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SI-1000 Ljubljana, Slovenia

bFaculty of Sport, University of Ljubljana, Gortanova 22, SI-1000 Ljubljana,

Slovenia

Abstract

Many team sports include complex human movement, which can be observed

at different levels of detail. Some aspects of the athlete’s motion can be studied

in detail using commercially available high-speed, high-accuracy biomechani-

cal measurement systems. However, due to their limitations, these devices are

not appropriate for studying large-scale motion during a game (for example,

the motion of a player running across the entire playing field). We describe

an alternative approach to studying such large scale motion, and present a
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video-based, computer-aided system, developed specifically for the purpose

of acquiring large-scale motion data. The baseline of our approach consists

of sacrificing much of the spatial accuracy and temporal resolution of widely

used biomechanical measurement systems, to obtain data on human move-

ment that span large areas and long intervals of time. Data can be obtained

for each of the observed athletes with reasonable amount of operator work.

The system was developed using the recordings of a handball match. Several

field tests were performed to assess measurement error, including comparison

to one of the widely available biomechanical measurement systems. With the

help of the system presented, we could obtain position data for all 14 handball

players on a 40 × 20 meter large court with RMS error better than 0.6 me-

ter, covering one hour of action. Several results, obtained during the handball

match study are presented, in order to highlight the importance of large-scale

motion acquisition.

PsycINFO classification: 2330, 3720, 4120

Keywords: Athletic Performance; Activity Level; Measurement; Automated

Information Processing; Evaluation;

1 Introduction and motivation

Most sports include complex motion, which can be studied at different levels

of detail. This is especially true for team sports (e.g. soccer, handball, basket-

ball). Some aspects of an athlete’s movement can be studied in detail using

commercially available high-speed, high-accuracy biomechanical measurement
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systems. A detailed comparison of these systems was made by Richards (1999),

and the basic principles behind such measurements were presented by Gruen

(1997). These systems provide high-quality, high-resolution data on human

movement, however, they also impose severe limitations, which make them

inappropriate for studying motion covering large areas for long intervals of

time.

In team sports, action is often spread across the whole playing field (which,

for example in European handball, measures 40 × 20 meters), and matches

can last for an hour or more. Most of the biomechanical measurement systems

provide extremely accurate data on human movement, but cannot effectively

cover such a large area. These systems provide high temporal resolution (100

Hz or more), but over relatively short intervals of time, when the duration

of a typical match is considered. Many of these systems require some kind of

markers to be attached to the body of the athlete, which are distracting and

not acceptable during regular league or championship matches.

For the purpose of tactical match analysis, information about movement of

the athletes (players) participating in the match is needed. The accuracy re-

quirements for such data are far lower than for the purpose of biomechanical

analysis. Ten years ago, researchers used self-made, video-based systems with

resolution of 1 meter for successful analysis of a soccer match (Erdmann, 1992),

however, no error analysis was performed. On the other hand, it is desirable

that the acquired data covers both the whole playing field and the whole du-

ration of the match. Application of player motion analysis using conventional

biomechanical motion analysis systems would therefore be extremely difficult,

costly, and would result in an unacceptable amount of over-accurate data.
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The development and use of a video-based, computer-assisted motion acqui-

sition system, which can deliver the data about player position and velocity,

that conforms to the requirements of team sport analysis, is in the center of

our research. We observe the motion of the players on the playing field on a

large scale, both temporally and spatially; we therefore refer to it as large-scale

motion. Large-scale motion represents an ”envelope” component of full-scale

motion. For example, as a player runs across the playing field, his center of

gravity accelerates and decelerates as he makes each step. However, we can

present this motion on a large scale, in which case it is comprised of one ac-

celeration at the start of the motion, an interval of nearly constant velocity

and the final deceleration at the end of the run.

There is a strong motivation for our research. Physical training in team sports

is extremely important for top performance during the matches, and training

should be based on the knowledge of the specific requirements of a particular

sport. Player motion data can reveal many aspects of team play that are not

directly visible: for example, it can highlight the reasons why some athletes

perform better than others, and it can suggest the methods of training to

make good athletes perform even better. Large-scale motion data can also

be compared to other variables we can monitor and record during the game,

such as heart rate or expert observations about the course of the play. These

variables are often recorded at markedly lower sampling rates (0.2 Hz for

heart rate, for example) than motion data provided by biomechanical motion

analysis systems.

The baseline of our approach consists of sacrificing most of the spatial ac-

curacy and temporal resolution of conventional motion analysis systems, to

obtain coverage of large areas during long intervals of time. Specific techniques
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of video acquisition, camera calibration and human position acquisition were

used in achieving this goal. This resulted in a moderate amount of data, which

can be analyzed using various methods, including popular spreadsheet and

statistical packages.

The structure of this paper is as follows: first we take a quick look at related

research, both in the sport science and computer vision domain. Then we

present the methods we used for data acquisition: video acquisition, camera

calibration, player position acquisition (tracking) and data post-processing.

Our system was field tested, and the next section is devoted to error analysis,

including a comparison to one of the commercially available motion analy-

sis systems. Finally we present some results of handball match analysis to

emphasize the importance of large-scale motion acquisition, and discuss the

results.

2 Related work

A lot of research related to large-scale human motion has been done in the

last ten years. This area attracts, among others, sport and computer vision

scientists. However, very little interdisciplinary work has been done so far.

Researches in the field of sports have focused predominantly on the final ap-

plication of their systems, sometimes using antiquated equipment. On the

other hand, computer vision researchers have been unwilling to address some

of the problems that are not of immediate importance to the computer vision

theory, but are of crucial importance if these systems are to be applied in

practice.
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2.1 Sport science

For years, analysis of team sports consisted mainly of ”observation sheets”,

filled in by human observers during the matches. With the advent of widely

available and low-cost computers, data manipulation and analysis were mod-

ernized, although the principles remained the same (Ali and Farrally, 1991).

On the other hand, video-based motion acquisition was used to obtain player

positions as far back as ten years ago, using somewhat primitive, yet effective

techniques of camera calibration and position acquisition (Erdmann, 1992).

The latest contributions to this field consist of commercially available wear-

able microwave transmitters, produced by Trakus, Inc., which can be fitted

inside helmets, if this is allowed by rules of the particular sport. Another

contribution is a commercial video- and service-based product, AMISCO, by

Sports Universal (formerly Videosports). Due to its commercial nature, little

is known about the mechanism it uses to obtain player positions.

2.2 Computer vision science

Acquisition and analysis of human movement represents an interesting chal-

lenge to computer vision researchers, due to the complex structure of the

human body. Overviews of the more important achievements in this field of

computer vision were made by Aggarwal and Cai (1999) and Gavrila (1999).

Large-scale motion acquisition and analysis were studied by Intille and Bobick

(1995), with the ultimate goal of realizing a fully automated tracking of Amer-

ican football players. However, many important aspects of motion acquisition

were neglected: for example, a single, handheld, non-stationary camera was
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used, which unnecessary complicated the camera calibration process. Player

tracking was further aggravated by heavy perspective, due to inadequate ele-

vation of the camera. Error analysis was not performed. Unfortunately, many

of these problems are still ignored by computer vision researchers: a quick

review of several articles, related to people tracking, which were presented at

the recent major computer vision conference ICPR 2000 (held in September

2000 in Barcelona, Spain), reveals that most authors did not even consider

error analysis or camera calibration. While excellent papers on camera cali-

bration and error analysis exist, many application-oriented papers in the field

of computer vision based human motion analysis lack these two important

components.

3 Method

The process of player position and motion acquisition (tracking) consisted

of several steps: camera positioning and calibration, video recording, video

digitalization, digital video processing and post-processing of obtained motion

data.

3.1 Camera placement

To cover the whole field, we mounted two 1/2” PAL CCD cameras (JVC TK-

1281EG, 6.4 × 4.8 mm2 CCD sensor size) to the ceiling of a sports hall, which

was regularly used for handball and basketball matches. This arrangement of

cameras provided a bird’s-eye view of the players, as is needed to accurately

measure player motion across the court plane. Each camera covered its half
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of the playing field, with some overlapping at the middle. Due to the limited

height of the ceiling, wide-angle lenses with a focal length of 1.4 mm were used

to ensure whole field coverage. Camera placement and combined image from

both cameras are shown in Fig. 1.

[Figure 1 about here.]

3.2 Camera calibration

Detailed studies of camera calibration problem using non-metric equipment

were done years ago (Tsai, 1987). Calibration methods, which map 3D object

space to 2D sensor space, such as DLT, are typically used in motion acquisition

tasks (Gruen, 1997). However, our goal of large-scale motion acquisition does

not require extremely high accuracy. By placing cameras above the field, we

knowingly omitted the vertical dimension of player motion. To obtain player

position in the planar coordinate system of the handball court, we do not need

optical triangulation. Without any radial distortion, it would be possible to

map the objects on the court plane to their coordinates on the camera sensor

simply by scaling and translation of origin between court and sensor coordinate

systems. However, significant radial distortion represents a major obstacle to

this simple solution. Fig. 2 shows the sequence of transformations, which define

the relations between player position in the court coordinate system, which

originates at the upper top corner of the court boundary rectangle, and the

image coordinate system.

[Figure 2 about here.]
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Generally, the image, acquired by one of our cameras, is rotated, translated,

scaled, and radially distorted with respect to the court coordinate system.

Translation (d1x, d1y) and rotation (β) can be taken into the account using

the transformation T1:

T1 :




x′
1 = x1 + d1x, y′

1 = −y1 + d1y,

x2 = x′
1 cos(β) − y′

1 sin(β), y2 = x′
1 sin(β) + y′

1 cos(β).

(1)

This equation leaves us with three unknown parameters that need to be esti-

mated during the camera calibration phase: the translation along both axes,

d1x and d1y, and image rotation, β. This step leaves us with a radially dis-

torted, but centered and aligned image of the playing court. Radial distortion

is a non-linear function of camera radius, and we assume it is rotationally sym-

metric. The correction is obtained using the following sequence of calculations,

T2:

T2 :




r2 =
√

x2
2 + y2

2, ϕ = arctan
(

y2

x2

)
, r3 = fc(r2),

x3 = r3 cos ϕ, y3 = r3 sin ϕ

(2)

fc denotes the non-linear correction function. The form and complexity of fc

depends on the severity of the radial distortion, and it can be modeled by

polynomial approximation (Tsai, 1987) or, as in our case, by the following

exponential function (Perš and Kovačič, 2002):

fc(r2) =
H

2

(e−
2r2
H ) − 1

e−
r2
H

. (3)

For illustrative purposes only, the result of radial distortion correction is shown

in Fig. 3. Nevertheless, the tracking is performed on raw, uncorrected images,

and player positions in the court coordinate system are calculated after the
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tracking.

After the radial distortion correction, we perform the scaling and final trans-

lation, which moves the origin of the coordinate system into the upper-left

court corner. Scaling is needed to obtain positions of the players in the de-

sired measurement units.

T3 :




x4 = kxx3 + d2x

y4 = −kyy3 + d2y,

(4)

where kx and ky represent unknown scaling coefficients, and d2x and d2y rep-

resent unknown translation components.

Transformation parameters d1x, d1y, β, kx,ky, d2x, d2y, and radial distortion

parameter H were obtained for each camera separately, using a non-linear

optimization (simplex) method with 17 different points on the court plane as

references. These points were obtained at the positions of various court marks,

as their positions in court coordinates are well defined by the rigid sport rules.

[Figure 3 about here.]

This method of camera calibration relies on a planar surface of the playing

court. To measure the positions of humans, moving across the surface, the

expected elevation of their center of gravity is taken into account, by slightly

expanding equation (2) with the following correction:

r3 = fc(r2) − fc(r2) · hg

hc

, (5)

Where hg and hc denote the approximate elevation of the player gravity cen-

ter and the camera, and were in our case estimated as 1.5 and 10 meters,
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respectively.

3.3 Video recording and digitalization

Both cameras were AC line locked to ensure proper synchronization and con-

nected to two PAL S-VHS videorecorders (Panasonic NV-HS950), which were

used to record the whole handball match, which lasted about an hour. Video

recordings were taken to the lab, where they were transferred to computer disk

using a S-VHS videorecorder (Grundig VS680 VPT) and Motion-JPEG video

acquisition hardware (Pinnacle Miro DC30+ real-time video capture card) at

25 frames per second and 384×288 pixel image resolution. Such settings result

in more than 180.000 images, which need to be stored to the digital media.

Although M-JPEG compression significantly reduces the amount of storage

space required, the recordings were split to 15 minute chunks. One hour of

video data from both cameras required approximately 12 gigabytes of hard-

disk storage space. Digital recordings from both cameras were synchronized to

1/25 second precision by observing the first throw by the player in the middle

area of the field, which was visible by both cameras at the same time.

3.4 Computer-assisted motion acquisition (tracking)

Two approaches to player tracking were tested, that is, manual and auto-

matic. Our custom developed software (SAGIT), which runs under Microsoft

Windows operating system, allows either manual or automatic recovery of

player positions for each and all of the players on each of the frames from

the digital video sequence. The operator may switch between manual and au-

11



tomatic mode at any time, as desired. For example, automatic tracking can

quickly provide motion data for well illuminated areas of the court, whereas

manual tracking can be used to track players when they enter the areas with

inadequate lighting or become involved in crowded situations.

3.4.1 Manual tracking

Manual tracking is performed by an operator using a computer mouse. Only

one click per player per frame is needed. If circumstances allow, players can

wear differently coloured garments during the match, to make the tracking

problem easier. The process relies on the graphical interface of the tracking

program, which is shown in Fig. 4. To speed up the process, the operator may

instruct the program to skip several frames between subsequent clicks, and the

software uses linear interpolation to obtain player position on skipped frames.

[Figure 4 about here.]

3.4.2 Automatic tracking

Although relaxed requirements considering the system accuracy reduce the

manual work by several orders of magnitude as compared to biomechanic mo-

tion analysis systems, manual tracking remains a time-consuming and tedious

task. Assuming favourable lightning conditions, positions of most players can

be recovered by the computer itself, even without the use of distracting mark-

ers. To obtain their positions, separation of players from the background is

needed. To achieve this separation, the following properties of the players can

be used:
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• Presence. Players are the only objects that are present during the game,

and absent when the court is empty. Commonly used computer vision tech-

nique, called ”background subtraction” takes advantage of this property.

However, this technique is subject to strong distractions, caused by shad-

ows, light reflections and similar nuisances.

• Colour. Players of each of the teams usually wear identically coloured gar-

ments, using different colours or colour combinations to distinguish between

the teams. Provided that the chosen team colour does not match the colour

of the court, colour tracking techniques can provide us with the estimates

of player positions.

• Shape. The human body in motion, especially when observed from the

bird’s-eye perspective, has a distinctive shape that is different from other

marks on the court. By using the ”template tracking” technique, estimates

of player positions can be refined to achieve desired accuracy.

The combination of colour- and shape-based tracking is used in our automatic

tracker, as described by Perš and Kovačič (2001). However, this method is not

completely reliable; a human operator is still needed to initialize the tracker

(e.g. to mark the starting positions of the players) and supervise the tracking

process. In the case of a tracking error, one is able to stop and re-initialize

the process. In our test, the automatic tracking speed averaged 4.5 frames

per second, using full temporal resolution (25 Hz) video, and process needed

approximately one operator intervention per player during the processing of

30 second (750 frame) sequence of the handball match, during which all 14

players were tracked simultaneously.

13



3.4.3 Trajectory Post-processing

The trajectories obtained using automatic tracking methods contain a certain

amount of noise, which makes player velocity calculation extremely difficult.

On the other hand, manually obtained trajectories usually consist of alter-

nating linear intervals and rapid direction changes, due to linear interpolation

between successive clicks. To obtain smooth trajectories, which describe phys-

ically plausible motion, trajectory smoothing is needed.

An obvious way of trajectory smoothing is by use of the Gaussian smoothing

kernel, as shown in (6). We process x and y components of the trajectory

separately, treating them as one-dimensional time-dependent signals

x′(t) =
1

2NF + 1

NF∑
i=−NF

x(t + i) · G(i), (6)

y′(t) =
1

2NF + 1

NF∑
i=−NF

y(t + i) · G(i),

where 2NF + 1 denotes the width of the kernel, x′ and y′ are the smoothed

components of the trajectory, and x and y are the components of the raw

trajectory. G is the set of Gaussian coefficients which define the shape of the

kernel. The precalculated set of 2NF + 1 coefficients in the range of Gaussian

function (−3σ, 3σ) was used. Kernel width 2NF + 1 is directly related to the

intensity of the smoothing. Larger NF yields smoother trajectories.

Part of the post-processing stage is also the calculation of player velocity and

distance covered. Velocity is simply calculated by differentiating the trajectory

over time, and the distance covered is obtained by scaling and adding up the

absolute velocities over the successive intervals of time.
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4 Error analysis

There are several sources of errors that can influence the overall uncertainty

of tracking. Analytical derivation of system accuracy and precision is difficult,

as many factors, including operator decisions, influence the results. There-

fore, field tests were conducted to evaluate the system. To simulate real-world

conditions, we conducted our experiments by employing automatic tracking

procedures, complemented with manual corrections when automatic tracking

failed.

4.1 Types of errors

Errors that affect measurements of large-scale motion can be grouped into the

following categories:

• Movement of player extremities. We track motion of humans across the

plane. Ideally, their acquired positions would not change, unless they walk

or run from one point to another. However, due to the limitations of our

setup (we are observing a large 3D space and assuming 2D motion) their

acquired positions change due to movement of their extremities and their

vertical movement. This effect is categorized as an error of our tracking

system.

• VCR tape noise and compression artifacts degrade image quality.

There are several thresholds built into the automatic tracking algorithms,

and in some cases the ”decision” taken by the automatic system can be

influenced by such artifacts.
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• Quantization error. Due to severe radial distortion, the quantization error

becomes significant at locations near the court boundaries. Assuming the

input image resolution of 384-by-288 pixels, one pixel near the optical axis

of the camera covers the area of 4-by-4 centimeters in our setup, while at

the court corners, one pixel covers the area of 20-by-20 centimeters.

• Imperfect camera calibration. The assumptions on which our camera

calibration method is based are not always true. For example, optical axes

of cameras are not exactly perpendicular to the court plane, which results in

inaccurate radial distortion correction in some parts of the court (since the

assumption of rotational symmetry is violated). In most cases, these errors

can be ruled insignificant, especially as they influence limited areas of the

court and affect only player position, and not velocity or distance covered.

• Operator mistakes. As the system is operated and supervised by humans,

there always remains a possibility of human mistakes, which is impossible to

evaluate. In the rest of this paper we will assume that results of the tracking

were acquired without operator mistakes.

Following an established categorization of measuring errors to random and

systematic (Taylor, 1982), the movements of player extremities, tape noise,

compression artifacts and the quantization error can be classified as random

errors. On the other hand, imperfect camera calibration is systematic in its

nature (and could be measured and compensated for, provided there would

be a strong need for such compensation).

Influences of above described errors can be combined in certain situations

(for example, movement of player extremities near the court boundaries will

be more significant due to a larger quantization error than similar movement

near the court center).
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4.2 Ground truth

Use of mechanical test devices would surely overrate our system in terms of

accuracy and precision, as such devices (for example, mobile robots) cannot

re-create the complexity of human movement, which contributes to the mea-

surement errors. Instead, several handball players were asked to move under

the camera, following the predefined paths. Ground truth was therefore ob-

tained simply by drawing a pattern of lines near the middle of one of the

halves of the handball court. The pattern, shown in Fig. 5 was created and

measured using a measuring tape.

[Figure 5 about here.]

4.3 Experiments

Errors in motion acquisition depend on several factors. Player position plays an

important role due to radial distortion – position measurements of the players

near the court boundary are less accurate. The same assumption can be made

for the players who are involved in different activities (jumping, throwing, ball

passing), when compared to players who are standing still. The intensity of

trajectory smoothing is also an important factor, especially in velocity mea-

surements. To address the effects of these factors, several experiments were

designed:

Experiment I. In the first part of the experiment, players were instructed

to stand still at the predefined places. In the second part of the experiment,

they were instructed to perform various activities (passing the ball, jumping
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on the spot, etc.) but they were not allowed to move across the court plane.

The reference position was obtained from the drawn pattern. Reference

velocity and distance covered were exactly zero, since the players never left

their designated positions.

Experiment II. Players were instructed to run and follow the square trajec-

tory. The influence of trajectory smoothing was observed.

Experiment III. Players were instructed to run and follow the circular tra-

jectory with constant velocity. Error in velocity measurements was assessed.

Experiment IV. We compared our system to a widely used, video-based

biomechanical measurement system, APAS-99 (Ariel Performance Analysis

System), manufactured by Ariel Dynamics Inc., which was used as a ground

truth this time.

4.4 Results

All position measurements were done at 25 Hz framerate, and various amounts

of smoothing, controlled by the smoothing kernel width 2NF + 1 were applied

to the trajectories before the velocity, distance and acceleration calculations

were performed.

Five players participated in Experiment I, three of them near the court center,

two near the court boundary. Players were standing still for 60 seconds in the

first part of the experiment and performed various activities for 180 seconds in

the second part. RMS errors in player position (Ep), velocity (Ev) and error in

distance covered per player per minute (Edc) were measured. Results are shown

in Table 1. It can be seen that trajectory smoothing radically reduces the errors

in player velocity and distance covered, but has only marginal influence on the
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error in player position.

[Table 1 about here.]

Experiment II has been designed to evaluate the adverse effects of the tra-

jectory smoothing, using square trajectory as a reference. Trajectories of the

five players who participated in the experiment were concatenated and the

RMS distance between measured and reference trajectory, shown in Fig. 6

was calculated as

Dr =

√√√√1

n

n∑
i=1

|di|2 (7)

The results show that heavy smoothing hides rapid changes in the player

trajectory. Kernel widths of 11 and 25 samples represent the compromise which

yields the most accurate results.

[Figure 6 about here.]

During Experiment III, errors in velocity measurements during player move-

ment were assessed. The RMS error in player velocity was observed, and the

reference velocity was simply calculated from the length of the circular path

and the time each player needed for one round. Five players took part in the

experiment, and their average velocities ranged from 2.69 to 3.22 m/s. RMS

errors in measured velocities ranged from 0.21 to 0.35 m/s (6.4% to 12%)

when an 11 samples wide smoothing kernel was used, and from 0.07 to 0.20

m/s (2.4% to 6.8%) when a 25 samples wide kernel was used.

Part of velocity variation can be contributed to the players themselves, as

humans are not able to control their velocity to the extent required in this

experiment. It is therefore most likely that our tracker was performing even
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better than the actual measurements have shown.

Experiment IV was designed to gain insight into the relation between the full-

scale motion of the human body center, which is best captured using biome-

chanical motion acquisition technology, and the large-scale motion, which is

captured by our system. A single player was instructed to run around three

markers in one of the corners of the court, as shown in Fig. 5. To capture the

full-scale motion of the player, we used APAS-99 system to manually track 16

distinctive points of the human body. APAS ”digital 7” filter was employed to

smooth the trajectories. The center of gravity was calculated by means of the

Dempster equations using APAS software. The components of the motion of

the gravity center which are parallel to the court plane were used as a ground

truth.

The whole video sequence lasted approximately 3.4 seconds (86 frames at 25

Hz). The results are consistent with previous experiments, with the RMS error

in position being 0.36 m. However, the velocity measurement error of 0.5 m

RMS illustrates the important difference between both systems - the level

of detail that they capture. This difference can be further observed in Fig.

7. Velocity and acceleration graphs, obtained with APAS show accelerations

and deccelerations of the center of gravity, which are associated with each

of the player’s steps. However, our system recorded only those accelerations

which correspond to the turning points in player trajectory. Acceleration was

calculated by simple differentiation a = �v/�t.

[Figure 7 about here.]
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4.5 Conclusions

The results of our experiments can be compiled to define the overall error of

our system as shown in Table 2. To ensure the validity of specified results, this

table is based on the worst case scenario.

[Table 2 about here.]

5 Handball match analysis

The presented method for large-scale motion acquisition is especially useful

in team sport analysis. Information on the intensity of player activity is of

crucial importance in studies that aim to define and improve the methods of

player training, which would further increase their efficiency.

Several parameters of long-term motion are important in this context, with

total distance covered by a particular player being the main focus of most of

the related research. However, reported results vary wildly; researches reported

values that ranged from as low as two to as high as seven kilometers per match

(Kotzamanidis et al., 1999). These variations can be largely attributed to the

different methods that were used, as some of the researchers had no possibility

of measuring the distance during the whole match and relied on extrapolation

of the data as obtained during a particular interval of the match. Large varia-

tions between the results obtained by different researchers and incomplete or

missing documentation about how the measurements were obtained, rendered

this data highly inappropriate for systematic scientific analysis.
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5.1 Experiment

The subject of the study was the evaluation of the intensity of the activity

(effort) of players during a handball match. The measured sample consisted

of six players of a Slovene First Division male team (20-28 years of age),

who played a model match. Positions of the players for the whole match were

obtained at 25 Hz using the previously described system for large-scale motion

acquisition. To distinguish between different intensities of player movement,

we defined boundaries in player velocity as follows: walking if v < 1.4 m/s,

slow running if 1.4 m/s ≤ v < 3.0 m/s, fast running if 3.0 m/s ≤ v < 5.2 m/s

and sprint if v ≥ 5.2 m/s.

5.2 Results

The players covered on average a distance of 4800 m during the analyzed

match. Variations for different players in the distance covered are from -7% to

+6%. Sprints amounted to 7% of the playing time, 25% of playing time was

spent in fast running, 31% in slow running and 37% in walking or standing

still.

6 Discussion

The most reliable way of obtaining player motion data is the observation of

players during the top league or championship matches. The measurements,

that have been published in literature so far are either unreliable or too poorly

documented to be used in training planning, as they are based mainly on
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extrapolation of short intervals of time in which the motion was observed.

Biomechanical motion analysis devices can be used to gain insight into the

player motion details, however, their specific nature does not allow continu-

ous and cost-effective motion acquisition on large areas, for example playing

courts, for long intervals of time.

Our system, as presented, solves several of these problems. Relaxed accuracy

requirements enabled us to significantly simplify the camera setup and accel-

erate the motion acquisition process. These modifications allow the capture

of large-scale motion of players. System error was measured and the structure

of the system is documented, which is important for scientific use of obtained

motion data.

The importance of large-scale motion acquisition was illustrated on the exam-

ple of a handball match, but it goes far beyond studying physiological demands

of a particular sport. Such data can be used in tactical match analysis and

can be compared to other parameters that are captured during gameplay, thus

increasing our knowledge of sport.

Authors’ note

The experimental research, presented in this paper, has been performed in

accordance with the ethical guidelines, laid down by the Faculty of Sport

at the University of Ljubljana. Written permissions were obtained from all

participants involved in the study.
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Figure 1. Handball playing court and camera placement (top). Example of combined
images from two cameras, taken at the same instant of time (bottom).
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Figure 2. Sequence of transformations, which define relations between pixels on the
camera sensor and an object on the court plane.
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Figure 3. A combined image from both cameras after the radial distortion correction.
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Figure 4. A graphical user interface to the tracking program.
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Figure 5. The setup for Experiments I-IV on one of the halves of a handball court.
Left: player positions during Experiment I are marked with black boxes. Middle:
Reference player trajectories for Experiments II and III shown with thick lines.
Right: Approximate player trajectory for the Experiment IV.
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Figure 6. Left: evaluation of trajectory distortion due to smoothing. Right: Effect
of different smoothing kernel widths (2NF + 1) to square trajectory and to RMS
radial difference Dr.
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Figure 7. Velocity and acceleration graphs, provided by APAS (dashed line) and
our system (solid line).
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Table 1
Results of the Experiment I. Smoothing kernel width (2NF + 1) of 0 denotes no
smoothing.

Still players Active players

(2NF + 1) 0 5 11 25 51 0 5 11 25 51

Center

Ep (m) 0.18 0.18 0.18 0.18 0.18 0.28 0.28 0.28 0.27 0.27

Ev (m/s) 0.98 0.12 0.06 0.04 0.03 2.00 0.61 0.36 0.18 0.09

Edc (m) 7.72 1.82 0.90 0.64 0.49 35.0 16.0 10.3 5.80 3.04

Boundary

Ep (m) 0.50 0.50 0.50 0.50 0.50 0.64 0.63 0.62 0.61 0.61

Ev (m/s) 1.35 0.19 0.05 0.02 0.02 2.10 0.37 0.16 0.08 0.04

Edc (m) 31.7 6.26 2.04 0.92 0.47 67.5 14.8 6.58 3.26 1.77
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Table 2
Tracker error. Numbers in parentheses indicate error in player position near the
court boundary. Smoothing kernel width is specified.

Error using: 11 samples wide kernel 25 samples wide kernel

Position, still player: 0.2 (0.5) m RMS 0.2 (0.5) m RMS

Position, active player: 0.3 (0.6) m RMS 0.3 (0.6) m RMS

Velocity, uniform motion at 3 m/s: 0.4 m/s RMS 0.2 m/s RMS

Velocity, uniform motion at 3 m/s (%): 12% 7%

Path length, still player: +0.9 m/min +0.6 m/min

Path length, active player: +10 m/min +6 m/min
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