
Technical Report FE-LSV-01/12

Efficient Feature Distribution in Visual-Sensor Networks

- An Example

Vildana Sulić Kenk, Janez Perš, Matej Kristan, Stanislav Kovačič
Faculty of Electrical Engineering, University of Ljubljana

Tržaška 25, SI-1000 Ljubljana

E-mail: vildana.sulic@fe.uni-lj.si

Abstract

In the so-called visual-sensor networks (VSNs), the processing tasks are distributed
across many spatially distributed smart cameras, and, in theory communication between
them is expensive. Recently, we proposed a framework of hierarchical feature distribution
(HFD) for object matching in a network of visual sensors, which utilizes the network
resources in a more balanced way in comparison to naive distribution. In this report we
summarize some essential elements of HFD and describe the use of such framework on an
illustrative example.

1 Hierarchical feature-distribution scheme

Object matching (re-identification) in distributed camera network essentially requires obtain-
ing feature correspondence between any pair of possibly distant camera nodes. It is obvious
that the complexity of such task grows non-linearly with the network size. To keep the prob-
lem manageable, efficient hierarchical scheme for feature distribution may be used. Theoretical
foundations for such scheme are described in [1]. In this report we provide only brief overview
of its main concepts, along with the illustrative example, to familiarize the reader with the
challenges and constraints that arise in distributed camera networks.

In any object recognition scheme we deal with the following two concepts. In learning, the
compact representation (in the form of a feature vector) of the object is extracted from one
or more images and either stored or used to train the appropriate classifier. In matching, the
same compact representation of an object is extracted from the newly acquired image or image
sequence. This vector is used to obtain a correspondence with one of the learned objects (or
object classes).

In distributed camera network, two naive strategies to distribute features are possible. The
entire network can be flooded with object features whenever a new image is acquired and as a
result of this flooding, recognition can be done in any node; however, this essentially duplicates
the role of a central processor on each node and as such defeats the purpose of distributed
processing. On the other hand, if we do not flood the network with each and every acquired
image and a particular node wants to recognize (re-identify) a previously seen object, all the
features from the network have to be requested for a comparison, resulting in huge amount of



network traffic. Hierarchical feature-distribution (HFD) scheme [1] provides a more balanced
approach by distributing a series of progressively coarse features, which are used for efficient
routing of re-identification queries.

2 Formal definition

Hierarchical feature-distribution scheme is based on a hierarchical reduction of feature vec-
tors. The primary node (the visual sensor that has originally seen the unknown object) retains
the complete information about the object (e.g., an unmodified feature vector). Its neighbors
receive less-detailed, more abstract information. For this, HFD requires feature mapping func-

tion (i.e., abstraction) f : x(n) 7→ x(n+1), 0 < n ≤ N , which translates a level n feature vector
x(n) into a higher, more abstract, level (n + 1) feature vector x(n+1). N denotes the highest
level of abstraction. After applying f , feature vector requires less storage and transmission
capacity. In this way, the amount of data transmitted across, or stored in the network, can be
significantly reduced.

In HFD scheme, feature vectors can be only matched to other feature vectors of the same
level n, however, if vector of a lower level m; m < n is available, it can be always transformed to
level n by applying mapping f several (n−m) times. To compare two feature vectors, a distance

measure d(n)(x
(n)
1 ,x

(n)
2 ), which provides a measure of the similarity between two feature vectors

x
(n)
1 and x

(n)
2 of the same level n is needed. For classification, a simple threshold rule is used

– if the distance d is smaller than the predefined threshold T , objects are declared to be of
the same class. Finally, distance d has to decrease monotonically by successive application of
f , which guarantees that any possible match with the less-descriptive feature vectors can be
back-traced to the primary node, which has full feature vector at its disposal.

In other words, the use of such scheme inevitably leads to a loss of information at the point
when the features are transformed to their less-detailed representations. In general, this leads
to a decrease in the matching performance. To reduce the amount of traffic, while preserving
matching performance, we have proposed four requirements that have to be fulfilled by any
object-matching method to be considered for use in the HFD scheme. The feature vectors
x, which are passed across the network, should fulfill the four major requirements, which are
mathematically defined as follows:

Requirement 1 (Abstraction): There exists a mapping f : xn 7→ xn+1, which translates
level n feature vector xn into higher, more abstract level (n + 1) feature vector xn+1, without
access to the original visual data.

This requirement assumes that the primary node extracts level 0 feature vectors, x0, directly
from the acquired image. Its direct neighbors receive level 1 feature vectors, x1, their neighbors
receive level 2 feature vectors, x2, and so on. Mapping f : xn 7→ xn+1 is done on each of the
nodes before transmitting the feature vectors xn+1 to its neighbors, until the maximum level of
abstraction is reached. From this point on, feature vectors are forwarded unchanged.

Requirement 2 (Storage): If I(x) is the storage space required for the feature vector x in
bits, then it should hold that: I(xn) > I(xn+1).

Requirement 3 (Existence of a metric): There exists a metric dn(xn
1 , x

n
2 ), which provides



a measure of similarity between two feature vectors xn
1 and xn

2 of the same level n.

The existence of the metric is critical both for the object recognition itself and for the hierar-
chical feature encoding scheme. The distance dn(xn

1 , x
n
2 ), when compared to the threshold T ,

determines if the objects are similar, dn(xn
1 , x

n
2 ) ≤ T , or not, dn(xn

1 , x
n
2 ) > T .

Requirement 4 (Convergence): Given two vectors xn
1 and xn

2 which are similar, dn(xn
1 , x

n
2 ) ≤

T , the corresponding vectors on the next level n + 1 should be at least as similar as the vectors
on the previous level, dn+1(xn+1

1 , xn+1
2 ) ≤ dn(xn

1 , x
n
2 ).

3 Illustrative example: Learning and object matching in HFD scheme

Learning: Let us assume that node 7 (Figure 1 a) has acquired an image, located an object
in it (using some kind of motion detection scheme, for example) and extracted object feature
vector x?. The node generates a unique identification number – ID (in this case ’A’), which is
then attached to the feature vector. Feature vector is stored in the node’s local storage and is
marked as being level 0 (x0

A
). Now the knowledge about object ’A’ is local. Other nodes have

no idea that node 7 has seen object A. Therefore, node 7 has to advertise/broadcast the fact
that it has seen object ’A’. This is done in the following way. Using the mapping, the next level
(level 1) feature vector x1

A
is prepared and propagated to the direct neighbors (to the nodes 3,

6, 8 and 11) with the ID ’A’ still attached. (Note that level 1 feature vector x1
A

requires less
storage space and is more abstract representation of an object than level 0 feature vector x0

A
.)

Nodes 3, 6, 8 and 11 store the received level 1 feature vector x1
A

and remember the direction
(the neighbor) where it came from (in our case node 7). Next, these nodes prepare next level
(level 2) feature vector x2

A
and broadcast this feature vector to theirs direct neighbors (to the

nodes 2, 4, 5, 10, 12, 15). These nodes again remember the origin of this feature vector x2
A

(e.g., origin of the x2
A

in the node 15 is node 11; this means that node 11 has more descriptive
feature vector on level 1, x1

A
). This procedure of applying the mapping, storing the origin

and broadcasting the less descriptive feature vector to the direct neighbors is repeated on each
node, until every node in the network has at least some information about the observed object
(situation is shown in Figure 1 b).

A note on maximum level of abstraction N: Let us assume that N is set to 5. That means
that in our example, x6

A
is never generated and x5

A
is forwarded unchanged from that point on.

Communications between the nodes and the unique IDs ensure that the nodes refuse to accept
any duplicated feature vectors or more abstract versions of the feature vectors they already
have in local storage.

Now, let us say that node 10 has acquired image B, node 13 image C, node 8 image D and
node 1 image E. The following Table 1 shows which feature vectors can be found in particular
node’s local storage.

Object matching: The task of object matching may be performed concurrently with learn-
ing (e.g., the network tries to match the object before proceeding with the learning). For now,
let us assume that the network is in matching-only mode. The algorithm for object matching
is presented in Algorithm 1. During object matching we call the node that has acquired the
image the querying node.



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

level 0

level 1

level 2

level 3

level 4

(b)

Figure 1: (a) an example of the network and its nodes; (b) situation, when feature vector xA

is broadcasted across the whole network (learning phase); Each color represents different level
of abstraction of feature vector xA.

Algorithm 1 : Object matching
Input: Image
Output: Object correspondence
1: Extract object features x(0).
2: // Local search
3: for All levels in the local storage do
4: Apply the mapping f : x(n) 7→ x(n+1) and calculate the next level feature x(n+1) from

x(n).
5: Compare x(n+1) with all the vectors of level n + 1 from the local storage.
6: if No match is found then
7: Terminate the search, object is unknown. Optionally, proceed with learning.
8: else if Match is found on the level 0 then
9: Object has been seen locally.

10: else
11: // Some other node might have seen the object.
12: // Proceed with network search.
13: for All matching vectors do
14: Examine tags, attached to the locally stored matching feature vector.
15: Forward level 0 features of the unknown object to the neighbor, who provided locally

stored matching feature vector.
16: // Upon receiving forwarded features, neighboring nodes start from Line 2 of the

Algorithm 1.
17: end for
18: end if
19: end for

Let us assume that node 8 has acquired new image, located an object in it and extracted
object feature vector x?. Node starts with the local search. In its own storage it can find
following feature vectors: x1

A
,x3

B
,x5

C
,x0

D
,x4

E
. Note: node can generate any of more abstract



Table 1: Feature vectors stored in the node’s local storage

Node Local storage

1 x3
A
,x3

B
,x3

C
,x4

D
,x0

E

2 x2
A
,x2

B
,x4

C
,x3

D
,x1

E

3 x1
A
,x3

B
,x5

C
,x2

D
,x2

E

4 x2
A
,x4

B
,x5

C
,x1

D
,x3

E

5 x2
A
,x2

B
,x2

C
,x3

D
,x1

E

6 x1
A
,x1

B
,x3

C
,x2

D
,x2

E

7 x0
A
,x2

B
,x4

C
,x1

D
,x3

E

8 x1
A
,x3

B
,x5

C
,x0

D
,x4

E

9 x3
A
,x1

B
,x1

C
,x4

D
,x2

E

10 x2
A
,x0

B
,x2

C
,x3

D
,x3

E

11 x1
A
,x1

B
,x3

C
,x2

D
,x4

E

12 x2
A
,x2

B
,x4

C
,x1

D
,x5

E

13 x4
A
,x2

B
,x0

C
,x5

D
,x3

E

14 x3
A
,x1

B
,x1

C
,x4

D
,x4

E

15 x2
A
,x2

B
,x2

C
,x3

D
,x5

E

16 x3
A
,x3

B
,x3

C
,x2

D
,x5

E

versions of the feature vector x? by applying the mapping f multiple times, and therefore,
other levels of the newly obtained feature vector are calculated: x1

?,x
3
?,x

5
?,x

0
?,x

4
?. Each of these

feature vectors has to be compared to the corresponding feature vectors previously stored in
the local storage. Comparison is done using the metric of similarity, which is matching-method
dependent: d1(x1

?,x
1
A
), d3(x3

?,x
3
B
), d5(x5

?,x
5
C
), d0(x0

?,x
0
D
), d4(x4

?,x
4
E
).

1. If each of the comparison resulted above the predefined threshold T , we can declare that
newly acquired image has not been seen before in the network.

2. If d0(x0
?,x

0
D
) ≤ T , we can declare that this image has been seen locally (by node 8) on

some previous occasion.

3. If, for example d4(x4
?,x

4
E
) ≤ T and d1(x1

?,x
1
A
) ≤ T , some other node in the network might

have seen the object. Since the match is on more abstract level, the quality of this decision
is questionable, and we have to confirm the match by comparing two feature vectors on
level 0. But the node does not have x0

E
and x0

A
and it has to proceed with the network

search, which is essentially forwarding the unknown feature vector x0
? in the directions

where matching level 0 feature vectors could be found. To do this, it looks up the origin
of the feature vectors that resulted in a match (origin is stored in the local storage), in
our case x4

E
and x1

A
. Node forwards x0

? to the nodes 4 (origin of the x4
E
) and 7 (origin of

the x1
A
). Nodes 4 and 7 start with the local search as described above.

(a) d0(x0
?,x

0
A
) ≤ T , node can declare that it found a match. Since this comparison was

on level 0 (original feature vectors), the identity of the object is confirmed - judging



from the feature comparison, this object is the same as A and has been seen before
in the node 7 (x0

? = x0
A
).

(b) If d3(x3
?,x

3
E
) ≤ T , node 4 proceeds with the network search, forwarding x0

? to the
node 3 (origin of the x3

E
).

(c) In case that both d0(x0
?,x

0
A
) and d3(x3

?,x
3
E
) would be above the threshold, we can

terminate the search. Object is unknown and the rationale is the same than in point
1 above.

4 Conclusion

HFD scheme utilizes network in a more balanced way than trivial network flooding. The
scheme is based on hierarchical distribution of the information, where each individual node
retains only a small amount of information about the objects seen by the network. However,
this amount is sufficient to efficiently route queries through the network without any degradation
in the recognition performance. As it can be seen above, the efficiency of the described approach
stems from the fact that after applying feature mapping f , feature vector requires less storage
and transmission capacity. In this way, the amount of data transmitted across, or stored in the
network, can be significantly reduced. Furthermore, the feature vectors are only forwarded in
a direction where there is a possibility that the object has been seen.

References

[1] V. Sulić, J. Perš, M. Kristan, and S. Kovačič. Efficient feature distribution for object
matching in visual-sensor networks. IEEE Transactions on Circuits and Systems for Video

Technology, 21(7):903–916, 2011.


