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Abstract

Dynamic models play a crucial role in tracking

algorithms. In particle filters, for example, proper

modelling of the target dynamics can help achieving

the desired tracking accuracy using only a small

number of particles and thus reducing the computa-

tional complexity of the tracker. We propose a novel

hierarchical model for tracking players in sports by

combining a conservative and a liberal dynamic model

to better describe the player’s dynamics. We show

how parameters of the model can be estimated from

prior knowledge about the players dynamics. The

proposed dynamic model was compared to a widely

used model and resulted in better performance in

terms of estimating position and prediction.

1 Introduction

Tracking players in sports from video is a difficult
task, due to the uncertainties associated with the
visual data and the uncertainties associated with the
dynamics of the players’ motion. In recent years,
particle filters [1] have become popular approaches
to tackle these uncertainties. The particle filters are
Monte Carlo based approaches to estimating the
posterior distribution of the target’s state over time.
In contrast to the well-known Kalman filter [4], which
assumes a Gaussian form of the posterior, particle
filters present the distributions using a weighted
set of samples (particles). Tracking then proceeds
by simulating these samples using some proposal
distribution and recalculating the weights using the
target’s dynamic model and a likelihood function,
which tells how likely each simulated state is, given
the observation.

In sports tracking applications, researchers have
been mainly concerned with building efficient propos-
als, visual models and visual likelihood functions in
order to attain a good tracking performance. On the
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other hand, mainly simple dynamic models have been
used. The reason is that during the sports match,
players try to move in a non-predictable way and
therefore it is difficult to find a compact set of rules
that govern the player’s dynamics. Because of this,
researchers usually model the player’s motion using
a random walk (RW) model or a nearly constant
velocity (NCV) dynamic model [6]. The RW model
describes the player’s dynamics best when the player
performs radical accelerations in different directions,
e.g., when undergoing abrupt turns for avoiding
the opponent. However, when the player moves
consistently in a certain direction, the RW model
performs poorly and the motion is better described
by the NCV model. Thus, to cover a range of different
motions, a common solution is to choose either a RW
or a NCV model, and increase the process noise in the
dynamic model. However, to have a sufficiently dense
coverage of the probability space, and therefore a
satisfactorily track, the number of particles also needs
to be increased in the particle filter. This, in turn,
introduces an additional computational complexity,
which slows down the tracking.

In our previous work [5], we have presented a so-
called local smoothing framework and showed that
such framework can be used with a small number of
samples in the particle filter, while still maintaining
a good track of the target. In this paper we show
how that framework can be viewed as a hierarchical
combination of two interacting dynamic models – a
conservative and a liberal model. We show that the
liberal model is a special case from a class of models,
which has the capability of exhibiting a RW behavior
as well as NCV behavior. This class of models is used
to derive the covariance matrix for the liberal model.
We also give a principled way to choosing the upper
bound of the spectral density of the noise for the
proposed model.

The remainder of the paper is structured as
follows. In section 2 we first present the structure of
the hierarchical model and give a detailed description
of the liberal and conservative models. We show in
section 3 how the parameters of the proposed model
can be determined for a given application. In section 4
the proposed model is compared to a commonly used
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Figure 1: A two-level hierarchical structure of the
dynamic model.

dynamic model and section 5 concludes the paper.

2 Hierarchical dynamic model

The hierarchical structure of the proposed dy-
namic model is shown in Fig. 1. At the top
level of hierarchy we have a conservative model,
which assumes that the current velocity can be
approximated by a weighted linear combination of
the past observed velocities. This model is used to
estimate the input velocity v̂k−1 of the model on
the lower level of hierarchy – the liberal model. This
model allows larger perturbations in the velocity of
the target. We use this model in a particle filter
framework to estimate the new mean state x̂k of
the target. In turn, this estimate is then propagated
to the higher level of the hierarchy, where it is
regularized by the conservative model into ôk.

2.1 The liberal dynamic model

We start by noting that changes in the position
x(t) arise due to non-zero velocity v(t) of the target,
i.e., ẋ(t) = v(t). To derive a general class of models
that are able to explain the RW as well as NCV
behavior of human motion, we propose to model the
velocity v(t) as a non-zero-mean correlated noise

v(t) = ṽ(t) + v̂(t), (1)

where ṽ(t) denotes a zero-mean correlated noise
and v̂(t) is the current mean of the noise – the
input velocity. We model the correlated noise ṽ(t)
as a Gauss-Markov process with the autocorrelation
function Rṽ(τ) = σe−α|τ |, where σ2 is the variance
of the process noise, and α is the correlation time
constant. A classical result of applying the shaping
filter [3] to the autocorrelation function gives the
following stochastic differential equation (s.d.e.)

˙̃v(t) = −αṽ(t) +
√

qcu(t). (2)

The term qc = 2ασ2 is the spectral density of the
white noise, while u(t) denotes a unit-variance white-
noise process. From (1) and (2) we have

˙̃v(t) = −αv(t) + αv̂(t) +
√

qcu(t). (3)

In order to arrive at a discretized form of the above
model, we first note that ˙̃v(t) = ∂

∂t
(v(t) − v̂(t)) and

assume that the input velocity v̂(t) remains constant
over a sampling interval. Thus we have

v̇(t) = −αv(t) + αv̂(t) +
√

qcu(t). (4)

The complete s.d.e. of the system in matrix form
is now

Ẋ(t) =

[

0 1
0 −α

]

X(t)+

[

0
α

]

v̂(t)+

[

0
1

]√
qcu(t),

(5)
where X(t) = [x(t), v(t)]T. Discretization of the
above equation is straightforward and gives

Xk = ΦXk−1 + Γv̂k−1 + Wk, (6)

Φ =

[

1 1−e−T α

α

0 e−Tα

]

,Γ =

[

Tα−1+e−T α

α

1 − e−Tα

]

, (7)

where v̂k−1 is the input velocity for the current time-
step k, T is the time-step length, and Wk is a white
noise sequence with covariance matrix

Q =

[

q11 q12

q12 q22

]

qc, (8)

q11 =
1

2α3
(2Tα − 1 + 4e−Tα − e−2Tα), (9)

q12 =
1

2α2
(1 + e−2Tα − 2e−Tα), (10)

q22 =
1

2α
(1 − 2e−2Tα). (11)

The model in (6) can be considered a hybrid
between RW and NCV model. This can be seen by
limiting α to zero, or to infinity. In the case of α → 0,
the model takes the form of a pure NCV model. On
the other hand, the model takes the form of RW
model at α → ∞ and v̂k−1 = 0.

2.2 The conservative dynamic model

The conservative model is based on building
a local velocity distribution over the past filtered
velocities. This distribution is then used to enforce
regularization of the estimated position from the
particle filter. Let ok−K:k−1 = {oi}k−1

i=k−K denote a
sequence of the K past smoothed states of the tracked
target. Let πk−K:k−1 = {πi}k−1

i=k−K denote the set of
their weights and let vi = (oi − oi−1) denote the
velocity between two consecutive smoothed states.
We define a discrete local velocity distribution based
on the past smoothed states as

p(v|ok−K:k−1) =

k−1
∑

i=k−K

δ(vi − v)Gi(k), (12)

where δ(·) is the dirac-delta function. The weights
Gi(k) are defined as

Gi(k) = c0π
(k)π(i−1)e

− 1
2

(i−k+1)2

σ2
o . (13)



The first term c0 in the above equation is the
normalizing constant ensuring that

∑k−1
i=k−K Gi(k) =

1. The second and third terms reflect the likelihood of
the states oi and oi−1 used to calculate the velocity
vi, and the last term is a Gaussian that assigns higher
a-priori weights to the more recent velocities.

The current input velocity v̂k−1 is then estimated
as the expected value over the local velocity
distribution

v̂k−1 = 〈v〉p(v|ok−K:k−1), (14)

where 〈·〉p(v|ok−K:k−1) denotes the expectation opera-
tor over p(v|ok−K:k−1). The number of the smoothed
states used in (12-14) is set to T = 3σo for practical
applications, since the a-priori weights of all the older
states are negligible.

The current smoothed state is calculated as
follows. At time-step k, the estimate x̂k of the state
is calculated from the particle filter. This estimate
is then fused with the prediction of the smoothed
states õk = ok−1 + v̂k−1 according to their visual
likelihoods1 wx̂k

and wõt
, respectively, as

ok =
õk · wõk

+ x̂k · wx̂k

wõk
+ wx̂k

. (15)

Finally, the corresponding weight πk of the new
smoothed state ok is evaluated using the visual
likelihood function.

3 Selecting the model parameters

Assuming that a player cannot radically change
his/hers velocity within one half of a second, a value
for the parameter σo in (13) is chosen to comply with
this time frame. Since all our test sequences were
recorded at a frame rate of 25 frames per second,
we have chosen this parameter to be σo = 4.3. Thus
in our application only K = 13 past smoothed states
are considered.

Another important parameter of the proposed
model is the spectral density qc of the noise in (8). We
derive an upper bound on this density by first finding
the expected change σm of the player’s position in
two sequential time-steps. From the sports literature
[2], we estimate the highest velocity of a player as
vmax = 8.0m/s. At a frame rate of 25frames/s we
can say vmax = 0.32m/frame. During tracking, the
player is usually determined by an ellipse that is
approximately the size of his/hers shoulders, which
is estimated to be Hk ≈ 0.4m. Assuming a Gaussian
form of the velocity distribution, the highest velocity
can be estimated as three standard deviations vmax =
3σm/frame, and we have σm

.
= 1

4Hk.

1In our application we use the color-based visual likelihood
function as in [5]. However, any other likelihood function could
have been used.

To find the spectral density corresponding to the
expected change σm of position in two time steps,
we consider the following one dimensional example.
Let us assume that at time step k = 0 a target is
located at coordinate x0 = 0, and begins moving with
velocity v0 ∼ q22, i.e., X0 = [0, v0]

T. It can be shown
that after a single time step the covariance of the
targets state is

P =

[

p11 p12

p21 p22

]

∆
= 〈X1X

T
1 〉 = Φ〈X0X

T
0 〉ΦT + Q,

(16)
where 〈·〉 denotes the expectation operator.

Noting that the term p11 is the squared expected
change in the target’s position between two time
steps, we can write the spectral density as

qc = σ2
m(q11 + q22(

1 − e−Tα

α
)2)−1, (17)

with σm = 1
4Hk.

4 Experimental study

The performance of the hierarchical dynamic
model from section 2 was evaluated as follows. Seven
players of handball were tracked while sprinting on
the court and performing sharp turns (Figure 3).
The average size of each player in the video was
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Figure 3: Seven players used in the experiments and
a predefined path.

approximately 10 × 10 pixels. Each player was
manually tracked fifteen times and the average of the
fifteen trajectories obtained for each player was taken
as the ground truth. In this way, approximately 273
ground-truth positions pk per player were obtained.
The performance of the tracker was measured in
terms of the root-mean-square (RMS) error as

E =
1

7

7
∑

i=1

1

R

R
∑

r=1

(
1

K

K
∑

k=1

‖(i)pk − (i)p̃
(r)
k ‖2)

1
2 . (18)

In (18) (i)pk denotes the ground-truth position

at time-step k for the i-th player, (i)p̂
(r)
k is the
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Figure 2: Average RMS errors of trackers for estimating position (left) and prediction (middle) w.r.t the ground
truth. The average standard deviations of the position estimates are shown in (right). The performance of
the proposed tracker for different values of α is shown in full line. The Performance of the tracker with a
nearly-constant velocity dynamic model is shown in the dotted line.

corresponding estimated position for r-th replication
of the experiment, and ‖ · ‖ is the l2 norm.

The proposed dynamic model was implemented
with a color-based particle filter [5] using 25
particles, where the shape of the player was encoded
by an ellipse. Two separate hierarchical dynamic
models were used to model the dynamics of x

and y coordinate of the player’s position. All other
parameters were set as in [5]. We denote this tracker
by Thier. The tracker Thier was compared to another
tracker based on [5], where NCV models were used to
model the dynamics of the position. The noise of the
NCV model was learnt on the ground-truth data. We
denote the latter tracker by TNCV.

Each player was tracked thirty times (R=30) with
the Thier and TNCV. For each tracker, a RMS error
(18) on the current position and prediction was
calculated with respect to the ground-truth data. In
order to evaluate the repeatability of the trackers, the
average standard deviations of the position estimates
were also calculated.

To demonstrate how the tracking performance
changes with different values of α in the liberal model
from section 2.1, the experiments were performed for
various values of the parameter α ∈ {1, 5, 10, 15}. The
results are shown in Figure 2. The proposed dynamic
model in Thier outperformed the NCV model in
TNCV for all values of α, indicating an increasing
performance with increasing α. Note that while the
driving noise for the NCV model was learnt from
the ground-truth data, only a rough estimate of the
spectral density was used for the hierarchical model.
In fact, since v̂k−1 was not taken into account in
the derivation of (17), the obtained spectral noise
was overestimated, and presents an upper bound on
the actual noise. Nevertheless, the hierarchical model
outperformed the NCV model. The results in Figure 2
thus imply powerful generalization capabilities of the
hierarchical model presented in this paper.

5 Conclusion

A novel hierarchical dynamic model was presented
in this paper. The model was derived by combining
a conservative and a liberal dynamic model. Experi-
ments from tracking in sports have shown that even
when an overestimated spectral density is used, the
hierarchical model outperforms a widely used NCV
model. Thus we conclude that the proposed model
exhibits large generalization capabilities for tracking
in sports.
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