left) Cerebrospinal fluid. (Middle) Gray matter. (Right) White matter.

6.2.1. Using prior anatomical information on simulated MR images

We used the original reference segmentation of simulated MR images as prior spatial class information Qi(k) during
the clustering procedure. This true prior information was first corrupted in various ways and segmentation results
using corrupted class templates were compared. Specifically, we created 6 different class template images from
the original ideal class template resulting in three images rotated 1, 5 and 15 degrees around the z (axial) axis,
three images translated 1, 5 and 10 voxels. Additionally, we used the registered class templates used in the SPM
segmentation algorithm.7 These class templates have essentially the same source of origin as the BrainWeb simulated
images and were downsampled to 91× 109× 91 so that registration was an easy task.

Class template E2
µ × 103

ideal 8.87
spm prior 15.51

none 16.77

Class template E2
µ × 103

rotated 1deg 13.77
rotated 5deg 23.14
rotated 15deg 24.82

Class template E2
µ × 103

translated 1 voxels 15.47
translated 5 voxels 26.26
translated 10 voxels 26.60

Table 3. Segmentation results of using prior anatomical information in the form of class templates on simulated
MR images.

Image containing 9% noise and no shading artifact was used for evaluation. Parameters defining the use of prior
information were set to: α = 2 and γ = 1.

Comparing the results in table 3, we can see that the ideal prior information can significantly improve segmenta-
tion, while still limiting the error within acceptable limits when the prior information gets worse. We attribute this



to proper a balance between neighborhood and class template prior information. By changing the parameter α we
can allow for larger class template prior influence, if we know that the prior information is correct. Segmentation
results would improve correspondingly.

6.3. Manually Segmented Real T1 MR Images of the Brain

Twenty normal brain MRI datasets and their manual segmentations were obtained from the Center for Morphome-
tric Analysis at Massachusetts General Hospital – these IBSR datasets are publicly available.21 The volumes were
preprocessed to extract brain parenchyma. No class templates were used during segmentation.

(a) (b) (c) (d)

Figure 8. (a) Slice 18 of IBSR image 16 3. (b) Class mean function for GM. Segmented GM (c) and WM (d).

Since the manual segmentations for this set of images do not contain any information about fractional tissue
content, we calculated a similarity index for each class by thresholding our partial volume segmentation results.
Specifically, in table 4, we report the values for the Jaccard similarity = |Se ∩ Sideal|/|Se ∪ Sideal|, where Se and
Sideal are the estimated and “true” sets of voxels, respectively, for a given tissue class.

Image 1 24* 100 23 11 3 110 3 111 2 112 2 12 3* 13 3 15 3* 16 3
GM 0.4620 0.8122 0.8124 0.7723 0.7745 0.7667 0.5925 0.7787 0.6229 0.6968
WM 0.4181 0.7471 0.7526 0.6862 0.7246 0.7010 0.5725 0.7219 0.5221 0.6315

Image 17 3 191 3 2 4* 202 3 205 3 4 8* 5 8* 6 10* 7 8 8 4
GM 0.6749 0.7909 0.5140 0.8150 0.8119 0.5682 0.5811 0.5941 0.7350 0.6891
WM 0.6297 0.7243 0.3907 0.7470 0.7644 0.4345 0.3977 0.3902 0.6917 0.6521

∗ Image for which intensity inhomogeneity could not be properly corrected.

Table 4. Jaccard similarity measure between estimated and “true” segmentation of IBSR datasets.

The shading effect was modeled using polynomial basis functions of up to 2nd order. However, some of the volumes
exhibited strong, high frequency shading artifacts that could not be modeled by simple polynomial functions, resulting
in a wrong segmentation. We have tried to increase the order of the polynomial basis functions (up to 4th order),
but have observed little difference in the segmentation results. It is evident in the results in table 4 which of the
volumes were the seven for which intensity inhomogeneity was still prevalent in the data. Excluding these volumes,
the mean Jaccard index was 0.7639 and 0.7057 for GM and WM, respectively.

7. CONCLUSION

We have presented an algorithm for partial volume segmentation of MR images of the brain. Experimental results
are comparable or superior to other published algorithms. Our method is an extension of a probabilistic clustering
algorithm5,6 to accommodate partial volume voxels and to allow class mean values to change across the image, thus
modeling the shading effect. Although the convergence properties of the original technique are generally unknown,
we have observed robust performance from our implementation as a function of the estimates used to initialize the
class parameters and the proper use of neighborhood based prior information. Also examined were the possibilities
of including the use of prior anatomic information to improve the accuracy of segmentation. Initial results of using
this prior knowledge show that it can be used within the segmentation procedure in a robust way, providing useful



information if it is available. However, accurate and robust registration is required to fully utilize this prior infor-
mation. We believe that using prior information is a fundamental step towards improvement of image segmentation
and therefore is the focus of our future work.
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